Chwilio Deddfwriaeth

Commission Decision of 23 December 2003 on the technical prescriptions for the implementation of Article 3 of Directive 2003/102/EC of the European Parliament and of the Council relating to the protection of pedestrians and other vulnerable road users before and in the event of a collision with a motor vehicle and amending Directive 70/156/EEC (notified under document number C(2003) 5041) (Text with EEA relevance) (2004/90/EC)

 Help about what version

Pa Fersiwn

  • Y Diweddaraf sydd Ar Gael (Diwygiedig)
  • Gwreiddiol (Fel y’i mabwysiadwyd gan yr UE)
 Help about advanced features

Nodweddion Uwch

 Help about UK-EU Regulation

Deddfwriaeth yn deillio o’r UE

Pan adawodd y DU yr UE, cyhoeddodd legislation.gov.uk ddeddfwriaeth yr UE a gyhoeddwyd gan yr UE hyd at ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11.00 p.m.). Ar legislation.gov.uk, mae'r eitemau hyn o ddeddfwriaeth yn cael eu diweddaru'n gyson ag unrhyw ddiwygiadau a wnaed gan y DU ers hynny.

Close

Mae'r eitem hon o ddeddfwriaeth yn tarddu o'r UE

Mae legislation.gov.uk yn cyhoeddi fersiwn y DU. Mae EUR-Lex yn cyhoeddi fersiwn yr UE. Mae Archif Gwe Ymadael â’r UE yn rhoi cipolwg ar fersiwn EUR-Lex o ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11.00 p.m.).

Changes to legislation:

Roedd y fersiwn hon o'r Penderfyniad hwn yn deillio o EUR-Lex ar ddiwrnod cwblhau’r cyfnod gweithredu (31 Rhagfyr 2020 11: 00 p.m.). Nid yw wedi cael ei diwygio gan y DU ers hynny. Darganfyddwch fwy am ddeddfwriaeth sy'n deillio o'r UE fel y'i cyhoeddwyd ar legislation.gov.uk. Help about Changes to Legislation

Close

Changes to Legislation

Revised legislation carried on this site may not be fully up to date. At the current time any known changes or effects made by subsequent legislation have been applied to the text of the legislation you are viewing by the editorial team. Please see ‘Frequently Asked Questions’ for details regarding the timescales for which new effects are identified and recorded on this site.

Appendix I

CERTIFICATION OF IMPACTORS

1.Certification requirementsU.K.

1.1.The impactors that are used in the tests detailed in Part II are required to comply with appropriate performance requirements.U.K.

The requirements for the lower legform impactor are specified in Section 2; the upper legform impactor requirements are specified in Section 3 and the adult, child and child/small adult headform impactor requirements are specified in Section 4.

2.Lower legform impactorU.K.

2.1.Static testsU.K.

2.1.1.The lower legform impactor shall meet the requirements specified in point 2.1.2 when tested as specified in point 2.1.4 and the impactor shall meet the requirements specified in point 2.1.3 when tested as specified in point 2.1.5.U.K.

For both tests the impactor shall have the intended orientation about its longitudinal axis, for the correct operation of its knee joint, with a tolerance of ± 2°.

The stabilised temperature of the impactor during certification shall be 20 °C ± 2 °C.

The CAC response values, as defined in ISO 6487:2000, shall be 50° for the knee bending angle and 500 N for the applied force when the impactor is loaded in bending in accordance with point 2.1.4, and 10 mm for the shearing displacement and 10 kN for the applied force when the impactor is loaded in shearing in accordance with point 2.1.5. For both tests low-pass filtering at an appropriate frequency is permitted, to remove higher frequency noise without significantly affecting the measurement of the response of the impactor.

2.1.2.When the impactor is loaded in bending in accordance with point 2.1.4, the applied force/bending angle response shall be within the limits shown in Figure 1. Also, the energy taken to generate 15,0° of bending shall be 100 ± 7 J.U.K.

2.1.3.When the impactor is loaded in shearing in accordance with point 2.1.5, the applied force/shearing displacement response shall be within the limits shown in Figure 2.U.K.

2.1.4.The legform impactor, without foam covering and skin, shall be mounted with the tibia firmly clamped to a fixed horizontal surface and a metal tube connected firmly to the femur, as shown in Figure 3. To avoid friction errors, no support shall be provided to the femur section or the metal tube. The bending moment applied at the centre of the knee joint, due to the weight of the metal tube and other components (excluding the legform itself), shall not exceed 25 Nm.U.K.

A horizontal normal force shall be applied to the metal tube at a distance of 2,0 ± 0,01 m from the centre of the knee joint and the resulting angle of knee deflection shall be recorded. The load shall be increased until the angle of deflection of the knee is in excess of 22°.

The energy is calculated by integrating the force with respect to the bending angle in radians, and multiplying by the lever length of 2,0 ± 0,01 m.

2.1.5.The impactor, without foam covering and skin, shall be mounted with the tibia firmly clamped to a fixed horizontal surface and a metal tube connected firmly to the femur and restrained at 2,0 m from the centre of the knee joint, as shown in Figure 4.U.K.

A horizontal normal force shall be applied to the femur at a distance of 50 mm from the centre of the knee joint and the resulting knee shearing displacement shall be recorded. The load shall be increased until the shearing displacement of the knee is in excess of 8,0 mm or the load is in excess of 6,0 kN.

2.2.Dynamic testsU.K.

2.2.1.The lower legform impactor shall meet the requirements specified in point 2.2.2 when tested as specified in point 2.2.4.U.K.

The stabilised temperature of the impactor during certification shall be 20 °C ± 2 °C.

2.2.2.When the impactor is impacted by a linearly guided certification impactor, as specified in point 2.2.4, the maximum upper tibia acceleration shall be not less than 120 g and not more than 250 g. The maximum bending angle shall be not less than 6,2° and not more than 8,2°. The maximum shearing displacement shall be not less than 3,5 mm and not more than 6,0 mm.U.K.

For all these values the readings used shall be from the initial impact with the certification impactor and not from the arresting phase. Any system used to arrest the impactor or certification impactor shall be so arranged that the arresting phase does not overlap in time with the initial impact. The arresting system shall not cause the transducer outputs to exceed the specified CAC.

2.2.3.The instrumentation response value CFC, as defined in ISO 6487:2000, shall be 180 for all transducers. The CAC response values, as defined in ISO 6487:2000, shall be 50° for the knee bending angle, 10 mm for the shearing displacement and 500 g for the acceleration. This does not require that the impactor itself be able to physically bend and shear to these angles and displacements.U.K.

2.2.4Test procedureU.K.

2.2.4.1.The impactor, including foam covering and skin, shall be suspended horizontally by three wire ropes of 1,5 ± 0,2 mm diameter and of 2,0 m minimum length, as shown in Figure 5a. It shall be suspended with its longitudinal axis horizontal, with a tolerance of ± 0,5°, and perpendicular to the direction of the certification impactor motion, with a tolerance of ± 2°. The impactor shall have the intended orientation about its longitudinal axis, for the correct operation of its knee joint, with a tolerance of ± 2°. The impactor must meet the requirements of point 3.4.1.1, Chapter II of Part II with the attachment bracket(s) for the wire ropes fitted.U.K.
2.2.4.2.The certification impactor shall have a mass of 9,0 ± 0,05 kg, this mass includes those propulsion and guidance components which are effectively part of the impactor during impact. The dimensions of the face of the certification impactor shall be as specified in Figure 5b. The face of the certification impactor shall be made of aluminium, with an outer surface finish of better than 2,0 micrometers.U.K.

The guidance system shall be fitted with low friction guides, insensitive to off-axis loading, that allow the impactor to move only in the specified direction of impact, when in contact with the vehicle. The guides shall prevent motion in other directions including rotation about any axis.

2.2.4.3.The impactor shall be certified with previously unused foam.U.K.
2.2.4.4.The impactor foam shall not be excessively handled or deformed before, during or after fitting.U.K.
2.2.4.5.The certification impactor shall be propelled horizontally at a velocity of 7,5 ± 0,1 m/s into the stationary impactor as shown in Figure 5a. The certification impactor shall be positioned so that its centreline aligns with a position on the tibia centreline of 50 mm from the centre of the knee, with tolerances of ± 3 mm laterally and ± 3 mm vertically.U.K.

3.Upper legform impactorU.K.

3.1.The upper legform impactor shall meet the requirements specified in point 3.2 when tested as specified in point 3.3.U.K.

The stabilised temperature of the impactor during certification shall be 20 °C ± 2 °C.

3.2.RequirementsU.K.

3.2.1.When the impactor is propelled into a stationary cylindrical pendulum the peak force measured in each load transducer shall be not less 1,20 kN and not more than 1,55 kN and the difference between the peak forces measured in the top and bottom load transducers shall not be more than 0,10 kN. Also, the peak bending moment measured by the strain gauges shall not be less than 190 Nm and not more than 250 Nm on the centre position and not less than 160 Nm and not more than 220 Nm for the outer positions. The difference between the upper and lower peak bending moments shall not be more than 20 Nm.U.K.

For all these values the readings used shall be from the initial impact with the pendulum and not from the arresting phase. Any system used to arrest the impactor or pendulum shall be so arranged that the arresting phase does not overlap in time with the initial impact. The arresting system shall not cause the transducer outputs to exceed the specified CAC.

3.2.2.The instrumentation response value CFC, as defined in ISO 6487:2000, shall be 180 for all transducers. The CAC response values, as defined in ISO 6487:2000, shall be 10 kN for the force transducers and 1 000 Nm for the bending moment measurements.U.K.

3.3.Test procedureU.K.

3.3.1.The impactor shall be mounted to the propulsion and guidance system, by a torque limiting joint. The torque limiting joint shall be set so that the longitudinal axis of the front member is perpendicular to the axis of the guidance system, with a tolerance of ± 2°, with the joint friction torque set to a minimum of 650 Nm. The guidance system shall be fitted with low friction guides that allow the impactor to move only in the specified direction of impact, when in contact with the pendulum.U.K.

3.3.2.The impactor mass shall be adjusted to give a mass of 12 ± 0,1 kg, this mass includes those propulsion and guidance components which are effectively part of the impactor during impact.U.K.

3.3.3.The centre of gravity of those parts of the impactor which are effectively forward of the torque limiting joint, including the extra weights fitted, shall lie on the longitudinal centreline of the impactor, with a tolerance of ± 10 mm.U.K.

3.3.4.The impactor shall be certified with previously unused foam.U.K.

3.3.5.The impactor foam shall not be excessively handled or deformed before, during or after fitting.U.K.

3.3.6.The impactor with the front member vertical shall be propelled horizontally at a velocity of 7,1 ± 0,1 m/s into the stationary pendulum as shown in Figure 6.U.K.

3.3.7.The pendulum tube shall have a mass of 3 ± 0,03 kg, an outside diameter of and a wall thickness of 3 ± 0,15 mm. Total pendulum tube length shall be 275 ± 25 mm. The pendulum tube shall be made from cold finished seamless steel (metal surface plating is permissible for protection from corrosion), with an outer surface finish of better than 2,0 micrometers. It shall be suspended on two wire ropes of 1,5 ± 0,2 mm diameter and of 2,0 m minimum length. The surface of the pendulum shall be clean and dry. The pendulum tube shall be positioned so that the longitudinal axis of the cylinder is perpendicular to the front member (i.e. level), with a tolerance of ± 2°, and to the direction of impactor motion, with a tolerance of ± 2°, and with the centre of the pendulum tube aligned with the centre of the impactor front member, with tolerances of ± 5 mm laterally and ± 5 mm vertically.U.K.

4.Headform impactorsU.K.

4.1.The child, child/small adult and the adult headform impactors shall meet the requirements specified in point 4.2 when tested as specified in point 4.3.U.K.

The stabilised temperature of the impactors during certification shall be 20 °C ± 2 °C.

4.2.RequirementsU.K.

4.2.1.When the child headform impactor is impacted by a linearly guided certification impactor, as specified in point 4.3, the peak resultant acceleration measured by one triaxial (or three uniaxial) accelerometer in the headform shall be not less than 405 g and not more than 495 g. The resultant acceleration time curve shall be uni-modal.U.K.

4.2.2.When the child/small adult headform impactor is impacted by a linearly guided certification impactor, as specified in point 4.3, the peak resultant acceleration measured by one triaxial (or three uniaxial) accelerometer in the headform shall be not less than 290 g and not more than 350 g. The resultant acceleration time curve shall be uni-modal.U.K.

4.2.3.When the adult headform impactor is impacted by a linearly guided certification impactor, as specified in point 4.3, the peak resultant acceleration measured by one triaxial (or three uniaxial) accelerometer in the headform shall be not less than 337,5 g and not more than 412,5 g. The resultant acceleration time curve shall be uni-modal.U.K.

4.2.4.The instrumentation response value CFC, as defined in ISO 6487:2000, shall be 1 000. The CAC response value, as defined in ISO 6487:2000, shall be 1 000 g for the acceleration.U.K.

4.3.Test procedureU.K.

4.3.1.The headform impactors shall be suspended as shown in Figure 7. The headform impactors shall be suspended with the rear face at an angle between 25° and 90° with the horizontal, as shown in Figure 7.U.K.

4.3.2.The certification impactor shall have a mass of 1,0 ± 0,01 kg. This mass includes those propulsion and guidance components which are effectively part of the impactor during impact. The linear guidance system shall be fitted with low friction guides which do not contain any rotating parts. The diameter of the flat impactor face shall be 70 ± 1 mm, while the edge shall be rounded by a 5 ± 0,5 mm radius. The face of the certification impactor shall be made of aluminium, with an outer surface finish of better than 2,0 micrometers.U.K.

4.3.3.The certification impactor shall be propelled horizontally at a velocity of 7,0 ± 0,1 m/s into the stationary child and child/small adult headform impactors and at a velocity of 10,0 ± 0,1 m/s into the stationary adult headform impactor. The certification impactor shall be positioned so that the centre of gravity of the headform impactor is located on the centre line of the certification impactor, with tolerances of ± 5 mm laterally and ± 5 mm vertically.U.K.

4.3.4.The test shall be performed on three different impact locations on each headform impactor. Previously used and/or damaged skins shall be tested in those specific areas.U.K.

Table 1: Summary of response requirements for headform impactors
Impactor and massCertification velocity [m/s]Lower Boundary [g]Upper, Boundary [g]
Child 2,5 kg7405495
Child/small adult 3,5 kg7290350
Adult 4,8 kg10337,5412,5

Figure 1

Force versus angle requirement in static lower legform impactor bending certification test

Figure 2

Force versus displacement requirement in static lower legform impactor shearing certification test

Figure 3

Top view of test set-up for static lower legform impactor bending certification test

Figure 4

Top view of test set-up for static lower legform impactor shearing certification test

Figure 5a

Test set-up for dynamic lower legform impactor certification test (side view top diagram, view from above bottom diagram)

Figure 5b

Details of dynamic lower legform certification impactor face

Notes:U.K.
1.Saddle may be made as a complete diameter and cut as shown to make two components.U.K.
2.The shaded areas may be removed to give the alternative form shown.U.K.
3.Tolerance on all dimensions is ± 1,0 mm.U.K.

Material: aluminium alloy

Figure 6

Test set-up for dynamic upper legform impactor certification test

Figure 7

Test set-up for dynamic headform impactor certification test

Yn ôl i’r brig

Options/Cymorth

Print Options

You have chosen to open the Whole Decision

The Whole Decision you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.

Would you like to continue?

You have chosen to open Schedules only

Y Rhestrau you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.

Would you like to continue?

Close

Mae deddfwriaeth ar gael mewn fersiynau gwahanol:

Y Diweddaraf sydd Ar Gael (diwygiedig):Y fersiwn ddiweddaraf sydd ar gael o’r ddeddfwriaeth yn cynnwys newidiadau a wnaed gan ddeddfwriaeth ddilynol ac wedi eu gweithredu gan ein tîm golygyddol. Gellir gweld y newidiadau nad ydym wedi eu gweithredu i’r testun eto yn yr ardal ‘Newidiadau i Ddeddfwriaeth’.

Gwreiddiol (Fel y’i mabwysiadwyd gan yr UE): Mae'r wreiddiol version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.

Close

Gweler y wybodaeth ychwanegol ochr yn ochr â’r cynnwys

Rhychwant ddaearyddol: Indicates the geographical area that this provision applies to. For further information see ‘Frequently Asked Questions’.

Dangos Llinell Amser Newidiadau: See how this legislation has or could change over time. Turning this feature on will show extra navigation options to go to these specific points in time. Return to the latest available version by using the controls above in the What Version box.

Close

Dewisiadau Agor

Dewisiadau gwahanol i agor deddfwriaeth er mwyn gweld rhagor o gynnwys ar y sgrin ar yr un pryd

Close

Rhagor o Adnoddau

Gallwch wneud defnydd o ddogfennau atodol hanfodol a gwybodaeth ar gyfer yr eitem ddeddfwriaeth o’r tab hwn. Yn ddibynnol ar yr eitem ddeddfwriaeth sydd i’w gweld, gallai hyn gynnwys:

  • y PDF print gwreiddiol y fel adopted version that was used for the EU Official Journal
  • rhestr o newidiadau a wnaed gan a/neu yn effeithio ar yr eitem hon o ddeddfwriaeth
  • pob fformat o’r holl ddogfennau cysylltiedig
  • slipiau cywiro
  • dolenni i ddeddfwriaeth gysylltiedig ac adnoddau gwybodaeth eraill
Close

Llinell Amser Newidiadau

Mae’r llinell amser yma yn dangos y fersiynau gwahanol a gymerwyd o EUR-Lex yn ogystal ag unrhyw fersiynau dilynol a grëwyd ar ôl y diwrnod ymadael o ganlyniad i newidiadau a wnaed gan ddeddfwriaeth y Deyrnas Unedig.

Cymerir dyddiadau fersiynau’r UE o ddyddiadau’r dogfennau ar EUR-Lex ac efallai na fyddant yn cyfateb â’r adeg pan ddaeth y newidiadau i rym ar gyfer y ddogfen.

Ar gyfer unrhyw fersiynau a grëwyd ar ôl y diwrnod ymadael o ganlyniad i newidiadau a wnaed gan ddeddfwriaeth y Deyrnas Unedig, bydd y dyddiad yn cyd-fynd â’r dyddiad cynharaf y daeth y newid (e.e. ychwanegiad, diddymiad neu gyfnewidiad) a weithredwyd i rym. Am ragor o wybodaeth gweler ein canllaw i ddeddfwriaeth ddiwygiedig ar Ddeall Deddfwriaeth.

Close

Rhagor o Adnoddau

Defnyddiwch y ddewislen hon i agor dogfennau hanfodol sy’n cyd-fynd â’r ddeddfwriaeth a gwybodaeth am yr eitem hon o ddeddfwriaeth. Gan ddibynnu ar yr eitem o ddeddfwriaeth sy’n cael ei gweld gall hyn gynnwys:

  • y PDF print gwreiddiol y fel adopted fersiwn a ddefnyddiwyd am y copi print
  • slipiau cywiro

liciwch ‘Gweld Mwy’ neu ddewis ‘Rhagor o Adnoddau’ am wybodaeth ychwanegol gan gynnwys

  • rhestr o newidiadau a wnaed gan a/neu yn effeithio ar yr eitem hon o ddeddfwriaeth
  • manylion rhoi grym a newid cyffredinol
  • pob fformat o’r holl ddogfennau cysylltiedig
  • dolenni i ddeddfwriaeth gysylltiedig ac adnoddau gwybodaeth eraill