- Latest available (Revised)
- Original (As adopted by EU)
Commission Directive 2005/12/EC of 18 February 2005 amending Annexes I and II to Directive 2003/25/EC of the European Parliament and of the Council on specific stability requirements for ro-ro passenger ships (Text with EEA relevance)
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
This is the original version (as it was originally adopted).
THE COMMISSION OF THE EUROPEAN COMMUNITIES,
Having regard to the Treaty establishing the European Community,
Having regard to Directive 2003/25/EC of the European Parliament and of the Council of 14 April 2003 on specific stability requirements for ro-ro passenger ships(1), and in particular Article 10 thereof,
Whereas:
(1) Directive 2003/25/EC applies to all ro-ro passenger ships operating to or from a port of a Member State on a regular service, regardless of their flag, when engaged on international voyages.
(2) Article 6 of Directive 2003/25/EC provides that ro-ro passenger ships shall comply with specific stability requirements which are set out in detail in Annex I to that Directive and that Member States shall use in the application of these requirements the guidelines set out in Annex II thereto.
(3) Article 10 of Directive 2003/25/EC provides that the Annexes to the Directive may be amended in accordance with the procedure referred to in Article 11(2), in order to take account of developments at international level and particularly at the International Maritime Organisation (IMO).
(4) IMO Resolution MSC 141(76) of 5 December 2002 introduced a revised model test method and associated guidance notes under Resolution 14 of the 1995 SOLAS (Safety of Life at Sea) Conference. Resolution 14 concerns regional agreements on specific stability requirements for ro-ro passenger ships.
(5) The revised model test method should supersede the previously applied model test method provided for in Directive 2003/25/EC. Any ship having passed the test according to the previously applied model test method need not to do the test again.
(6) Directive 2003/25/EC should therefore be amended accordingly.
(7) The measures provided for in this Directive are in accordance with the opinion of the Committee on Safe Seas and the Prevention of Pollution from Ships, set up by Regulation (EC) No 2099/2002 of the European Parliament and of the Council(2),
HAS ADOPTED THIS DIRECTIVE:
Directive 2003/25/EC is amended as follows:
Annex I is amended as follows:
paragraph 2.3 is replaced by the following:
Bh = 8hw
where:
Bh is the bulkhead height;
and hw is the height of water.
In any event, the minimum height of the bulkhead should be not less than 2,2 m. However, in case of a ship with hanging car decks, the minimum height of the bulkhead shall be not less than the height to the underside of the hanging deck when in its lowered position;’
the Appendix entitled ‘Model test method’, is replaced by the text shown in Annex I to this Directive;
in Annex II, Part II, entitled ‘Model testing’, is replaced by the text shown in Annex II to this Directive.
1.Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with this Directive within 12 months after its date of entry into force at the latest. They shall forthwith communicate to the Commission the text of those provisions and a correlation table between those provisions and this Directive.
When Member States adopt those provisions, they shall contain a reference to this Directive or be accompanied by such a reference on the occasion of their official publication. Member States shall determine how such reference is to be made.
2.Member States shall communicate to the Commission the text of the main provisions of national law which they adopt in the field covered by this Directive.
This Directive shall enter into force on the twentieth day of its publication in the Official Journal of the European Union.
This Directive is addressed to the Member States.
Done at Brussels, 18 February 2005.
For the Commission
Jacques Barrot
Vice-President
This revised model test method is a revision of the method contained in the Appendix to the Annex to resolution 14 of the 1995 SOLAS Conference. Since the entry into force of the Stockholm Agreement a number of model tests has been carried out in accordance with the test method previously in force. During these tests a number of refinements in the procedures have been identified. This new model test method aims to include these refinements and, together with the appended Guidance Notes, provide a more robust procedure for the assessment of survivability of a damaged ro-ro passenger ship in a seaway. In the tests provided for in paragraph 1.4 of the stability requirements included in Annex I, the ship should be capable of withstanding a seaway as defined in paragraph 4 hereunder in the worst-damage-case scenario.
LBP | is the length between perpendiculars |
HS | is the significant wave height |
B | is the moulded breadth of the ship |
TP | is the peak period |
TZ | is the zero crossing period |
trapezoidal profile with side at 15° slope to the vertical and the width at the design waterline defined according to SOLAS regulation II-1/8.4.1;
isosceles triangular profile in the horizontal plane with the height equal to B/5 according to SOLAS regulation II-1/8.4.2. If side casings are fitted within B/5, the damaged length in way of the side casings should not be less than 25 mm;
notwithstanding the provisions of subparagraphs 3.2.7.1 and 3.2.7.2 above, all compartments taken as damaged in calculating the worst damage case(s) referred to in paragraph 3.1 should be flooded in the model tests;
Furthermore,
The model should be considered as surviving if a stationary state is reached for the successive test runs as required in paragraph 4.3. The model should be considered as capsized if angles of roll of more than 30° to the vertical axis or steady (average) heel greater than 20° for a period longer than three minutes full-scale occur, even if a stationary state is reached.
The purpose of these guidelines is to ensure uniformity in the methods employed in the construction and verification of the model as well as in the undertaking and analyses of the model tests.
The contents of paragraphs 1 and 2 of the Appendix to Annex I are considered self-explanatory.
It is also important to ensure that the damaged compartments are modelled as accurately as practicably possible to ensure that the correct volume of flood water is represented.
Since ingress of water (even small amounts) into the intact parts of the model will affect its behaviour, measures must be taken to ensure that this ingress does not occur.
In model tests involving worst SOLAS damages near the ship ends, it has been observed that progressive flooding was not possible because of the tendency of the water on deck to accumulate near the damage opening and hence flow out. As such models were able to survive very high sea states, while they capsized in lesser sea states with less onerous SOLAS damages, away from the ends, the limit ± 35 % was introduced to prevent this.
Extensive research carried out for the purpose of developing appropriate criteria for new vessels has clearly shown that in addition to the GM and freeboard being important parameters in the survivability of passenger ships, the area under the residual stability curve is also another major factor. Consequently in choosing the worst SOLAS damage for compliance with the requirement of paragraph 3.1 the worst damage is to be taken as that which gives the least area under the residual stability curve.
It has been found during tests that the vertical extent of the model can affect the results when tested dynamically. It is therefore required that the ship is modelled to at least three super structure standard heights above the bulkhead (freeboard) deck so that the large waves of the wave train do not break over the model.
If the model is required to be fitted with barriers on deck and the barriers are less than the bulkhead height indicated below, the model is to be fitted with CCTV so that any “splashing over” and any accumulation of water on the undamaged area of the deck can be monitored. In this case a video recording of the event is to form part of the test records.
The height of transverse or longitudinal bulkheads which are taken into account as effective to confine the assumed accumulated sea water in the compartment concerned in the damaged ro-ro deck should be at least 4 m in height unless the height of water is less than 0,5 m. In such cases the height of the bulkhead may be calculated in accordance with the following:
Bh = 8hw
where Bh is the bulkhead height; and
hw is the height of water.
In any event, the minimum height of the bulkhead should be not less than 2,2 m. However, in the case of a ship with hanging car decks, the minimum height of the bulkhead should be not less than the height to the underside of the hanging car deck when in its lowered position.
Note: While inclining and rolling the model in the damaged condition may be accepted as a check for the purpose of verifying the residual stability curve, such tests should not be accepted in lieu of the intact tests.
The isosceles triangular profile of the prismatic damage shape is that corresponding to the load waterline.
Additionally in cases where side casings of width less than B/5 are fitted and in order to avoid any possible scale effects, the damage length in way of the side casings must not be less than 25 mm.
d = dS-0,6 (dS-dLS)
where: dS is the subdivision draught; and dLS is the lightship draught.
The adjusted curve is a straight line between the GM used in the model test at the subdivision draught and the intersection of the original SOLAS 90 curve and draught d.
The JONSWAP spectrum should be used as this describes fetch- and duration- limited seas which correspond to the majority of conditions world wide. In this respect it is important that not only the peak period of the wave train is verified but also that the zero crossing period is correct.
It is required that for every test run the wave spectrum is recorded and documented. Measurements for this recording should be taken at the probe closest to the wave making machine.
It is also required that the model is instrumented so that its motions (roll, heave and pitch) as well as its attitude (heel, sinkage and trim) are monitored and recorded through-out the test.
It has been found that it is not practical to set absolute limits for significant wave heights, peak periods and zero crossing periods of the model wave spectra. An acceptable margin has therefore been introduced.
The contents of this paragraph are considered self-explanatory.
The following documents are to be part of the report to the administration:
damage stability calculations for worst SOLAS and mid-ship damage (if different);
general arrangement drawing of the model together with details of construction and instrumentation;
inclining experiment and measurements of radii of gyration;
nominal and measured wave spectra (at the three different locations for a representative realisation and for the tests with the model from the probe closest to the wave maker);
representative record of model motions, attitude and drift;
relevant video recordings.
All tests must be witnessed by the administration.’
OJ L 324, 29.11.2002, p. 1. Regulation as amended by Regulation (EC) No 415/2004 (OJ L 68, 6.3.2004, p. 10).
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including:
The data on this page is available in the alternative data formats listed: