xmlns:atom="http://www.w3.org/2005/Atom"

Article 2

SCHEDULE 1PROHIBITED GOODS

  1. PART I

    1. Group 1 Goods specified by reference to headings and sub headings of the Combined Nomenclature ... ... ... ...

    2. Group 2 Not Used

    3. Group 3 Vehicles ... ... ... ...

  2. PART II Goods capable of being used in relation to chemical, biological or nuclear weapons and related missiles ... ... ... ...

  3. PART III

    1. Group 1 Military, Security and Para-Military Goods and Arms, Ammunition and Related Material ... ... ... ...

      1. Definitions ... ... ... ...

    2. Group 2 Atomic Energy Minerals and Materials and Nuclear Facilities, Equipment, Appliances and Software ... ... ... ...

      1. Interpretations and definitions ... ... ... ...

      2. Group 2A.Atomic Energy Minerals and Materials ... ... ... ...

      3. Group 2B.Nuclear Facilities, Equipment, Appliances and Software ... ... ... ...

    3. Group 3 Industrial Goods ... ... ... ...

      1. Interpretations, exclusions and definitions ... ... ... ...

      2. 1.Materials, Chemicals, Microorganisms and Toxins

      3. 1A.Equipment, Assemblies and Components ... ... ... ...

      4. 1B.Test, Inspection and Production Equipment ... ... ... ...

      5. 1C.Materials ... ... ... ...

      6. 1D.Software ... ... ... ...

      7. 1E.Technology ... ... ... ...

      8. 2.Materials Processing

      9. 2A.Equipment, Assemblies and Components ... ... ... ...

      10. 2B.Test, Inspection and Production Equipment ... ... ... ...

      11. 2C.Materials ... ... ... ...

      12. 2D.Software ... ... ... ...

      13. 2E.Technology ... ... ... ...

      14. 3.Electronics

      15. 3A.Equipment, Assemblies and Components ... ... ... ...

      16. 3B.Test, Inspection and Production Equipment ... ... ... ...

      17. 3C.Materials ... ... ... ...

      18. 3D.Software ... ... ... ...

      19. 3E.Technology ... ... ... ...

      20. 4.Computers

      21. 4A.Equipment, Assemblies and Components ... ... ... ...

      22. 4B.Test, Inspection and Production Equipment ... ... ... ...

      23. 4C.Materials ... ... ... ...

      24. 4D.Software ... ... ... ...

      25. 4E.Technology ... ... ... ...

      26. 5.Telecommunications and Information Security

      27. Part I.Telecommunications

      28. 5A1.Equipment, Assemblies and Components ... ... ... ...

      29. 5B1.Test, Inspection and Production Equipment ... ... ... ...

      30. 5C1.Materials ... ... ... ...

      31. 5D1.Software ... ... ... ...

      32. 5E1.Technology ... ... ... ...

      33. Part 2.Information Security

      34. 5A2.Equipment, Assemblies and Components ... ... ... ...

      35. 5B2.Test, Inspection and Production Equipment ... ... ... ...

      36. 5C2.Materials ... ... ... ...

      37. 5D2.Software ... ... ... ...

      38. 5E2.Technology ... ... ... ...

      39. 6.Sensors and Lasers

      40. 6A.Equipment, Assemblies and Components ... ... ... ...

      41. 6B.Test, Inspection and Production Equipment ... ... ... ...

      42. 6C.Materials ... ... ... ...

      43. 6D.Software ... ... ... ...

      44. 6E.Technology ... ... ... ...

      45. 7.Navigation and Avionics

      46. 7A.Equipment, Assemblies and Components ... ... ... ...

      47. 7B.Test, Inspection and Production Equipment ... ... ... ...

      48. 7C.Materials ... ... ... ...

      49. 7D.Software ... ... ... ...

      50. 7E.Technology ... ... ... ...

      51. 8.Marine

      52. 8A.Equipment, Assemblies and Components ... ... ... ...

      53. 8B.Test, Inspection and Production Equipment ... ... ... ...

      54. 8C.Materials ... ... ... ...

      55. 8D.Software ... ... ... ...

      56. 8E.Technology ... ... ... ...

      57. 9.Propulsion Systems, Space Vehicles and Related Equipment

      58. 9A.Equipment, Assemblies and Components ... ... ... ...

      59. 9B.Test, Inspection and Production Equipment ... ... ... ...

      60. 9C.Materials ... ... ... ...

      61. 9D.Software ... ... ... ...

      62. 9E.Technology ... ... ... ...

      63. INDEX to Schedule 1 ... ... ... ...

PART I

1.  In Group 1 of this Part—

(a)bovine offal” means the brain, spinal cord, spleen, thymus, tonsils and intestines of a bovine animal over six months of age which has died or has been slaughtered, as the case may be, in the United Kingdom;

(b)intestines” means that part of the digestive tract of a bovine animal from the junction of the abomasum and the duodenum to (and including) the rectum; and

(c)any description of goods specified in relation to a Combined Nomenclature heading or sub-heading, other than one covering a whole heading, shall be taken to comprise all goods which would be classified under an entry in the same terms constituting a sub-heading in the relevant heading in the Combined Nomenclature of the European Community(1).

GROUP 1GOODS SPECIFIED BY REFERENCE TO HEADINGS AND SUB-HEADINGS OF THE COMBINED NOMENCLATURE (“CN”)

1.  The following goods are prohibited to be exported unless the place of export is in Great Britain, or the export of the goods is from Northern Ireland to the Republic of Ireland:

CN Heading and Sub Heading No.Description of Goods
0102Live bovine animals
0103Live swine
010410Live sheep.

2.  The following goods are prohibited to be exported to any destination except a destination in another Member State:

CN Heading and Sub Heading No.Description of Goods
ex 0206Bovine offal
ex 0210Protein derived from bovine offal
ex 0504Bovine offal
ex 0511Bovine offal and protein derived from such offal
ex 2301Protein derived from bovine offal
ex 2309Feeding stuff containing bovine offal or protein derived from such offal.

GROUP 2

GROUP 3VEHICLES

1.  The export of goods specified in this Group(3) is prohibited to any destination in Bosnia-Herzegovina, Croatia, or the former Yugoslav Republic of Macedonia:

(a)All wheel drive utility vehicles capable of off road use that have a ground clearance of greater than 175 millimetres;

(b)Heavy duty recovery vehicles capable of towing suspended a load of more than 6 tonnes or winching a load of more than 10 tonnes;

(c)Drop sided trucks that have a load carrying capacity of more than 5 tonnes.

PART IIGoods capable of being used in relation to chemical, biological or nuclear weapons and related missiles

1.  Goods of a description specified in paragraph (2) below are prohibited to be exported—

(a)if the exporter knows that they are intended or likely to be used in—

(i)the development, production, handling, operation, delivery, detection, identification or storage of any chemical or biological weapon;

(ii)the disposal of waste arising out of the development or production of any chemical or biological weapon;

(iii)the development, production, handling, operation, delivery, detection, identification or storage of any vaccine, toxoid, protein or immunoglobulin for protection against, or the treatment of, the harmful effects of any chemical or biological weapon;

(iv)the development, production, handling, operation, delivery, or storage of any nuclear weapon; or

(v)the development, production, handling, operation, delivery or storage of missiles capable of delivering any nuclear, chemical or biological weapon;

(b)where the exporter knows or has grounds for suspecting that they might be used for any purpose referred to in sub-paragraph (a) above, unless he has made all reasonable enquiries as to their proposed use and satisfied himself that the goods will not be so used.

2.—(a) Any chemical, toxin, microorganism or other biological agent;

(b)Any vaccine, toxoid, protein or immunoglobulin capable of being used for protection against, or treatment of, any harmful effect of any chemical, toxin, microorganism or other biological agent;

(c)Any equipment (including clothing), software or materials capable of being used in the development, production, handling, operation, delivery, detection, identification or storage of any of the substances specified in sub-paragraph (a) or (b) above;

(d)Any equipment (including clothing), software or materials capable of being used in the disposal of waste arising out of the development or production of substances specified in sub-paragraph (a) or (b) above;

(e)Any equipment (including clothing), software or materials capable of being used in the development, production, handling, operation, delivery or storage of nuclear weapons or missiles capable of delivering nuclear, chemical or biological weapons;

(f)Technology the information in which includes information relating to any goods in sub-paragraphs (a) to (e) above.

PART III

Note: The goods in this Part are for convenience specified by reference to the classification system used by the Department of Trade and Industry for export control purposes. For convenience only, defined terms are highlighted in bold type.

GROUP 1MILITARY, SECURITY AND PARA-MILITARY GOODS AND ARMS, AMMUNITION AND RELATED MATERIAL

Definitions

In this Group:

the “critical temperature” (sometimes referred to as the transition temperature) of a specific superconductive material means the temperature at which the specific material loses all resistance to the flow of direct electrical current;

“end-effectors” include grippers, active tooling units and any other tooling that is attached to the baseplate on the end of a robot manipulator arm; for this purpose, “active tooling unit” means a device for applying motive power, process energy or sensing to the workpiece;

laser” means an assembly of components which produce both spatially and temporally coherent light which is amplified by stimulated emission of radiation;

military pyrotechnics” means mixtures of solid or liquid fuels and oxidisers which, when ignited, undergo an energetic chemical reaction at a controlled rate intended to produce specific time delays, or quantities of heat, noise, smoke, visible light or infrared radiation; pyrophorics are a subclass of pyrotechnics, which contain no oxidisers but ignite spontaneously on contact with air;

nuclear reactor” means the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain, come into direct contact with or control the primary coolant of the reactor core;

robot” means a manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and which:

a.

is multifunctional;

b.

is capable of positioning or orienting material, parts, tools or special devices through variable movements in three dimensional space;

c.

incorporates three or more closed or open loop servo-devices which may include stepping motors; and

d.

has user-accessible programmability by means of the teach/playback method or by means of an electronic computer which may be a programmable logic controller, i.e., without mechanical intervention;

except:

a.

manipulation mechanisms which are only manually/teleoperator controllable;

b.

fixed sequence manipulation mechanisms, which are automated moving devices, operating according to programmes where the motions are limited by fixed stops, such as pins or cams and the sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic or electrical means;

c.

mechanically controlled variable sequence manipulation mechanisms, which are automated moving devices, operating according to programmes where the motions are limited by fixed, but adjustable stops, such as pins or cams and the sequence of motions and the selection of paths or angles are variable within the fixed programme pattern; variations or modifications of the programme pattern (e.g., changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations;

d.

non-servo-controlled variable sequence manipulation mechanisms, which are automated moving devices, operating according to mechanically fixed programmed motions; the programme is variable but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops;

e.

stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of storage bins and designed to access the contents of those bins for storage or retrieval;

superconductive” in relation to materials (i.e., metals, alloys or compounds) means those which can lose all electrical resistance (i.e., which can attain infinite electrical conductivity and carry very large electrical currents without Joule heating); the superconductive state of a material is individually characterized by a critical temperature, a critical magnetic field, which is a function of temperature, and a critical current density which is a function of both magnetic field and temperature;

user-accessible programmability” means the facility allowing a user to insert, modify or replace programmes by means other than:

a.

a physical change in wiring or interconnections; or

b.

the setting of function controls including entry of parameters.

ML1 Small arms, machine guns and accessories, as follows, and specially designed components therefor:

a.Rifles, carbines, revolvers, pistols, machine pistols and machine guns;

b.Smooth-bore weapons specially designed for military use;

c.Weapons using caseless ammunition;

d.Silencers, special gun-mountings, clips, magazines and flash suppressors for the goods specified in heads a., b. and c. above;

PL5002 Telescopic sights for firearms, other than those specified in entry ML5.(5)

PL5018 Smooth-bore weapons, other than those specified in head b. of entry ML1, and specially designed components therefor;

a.Air weapons (other than those declared by the Firearms (Dangerous Air Weapons) Rules 1969 to be specially dangerous);

b.Air (pneumatic) or cartridge (explosive) powered guns or pistols designed as:

1.Industrial tools; or

2.Humane stunning devices employed specifically for animal slaughter.

PL5021 Ammunition or cartridges, including projectiles, and specially designed components therefor, for the goods specified in entry PL5018;

a.Lead or lead alloy pellet ammunition specially designed for air weapons;

b.Ammunition crimped without a projectile (blank star) and dummy ammunition with a pierced powder chamber.

ML2 Large calibre armament or weapons, projectors and accessories, as follows, and specially designed components therefor:

a.Guns, howitzers, cannon, mortars, tank destroyers, projectile launchers, military flame throwers, recoilless rifles and signature reduction devices therefor; except:

b.Military smoke, gas and pyrotechnic projectors or generators;

In this entry:

large calibre armament” means:

a.

Rifle barrelled weapons with a calibre greater than 12.7 mm; or

b.

Smooth bore weapons with a calibre greater than 30 mm; ‘specially designed components’ include injectors, metering devices and storage tanks for use with liquid propelling charges.

ML3 Ammunition, and specially designed components therefor, for the goods specified in entries ML1, ML2 or ML26;except:

a.Lead or lead alloy pellet ammunition specially designed for air weapons;

b.ammunition crimped without a projectile (blank star) and dummy ammunition with a pierced powder chamber.

ML4 Bombs, torpedoes, rockets, missiles, mines, charges, related equipment and accessories, as follows, specially designed for military use and specially designed components therefor:

a.Bombs, torpedoes, grenades, smoke canisters, rockets, mines, missiles, depth charges, demolition-charges, demolition-devices and demolition-kits, cartridges and simulators;

b.Equipment specially designed for the handling, control, activation, powering with one time operational output, launching, laying, sweeping, discharging, decoying, jamming, detonation or detection of goods specified in head a. above.

PL5030 Bombs and grenades, other than those specified in entry ML4.

PL5006 Apparatus or devices specially designed for military use, used for the handling, control, discharging, decoying, jamming, detonation, disruption or detection of improvised explosive devices or other explosive devices not specified in head a. of entry ML4, and specially designed components therefor;

ML5 Fire control, and related alerting and warning equipment, and related systems, as follows, specially designed for military use, and specially designed components and accessories therefor:

a.Weapon sights, bombing computers, gun laying equipment and on-board weapon control systems;

b.Target acquisition, designation, range-finding, surveillance or tracking systems; detection, recognition or identification equipment; and sensor integration equipment.

ML6 Vehicles and related equipment, as follows, specially designed or modified for military use and components therefor specially designed or modified for military use:

a.Tanks and self-propelled guns;

b.Armed, armoured vehicles and vehicles fitted with mounting for arms;

c.Armoured railway trains;

d.Half-tracks;

e.Recovery vehicles;

f.Gun-carriers, tractors and trailers specially designed for towing or transporting ammunition or weapon systems and related load handling equipment;

g.Amphibious and deep water fording vehicles;

h.Mobile repair shops specially designed to service military equipment;

i.All other vehicles specially designed or modified for military use, including tank transporters, tracked amphibious cargo carriers, high speed tractors, heavy artillery transporters, bridge laying vehicles and specialised bulk refuellers;

j.Pneumatic tyre casings of a kind specially constructed to be bullet proof or to run when deflated;

k.Engines and power transfer systems for the propulsion of the vehicles specified in heads a. to i. above;

l.Tyre inflation pressure control systems, operated from inside a moving vehicle;

m.Suspensions.

In this entry “modified for military use” means a structural, electrical or mechanical change which entails replacing a component with at least one specially designed military component, or adding at least one such component.

PL5031 Other vehicles and related equipment as follows:

a.All wheel drive utility vehicles capable of off road use which have been fitted with metallic or non-metallic materials to provide ballistic protection;

b.Containers for mounting on vehicles, specially designed or modified for military use and components therefor specially designed or modified for military use.

ML7 Toxicological agents, riot control agents and related equipment, components, materials and technology, as follows:

a.Biological agents and radioactive materials adapted for use in war to produce casualties in humans or animals, degrade equipment or damage crops or the environment, and chemical warfare (CW) agents;

b.CW binary precursors, as follows:

1.DF: Methyl phosphonyldifluoride;

2.QL: o-Ethyl-2-diisopropylaminoethyl methylphosphonite;

c.Riot control agents, including tear gases;

d.Equipment specially designed or modified for the dissemination of the materials or agents specified in head a. above and specially designed components therefor;

e.Goods specially designed or modified for defence against materials or agents specified in head a. above and specially designed components therefor;

f.Goods specially designed or modified for the detection or identification of materials or agents specified in head a. above and specially designed components therefor;

g.Biopolymers specially designed or processed for detection and identification of chemical warfare (CW) agents specified in head a. above and the cultures of specific cells used to produce them;

h.Biocatalysts for decontamination or degradation of CW agents, and biological systems therefor, as follows:

1.Biocatalysts, specially designed for decontamination or degradation of CW agents described in head a. above resulting from directed laboratory selection or genetic manipulation of biological systems;

2.Biological systems, as follows: expression vectors, viruses or cultures of cells containing the genetic information specific to the production of biocatalysts specified in sub-head h.1. above;

i.Technology, as follows:

1.Technology for the development, production or use of goods specified in heads a. to f. above;

2.Technology for the development, production or use of biopolymers, or cultures of specific cells, specified in head g. above;

3.Technology exclusively for the incorporation of biocatalysts specified in sub-head h.1. above into military carrier substances or military material.

ML8 Military explosives and propellants, and related substances, as follows, and devices containing any of the following except those specified elsewhere in this Group:

a.Substances, as follows, and mixtures therefor:

1.Spherical aluminium powder with a particle size of 60 micrometres or less, manufactured from material with an aluminium content of 99% or more;

2.Metal fuels in particle sizes of less than 60 micrometres whether spherical, atomized, spheroidal, flaked or ground, manufactured from material consisting of 99% or more of any of the following:

a.Zirconium, magnesium and alloys of these;

b.Beryllium;

c.Iron powder with average particle size of 3 micrometres or less produced by reduction of iron oxide with hydrogen;

d.Boron or boron carbide fuels of 85% purity or higher and average particle size of 60 micrometres or less;

3.Perchlorates, chlorates and chromates composited with powdered metal or other high energy fuel components;

4.Nitroguanidine (NQ);

5.Compounds composed of fluorine and any of the following: other halogens, oxygen, nitrogen;

6.Carboranes; decarborane; pentaborane and derivatives thereof;

7.Cyclotetramethylenetetranitramine (HMX); octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine; 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane; (octogen, octogene);

8.Hexanitrostilbene (HNS);

9.Diaminotrinitrobenzene (DATB);

10.Triaminotrinitrobenzene (TATB);

11.Triaminoguanidinenitrate (TAGN);

12.Titanium subhydride of stoichiometry TiH 0.65-1.68;

13.Dinitroglycoluril (DNGU, DINGU); tetranitroglycoluril(TNGU, SORGUYL);

14.Tetranitrobenzotriazolobenzotriazole (TACOT);

15.Diaminohexanitrobiphenyl (DIPAM);

16.Picrylaminodinitropyridine (PYX);

17.3-Nitro-1,2,4-triazol-5-one (NTO or ONTA);

18.Hydrazine in concentrations of 70% or more; hydrazine nitrate; hydrazine perchlorates; unsymmetrical dimethyl hydrazine; monomethyl hydrazine; symmetrical dimethyl hydrazine;

19.Ammonium perchlorate;

20.Cyclotrimethylenetrinitramine (RDX); cyclonite; T4; hexahydro-1,3,5-trinitro-1,3,5-triazine; 1,3,5-trinitro-1,3,5-triaza-cyclohexane (hexogen, hexogene);

21.Hydroxylammonium nitrate (HAN); hydroxylammonium perchlorate (HAP);

22.2-(5-Cyanotetrazolato) pentaamminecobalt(III)perchlorate (or CP);

23.Cis-bis (5-nitrotetrazolato)pentaaminecobalt(III) perchlorate (or BNCP);

24.7-Amino-4, 6-dinitrobenzofurazane-1-oxide (ADNBF); amino dinitrobenzo-furoxan;

25.5, 7-Diamino-4, 6-dinitrobenzofurazane-1-oxide, (CL-14) or diamino dinitro-benzofurozan);

26.2, 4, 6-Trinitro-2, 4, 6-triazacyclohexanone (K-6 or Keto-RDX);

27.2, 4, 6, 8-Tetranitro-2, 4, 6, 8-tetraazabicyclo[3,3,0]octan-3- one (tetranitrosemiglycouril, K-55 or keto-bicyclic HMX);

28.1,1,3-Trinitroazetidine (TNAZ);

29.1,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin (TNAD);

30.Hexanitrohexaazaisowurtzitane (CL-20) or HNIW; and clathrates of CL-20);

31.Polynitrocubanes with more than four nitro groups;

32.Ammonium dinitramide (ADN or SR 12);

b.Explosives and propellants that meet the following performance parameters:

1.8Any explosive with a detonation velocity exceeding 8,700 m/s or a detonation pressure exceeding 340 kilobars;

2.Other organic high explosives not listed elsewhere in this entry yielding detonation pressures of 250 kilobars or more that will remain stable at temperatures of 523 K (250°C) or higher for periods of 5 minutes or longer;

3.Any other United Nations (UN) Class 1.1 solid propellant not listed elsewhere in this entry with a theoretical specific impulse (under standard conditions) of more than 250 seconds for non-metallised, or more than 270 seconds for aluminised compositions;

4.Any UN Class 1.3 solid propellant with a theoretical specific impulse of more than 230 seconds for non-halogenised, 250 seconds for non-metallised and 266 seconds for metallised compositions;

5.Any other gun propellants not listed elsewhere in this entry having a force constant of more than 1,200 kJ/kg;

6.Any other explosive, propellant or pyrotechnic not listed elsewhere in this entry that can sustain a steady-state burning rate of more than 38 mm per second under standard conditions of 68.9 bar pressure and 294 K (21°C);

7.Elastomer modified cast double based propellants (EMCDB) with extensibility at maximum stress of more than 5% at 233 K (-40°C);

c.Military pyrotechnics;

d.Military high-energy solid or liquid fuels, including:

1.Aircraft fuels specially formulated for military purposes;

2.Liquid oxidisers comprised of or containing inhibited red fuming nitric acid (IRFNA) or oxygen difluoride;

3.Military materials containing thickeners for hydrocarbon fuels specially formulated for use in flamethrowers or incendiary munitions, such as metal stearates or palmates (also known as octol) and M1, M2, M3 thickeners;

e.Additives, precursors and stabilisers, the following:

1.Azidomethylmethyloxetane (AMMO) and its polymers;

2.Basic copper salicylate; lead salicylate;

3.Bis(2,2-dinitropropyl)formal or bis(2,2-dinitropropyl)acetal;

4.Bis(2-fluoro-2,2-dinitroethyl)formal (FEFO);

5.Bis(2-hydroxyethyl)glycolamide (BHEGA);

6.Bis(2-methylaziridinyl) methylaminophosphine oxide (Methyl BAPO);

7.Bisazidomethyloxetane and its polymers;

8.Bischloromethyloxetane (BCMO);

9.Butadienenitrileoxide (BNO);

10.Butanetrioltrinitrate (BTTN);

11.Catocene, N-butyl-ferrocene and other ferrocene derivatives;

12.Cyanoethylated polyamine and its salts;

13.Cyanoethylated polyamine adducted with glycidol & salt;

14.Dinitroazetidine-t-butyl salt;

15.Energetic monomers, plasticisers and polymers containing nitro, azido, nitrate, nitraza or difluoroamino groups;

16.Poly-2,2,3,3,4,4-hexafluoropentane-1,5-diol formal(FPF-1);

17.Poly-2,4,4,5,5,6,6-heptafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diol formal (FPF-3);

18.Glycidylazide Polymer (GAP) and its derivatives;

19.Guanidine nitrate;

20.Hexabenzylhexaazaisowurtzitane (HBIW);

21.Hexanitrostibene;

22.Hydroxyl terminated polybutadiene (HTPB) with a hydroxyl functionality of less than 2.16, a hydroxyl value of less than 0.77 meq/g, and a viscosity at 30°C of less than 47 poise;

23.Hydrogen peroxide in concentrations of greater than 85%;

24.Superfine iron oxide (Fe2O3 hematite) with a specific surface area more than 250 m2/g and an average particle size of 0.003 micrometre or less;

25.Lead beta-resorcylate;

26.Lead stannate, lead maleate, lead citrate;

27.Lead-copper chelates of beta-resorcylate or salicylates;

28.Nitratomethylmethyloxetane or poly (3-Nitratomethyl, 3-methyl oxetane); (Poly-NIMMO) (NMMO);

29.N-methyl-p-nitroaniline.

30.Organo-metallic coupling agents, specifically:

a.Neopentyl [diallyl] oxy, tri [dioctyl] phosphato titanate; also known as titanium IV, 2,2[bis 2-propenolato-methyl, butanolate or tris [dioctyl] phosphato-O], or LICA 12;

b.Titanium IV, [(2-propenolato-1)methyl, N-propanolatomethyl] butanolato-1, also known as tris[dioctyl]pyrophosphato or KR3538;

c.Titanium IV, [(2-propenolato-1)methyl, N-propanolatomethyl] butanolato-1, also known as tris(dioctyl)phosphate or KR3512;

31.Polycyanodifluoroaminoethyleneoxide (PCDE);

32.Polyfunctional aziridine amides: with isophthalic, trimesic (BITA); butylene imine trimesamide isocyanuric; or trimethyladipic backbone structures and 2-methyl or 2-ethyl substitutions on the aziridine ring;

33.Polyglycidylnitrate or poly (nitratomethyl oxirane); (Poly-GLYN) (PGN);

34.Polynitroorthocarbonates;

35.Propyleneimide, 2-methylaziridine;

36.Tetraacetyldibenzylhexaazaisowurtzitane (TAIW);

37.Tetraethylenepentamineacrylonitrile (TEPAN); cyanoethylated polyamine and its salts;

38.Tetraethylenepentamineacrylonitrileglycidol (TEPANOL); cyanoethylated polyamine adducted with glycidol and its salts;

39.Triphenyl bismuth (TPB);

40.Tris vinoxy propane adduct (TVOPA);

41.Tris-1-(2-methyl)aziridinyl phosphine oxide (MAPO); bis(2-methyl aziridinyl) 2-(2-hydroxypropanoxy) propylamino phosphine oxide (BOBBA 8); and other MAPO derivatives;

43.1,2,3-Tris[1,2-bis(difluoroamino)ethoxy] propane; tris vinoxy propane adduct (TVOPA);

44.1,3,5-Trichlorobenzene;

45.1,2,4-Trihydroxybutane (1,2,4-butanetriol);

46.1,3,5,7-Tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT);

47.1,4,5,8-Tetraazadecalin;

48.Low (less than 10,000) molecular weight, alcohol-functionalised, poly(epichlorohydrin); poly(epichlorohydrindiol) and triol.

ML9 Combatant vessels or vessels (surface or underwater) specially designed or modified for offensive or defensive action, whether or not converted to non-military use, regardless of current state of repair or operating condition, and whether or not they contain weapon delivery systems or armour, and specially designed components therefor(6).

PL5029 Nuclear power generating or propulsion equipment, including nuclear reactors, specially designed for military use and components therefor specially designed or modified for military use.

ML10 Aircraft, unmanned airborne vehicles, aero-engines and aircraft equipment, related goods, as follows, and components therefor specially designed or modified for military use:

a.Combat aircraft;

b.Other aircraft specially designed or modified for military use;

c.Aero-engines specially designed or modified for military use;

d.Unmanned airborne vehicles, including remotely piloted air vehicles (RPVs), and autonomous, programmable vehicles specially designed or modified for military use, and their launchers, ground support and associated equipment for command and control;

e.Airborne equipment, including airborne refuelling equipment, specially designed for use with the aircraft specified in heads a. or b. above or the aero-engines specified in head c. above;

f.Pressure refuellers, pressure refuelling equipment, equipment specially designed to facilitate operations in confined areas and ground equipment, developed specially for aircraft specified in heads a. or b. above, or for aero-engines specified in head c. above;

g.Pressurised breathing equipment and partial pressure suits for use in aircraft,anti-g suits, military crash helmets and protective masks, liquid oxygen converters used for aircraft or missiles, and catapults and cartridge actuated devices for emergency escape of personnel from aircraft;

h.Parachutes used for combat personnel, cargo dropping or aircraft deceleration, as follows:

1.Parachutes for:

a.Pin point dropping of military personnel;

b.Dropping of paratroopers;

2.Cargo parachutes;

3.Paragliders (drag parachutes, drogue parachutes for stabilisation and attitude control of dropping bodies, e.g., recovery capsules, ejection seats, bombs);

4.Drogue parachutes for use with ejection seat systems for deployment and inflation sequence regulation of emergency parachutes;

5.Recovery parachutes for guided missiles, RPVs or space vehicles;

6.Approach parachutes and landing deceleration parachutes;

7.Other military parachutes;

i.Automatic piloting systems for parachuted loads; equipment specially designed or modified for military use for controlled opening jumps at any height, including oxygen equipment.

ML11 Electronic equipment not specified elsewhere in this Group specially designed for military use and specially designed components therefor.

ML13 Armoured or protective goods and constructions, as follows:

a.Armoured plate;

b.Combinations and constructions of metallic and non-metallic materials specially designed to provide ballistic protection for military systems;

c.Military helmets, other than those specified in head g. of entry ML10;except:

a.Conventional steel helmets not equipped with, modified or designed to accept any type of accessory device; or

b.Helmets manufactured before 1945;

d.Body armour, bullet-proof or bullet-resistant clothing, and specially designed components therefor;

PL5014 Specially designed components for the goods specified in heads a., b. or c. of entry ML13 in this Group.

ML14 Specialised equipment for military training or for simulating military scenarios, and specially designed components and accessories therefor.

ML15 Imaging or countermeasure equipment, as follows, specially designed for military use, and specially designed components and accessories therefor:

a.Recorders and image processing equipment;

b.Cameras, photographic equipment and film processing equipment;

c.Image intensifier equipment;

d.Infrared or thermal imaging equipment;

e.Imaging radar sensor equipment;

f.Countermeasure or counter-countermeasure equipment for the equipment specified in heads a. to e. above.

ML16 Forgings, castings and semi-finished products specially designed for goods specified in entries ML1, ML2, ML3, ML4, ML6, ML9, ML10, ML23 or ML26.

PL5020 Forgings, castings and semi-finished products specially designed for goods specified in entries PL5006, PL5029 or PL5018.

ML17 Miscellaneous goods, as follows, and specially designed components therefor:

a.Self-contained diving and underwater swimming apparatus, as follows:

1.Closed or semi-closed circuit (rebreathing) apparatus;

2.Specially designed components for use in the conversion of open-circuit apparatus to military use;

3.Articles designed exclusively for military use with self-contained diving and underwater swimming apparatus;

b.Construction equipment specially designed for military use;

c.Fittings, coatings and treatments for signature suppression;

d.Field engineer equipment specially designed for use in a combat zone;

e.Robots, robot controllers and robot end effectors, having any of the following characteristics:

1.Specially designed for military use;

2.Incorporating means of protecting hydraulic lines against externally induced punctures caused by ballistic fragments and designed to use hydraulic fluids with flash points higher than 839 K (566°C);

3.Operable at altitudes exceeding 30,000m; or

4.Specially designed or rated for operating in an electro-magnetic pulse (EMP) environment;

f.Libraries (parametric technical databases) specially designed for military use with goods specified in this Group.

In this entry, “libraries” means collections of technical information of a military nature, reference to which may enhance the performance of military equipment or systems.

PL5032 Goods coated or treated for signature suppression specially designed for military use, other than those specified elsewhere in this Group.

ML18 Equipment and technology for the production of goods specified in this Group, as follows:

a.Specially designed or modified production equipment for the production of products specified in this Group and specially designed components therefor;

b.Specially designed environmental test facilities, and specially designed equipment therefor, for the certification, qualification, or testing of products specified in this Group;

c.Production technology, even if the equipment with which such technology is to be used is not specified in this Group;

d.Technology specific to the design of, the assembly of components into, and the operation, maintenance and repair of, complete production installations even if the components themselves are not specified in this Group.

PL5017 Equipment specially designed or modified for the development or use of military goods specified in this Group.

ML20 Cryogenic and superconductive equipment, as follows, and specially designed components and accessories therefor:

a.Equipment specially designed or configured to be installed in a vehicle for military ground, marine, airborne or space applications, capable of operating while in motion and of producing or maintaining temperatures below 103K (−170°C);

b.Superconductive electrical equipment (rotating machinery and transformers) specially designed or configured to be installed in a vehicle for military ground, marine, airborne or space applications and capable of operating while in motion; except:

ML23 Directed energy weapons (DEW) systems, related or countermeasure equipment and test models, as follows, and specially designed components therefor:

a.Laser systems specially designed for destruction or effecting mission-abort of a target;

b.Particle beam systems capable of destruction or effecting mission-abort of a target;

c.High power radio-frequency (RF) systems capable of destruction or effecting mission-abort of a target;

d.Equipment specially designed for the detection or identification of, or defence against, systems specified in heads a., b. or c. above;

e.Physical test models and related test results for the systems, equipment and components specified in heads a. to d. above.

ML24 Software, as follows:

a.Software specially designed or modified for the development, production, or use of goods specified in this Group;

b.Specific software, as follows:

1.Software specially designed for:

a.Modelling, simulation or evaluation of military weapon systems;

b.Development, monitoring, maintenance or up-dating of software embedded in military weapon systems;

c.Modelling or simulating military operation scenarios, not specified in entry ML14 in this Group;

d.Command, Communications, Control and Intelligence (C3I) applications;

2.Software for determining the effects of conventional, nuclear, chemical or biological warfare weapons.

ML26 Kinetic energy weapon systems and related equipment, as follows, and specially designed components therefor:

a.Kinetic energy weapons systems specially designed for destruction or effecting mission-abort of a target;

b.Specially designed test and evaluation facilities and test models, including diagnostic instrumentation and targets, for dynamic testing of kinetic energy projectiles and systems.

PL5001 Other security and para-military police goods, as follows:

a.Acoustic devices represented by the manufacturers or suppliers thereof as suitable for riot control purposes, and specialised components therefor;

b.Anti-riot shields, anti riot helmets and components therefor;

c.Leg-irons, shackles (excluding any pair of handcuffs the maximum dimension of which when locked does not exceed 240 mm) and gangchains, specially designed for restraining human beings;

d.Portable anti-riot devices for administering an electric shock or an incapacitating substance, and specialised components therefor;

e.Water cannon and components therefor;

f.Riot control vehicles which have been specially designed or modified to be electrified to repel boarders.

PL5027 Technology applicable to the development or use of goods specified in entries ML11, ML18, PL5017, PL5029, heads a. or b. of entry ML4, heads a. or b. of entry ML5, head j. of entry ML6, heads a., b., or c. of entry ML10, or heads a., b., d., or e. of entry ML8 of this Group.

PL5028 Technology applicable to the development or use of goods specified in this Group other than that specified in PL 5027.

GROUP 2ATOMIC ENERGY MINERALS AND MATERIALS AND NUCLEAR FACILITIES, EQUIPMENT, APPLIANCES AND SOFTWARE

Interpretations and definitions

In this Group:

boron equivalent” (BE) is defined as:

depleted uranium” means uranium depleted in the isotope 235 below that occurring in nature;

“effective gramme” of special fissile material or other fissile material means:

a.

for plutonium isotopes and uranium-233, the isotope weight in grammes;

b.

for uranium enriched 1 per cent or greater in the isotope U-235, the element weight in grammes multiplied by the square of its enrichment expressed as a decimal weight fraction;

c.

for uranium enriched below 1 per cent in the isotope U-235, the element weight in grammes multiplied by 0.0001;

d.

for americium-242m, curium-245 and curium-247, californium-249 and californium-251, the isotope weight in grammes multiplied by 10;

“fibrous or filamentary materials” include:

a.

continuous monofilaments;

b.

continuous yarns and rovings;

c.

tapes, fabrics, random mats and braids;

d.

chopped fibres, staple fibres and coherent fibre blankets;

e.

whiskers, either monocrystalline or polycrystalline, of any length;

f.

aromatic polyamide pulp;

laser” means an assembly of components which produce both spatially and temporally coherent light which is amplified by stimulated emission of radiation;

natural uranium” means uranium containing the mixtures of isotopes occurring in nature;

nuclear reactor” means the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain, come into direct contact with or control the primary coolant of the reactor core;

other fissile materials” means previously separated americium-242m, curium-245 and curium-247, californium-249 and californium-251, isotopes of plutonium other than plutonium-238 and plutonium-239, and any material containing the foregoing;

previously separated” means the application of any process intended to increase the concentration of the controlled isotope;

special fissile material” means plutonium-239, uranium-233, uranium enriched in the isotopes 235 or 233, and any material containing the foregoing;

specific modulus” means Young’s modulus in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2)C)and a relative humidity of (50 ± 5)%;

specific tensile strength” means ultimate tensile strength in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2)awC) and a relative humidity of (50 ± 5)%;

uranium enriched in the isotopes 235 or 233” means uranium containing the isotopes 235 or 233, or both, in an amount such that the abundance ratio of the sum of these isotopes to the isotope 238 is more than the ratio of the isotope 235 to the isotope 238 occurring in nature (isotopic ratio 0.72%).

2A  Atomic Energy Minerals and Materials

A10 Natural uranium or depleted uranium or thorium, in the form of metal, alloy, chemical compound, or concentrate and any other material containing one or more of the foregoing;

A20 Special fissile materials and other fissile materials;

A30 a. Plutonium in any form with a plutonium isotopic assay of plutonium-238 of more than 50%;

b.Previously separated neptunium-237 in any form;

A40 Deuterium, heavy water, deuterated paraffins and other compounds of deuterium, and mixtures and solutions containing deuterium, in which the isotopic ratio of deuterium to hydrogen exceeds 1:5,000.

A50 Graphite, nuclear-grade, having a purity level of less than 5 parts per million boron equivalent and with a density greater than 1.5 g/cm3.

A60 Nickel powder and porous nickel metal, as follows:

a.Powder with a nickel purity content of 99.9 weight percent or more and a mean particle size of less than 10 micrometres measured by American Society for Testing and Materials (ASTM) B330 standard and a high degree of particle size uniformity;

b.Porous nickel metal produced from materials specified in head a. above;

A70 Specially prepared compounds or powders, other than nickel, resistant to corrosion by UF6 (e.g. aluminium oxide and fully fluorinated hydrocarbon polymers), for the manufacture of gaseous diffusion barriers, having a purity content of 99.9 weight percent or more and a mean particle size of less than 10 micrometres measured by American Society for Testing and Materials (ASTM) B330 standard and a high degree of particle size uniformity.

2B  Nuclear Facilities, Equipment, Appliances and Software

B10 Plant for the separation of isotopes of natural uranium, depleted uranium, special fissile materials or other fissile materials, and specially designed or prepared equipment and components therefor, as follows:

a.Plant specially designed for separating isotopes of natural uranium, depleted uranium, special fissile materials or other fissile materials, as follows:

1.Gaseous diffusion separation plant;

2.Gas centrifuge separation plant;

3.Aerodynamic separation plant;

4.Chemical exchange separation plant;

5.Ion-exchange separation plant;

6.Atomic vapour laser isotopic separation plant;

7.Molecular laser isotopic separation plant;

8.Plasma separation plant;

9.Electromagnetic separation plant;

b.Equipment and components, as follows, specially designed or prepared for:

1.Gaseous diffusion separation process:

a.Valves wholly made of or lined with aluminium, aluminium alloys, nickel or alloy containing 60 weight percent or more nickel, 40 mm or more in diameter, with bellows seals;

b.Blowers and compressors (turbo, centrifugal and axial flow types) wholly made of or lined with materials resistant to UF6 (e.g. aluminium, aluminium alloys, nickel or alloy containing 60 weight percent or more nickel), having a capacity of 1,000 litres per minute or more, and seals therefor designed for a buffer gas in-leakage rate of less than 1,000 cm3/min;

c.Gaseous diffusion barriers made of porous metallic, polymer or ceramic materials resistant to corrosion by UF6 with a pore size of less than 100 nm, a thickness of 5 mm or less, and, for tubular forms, a diameter of 25 mm or less;

d.Gaseous diffuser housings;

e.Heat exchangers made of aluminium, copper, nickel or alloys containing more than 60 weight percent nickel, or combinations of these metals as clad tubes, designed to operate at sub-atmospheric pressure with a leak rate that limits the pressure rise to less than 10 Pa per hour under a pressure differential of 100 kPa;

2.Gas centrifuge separation process:

a.Gas centrifuges;

b.Complete rotor assemblies;

c.Rotor tube cylinders with a thickness of 12 mm or less, a diameter of between 75 mm and 400 mm, made from any of the following high strength-to-density ratio materials:

1.Maraging steel capable of an ultimate tensile strength of 2,050 MPa or more;

2.Aluminium alloys capable of an ultimate tensile strength of 460 MPa or more; or

3.Fibrous or filamentary materials with a specific modulus of more than 3.18 × 106 m and a specific tensile strength greater than 76.2 × 103 m;

d.Magnetic suspension bearings consisting of an annular magnet suspended within a housing containing a damping medium, and having the magnet coupling with a pole piece or second magnet fitted to the top cap of the rotor;

e.Specially prepared bearings comprising a pivot-cup assembly mounted on a damper;

f.Rings or bellows with a wall thickness of 3 mm or less and a diameter of between 75 mm and 400 mm and designed to give local support to a rotor tube or to join a number together, made from any of the following high strength-to-density ratio materials:

1.Maraging steel capable of an ultimate tensile strength of 2,050 MPa or more;

2.Aluminium alloys capable of an ultimate tensile strength of 460 MPa or more; or

3.Fibrous or filamentary materials with a specific modulus of more than 3.18 × 106 m and a specific tensile strength greater than 76.2 × 103 m;

g.Baffles of between 75 mm and 400 mm diameter for mounting inside a rotor tube, made from any of the following high strength-to-density ratio materials:

1.Maraging steel capable of an ultimate tensile strength of 2,050 MPa or more;

2.Aluminium alloys capable of an ultimate tensile strength of 460 MPa or more; or

3.Fibrous or filamentary materials with a specific modulus of more than 3.18 × 106 m and a specific tensile strength greater than 76.2 × 103 m;

h.Top and bottom caps of between 75 mm and 400 mm diameter to fit the ends of a rotor tube, made from any of the following high strength-to-density ratio materials:

1.Maraging steel capable of an ultimate tensile strength of 2,050 MPa or more;

2.Aluminium alloys capable of an ultimate tensile strength of 460 MPa or more; or

3.Fibrous or filamentary materials with a specific modulus of more than 3.18 × 106 m and a specific tensile strength greater than 76.2 × 103 m;

i.Molecular pumps comprised of cylinders having internally machined or extruded helical grooves and internally machined bores;

j.Ring-shaped motor stators for multiphase AC hysteresis (or reluctance) motors for synchronous operation within a vacuum in the frequency range of 600 to 2,000 Hz and a power range of 50 to 1,000 Volt-Amps;

k.Frequency changers (converters or inverters) specially designed or prepared to supply motor stators for gas centrifuge enrichment, having all of the following characteristics, and specially designed components therefor:

1.Multiphase output of 600 Hz to 2 kHz;

2.Frequency control better than 0.1%;

3.Harmonic distortion of less than 2%; and

4.An efficiency greater than 80%;

3.Aerodynamic separation process:

a.Separation nozzles consisting of slit-shaped, curved channels having a radius of curvature less than 1 mm and having a knife-edge contained within the nozzle which separates the gas flowing through the nozzle into two streams;

b.Tangential inlet flow-driven cylindrical or conical tubes, specially designed for uranium isotope separation;

c.UF6-hydrogen helium compressors wholly made of or lined with aluminium, aluminium alloys, nickel or alloy containing 60 weight percent or more nickel, including compressor seals;

d.Aerodynamic separation element housings, designed to contain vortex tubes or separation nozzles;

e.Heat exchangers made of aluminium, copper, nickel, or alloys containing more than 60 weight percent nickel, or combinations of these metals as clad tubes, designed to operate at pressures of 600 kPa or less;

4.Chemical exchange separation process:

a.Fast-exchange liquid-liquid centrifugal contactors or fast exchange liquid-liquid pulse columns made of fluorocarbon lined materials;

b.Electrochemical reduction cells designed to reduce uranium from one valence state to another;

5.Ion-exchange separation process including fast reacting ion-exchange resins, pellicular and reticulated resins in which the active chemical exchange groups are limited to a coating on the surface of an inert particle or fibre;

6.Atomic vapour laser isotopic separation process:

a.High power electron beam guns with total power of more than 50 kW and strip or scanning electron beam guns with a delivered power of more than 2.5 kW/cm for use in uranium vaporization systems;

b.Trough shaped crucible and cooling equipment for molten uranium;

c.Product and tails collector systems made of or lined with materials resistant to the heat and corrosion of uranium vapour, such as yttria-coated graphite;

7.Molecular laser isotopic separation process:

a.Supersonic expansion nozzles designed for UF6 carrier gas;

b.Uranium fluoride (UF5) product filter collectors;

c.Equipment for fluorinating UF5 to UF6;

d.UF6 carrier gas compressors wholly made of or lined with aluminium, aluminium alloys, nickel or alloy containing 60 weight percent or more nickel, including compressor seals;

8.Plasma separation process:

a.Product and tails collectors made of or lined with materials resistant to the heat and corrosion of uranium vapour such as yttria-coated graphite;

b.Radio frequency ion excitation coils for frequencies of more than 100 kHz and capable of handling more than 40 kW power.

B20 Specially designed or prepared auxiliary systems, equipment and components, as follows, for gas centrifuge or gaseous diffusion enrichment plants, made from or lined with UF6 resistant materials:

a.Feed autoclaves, for passing UF6 to gaseous diffusion or centrifuge cascades, capable of operating at pressures of 300 kPa or less;

b.Desublimers or cold traps, used to remove UF6 from gaseous diffusion or centrifuge cascades, capable of operating at pressures of 300 kPa or less;

c.Product and tails stations for trapping and transferring UF6 into containers;

d.Liquefaction stations, where UF6 gas from gaseous diffusion or centrifuge cascades is compressed and cooled to form liquid UF6, capable of operating at pressures of 300 kPa or less;

e.Piping systems and header systems specially designed for handling UF6 within gaseous diffusion or centrifuge cascades;

f.Specially designed vacuum manifolds or vacuum headers having a suction capacity of 5 m3/minute or more or specially designed vacuum pumps;

g.UF6 mass spectrometers/ion sources specially designed or prepared for taking on-line samples of feed, product or tails from UF6 gas streams and having all of the following characteristics:

1.Unit resolution for mass of more than 320 amu;

2.Ion sources constructed of or lined with nichrome or monel, or nickel plated; and

3.Electron bombardment ionization sources.

B30 Plant for the production of uranium hexafluoride (UF6) and specially designed or prepared equipment and components therefor, as follows:

a.Plant for the production of UF6;

b.Equipment and components, as follows, specially designed or prepared for UF6 production:

1.Fluorination and hydrofluorination screw and fluid bed reactors and flame towers;

2.Distillation equipment for the purification of UF6.

B40 Plant for the production of heavy water, deuterium or deuterium compounds, and specially designed or prepared equipment and components therefor, as follows:

a.Plant for the production of heavy water, deuterium or deuterium compounds, as follows:

1.Hydrogen sulphide-water exchange plant;

2.Ammonia-hydrogen exchange plant;

3.Hydrogen distillation plant;

b.Equipment and components, as follows, designed for:

1.Hydrogen sulphide-water exchange process:

a.Tray exchange towers;

b.Hydrogen sulphide gas compressors;

2.Ammonia-hydrogen exchange process:

a.High-pressure ammonia-hydrogen exchange towers;

b.High-efficiency stage contactors;

c.Submersible stage recirculation pumps;

d.Ammonia crackers designed for pressures of more than 3 MPa;

3.Hydrogen distillation process:

a.Hydrogen cryogenic distillation towers and cold boxes designed for operation below 35 K (-238°C);

b.Turboexpanders or turboexpander-compressor sets designed for operation below 35 K (-238°C);

4.Heavy water concentration process to reactor grade level (99.75 weight percent deuterium oxide):

a.Water distillation towers containing specially designed packings;

b.Ammonia distillation towers containing specially designed packings;

c.Catalytic burners for conversion of fully enriched deuterium to heavy water;

d.Infrared absorption analysers capable of on-line hydrogen-deuterium ratio analysis where deuterium concentrations are equal to or more than 90 weight per cent.

B50 Nuclear reactors, i.e. reactors capable of operation so as to maintain a controlled, self-sustaining fission chain reaction, and equipment and components specially designed or prepared for use in connection with a nuclear reactor, including:

a.Pressure vessels, i.e. metal vessels as complete units or parts therefor, which are specially designed or prepared to contain the core of a nuclear reactor and are capable of withstanding the operating pressure of the primary coolant, including the top plate for a reactor pressure vessel;

b.Fuel element handling equipment, including reactor fuel charging and discharging machines;

c.Control rods specially designed or prepared for the control of the reaction rate in a nuclear reactor, including the neutron absorbing part and the support or suspension structures therefor, and control rod guide tubes;

d.Electronic controls for controlling the power levels in nuclear reactors, including reactor control rod drive mechanisms and radiation detection and measuring instruments to determine neutron flux levels;

e.Pressure tubes specially designed or prepared to contain fuel elements and the primary coolant in a nuclear reactor at an operating pressure in excess of 5.1 MPa;

f.Tubes, or assemblies of tubes, made from zirconium metal or alloy in which the ratio of hafnium to zirconium is less than 1:500 parts by weight, specially designed or prepared for use in a nuclear reactor;

g.Coolant pumps specially designed or prepared for circulating the primary coolant of nuclear reactors;

h.Internal components specially designed or prepared for the operation of a nuclear reactor, including core support structures, thermal shields, baffles, core grid plates and diffuser plates;

i.Heat exchangers.

B60 Plant specially designed for the fabrication of nuclear reactor fuel elements and specially designed equipment therefor, including equipment which:

a.Normally comes into direct contact with or directly processes or controls the production flow of nuclear materials;

b.Seals the nuclear material within the cladding;

c.Checks the integrity of the cladding or the seal; and

d.Checks the finish treatment of the solid fuel.

B70 Plant for the reprocessing of irradiated nuclear reactor fuel elements, and specially designed or prepared equipment and components therefor, including:

a.Fuel element chopping or shredding machines, i.e. remotely operated equipment to cut, chop, shred or shear irradiated nuclear reactor fuel assemblies, bundles or rods;

b.Dissolvers, critically safe tanks (e.g. small diameter, annular or slab tanks) specially designed or prepared for the dissolution of irradiated nuclear reactor fuel, which are capable of withstanding hot, highly corrosive liquids, and which can be remotely loaded and maintained;

c.Counter-current solvent extractors and ion-exchange processing equipment, specially designed or prepared for use in a plant for the reprocessing of irradiated natural uranium, depleted uranium, special fissile materials or other fissile materials;

d.Process control instrumentation specially designed or prepared for monitoring or controlling the reprocessing of irradiated natural uranium, depleted uranium, special fissile materials or other fissile materials;

e.Holding or storage vessels specially designed to be critically safe and resistant to the corrosive effects of nitric acid;

f.Systems specially designed or prepared for the conversion of plutonium nitrate to plutonium oxide;

g.Systems specially designed or prepared for the production of plutonium metal.

B80 Power generating or propulsion equipment specially designed for use with space, marine or mobile nuclear reactors.

B90 Equipment, as follows, specially designed or prepared for the separation of isotopes of lithium:

a.Packed liquid-liquid exchange columns specially designed for lithium amalgams;

b.Amalgam pumps;

c.Amalgam electrolysis cells;

d.Evaporators for concentrated lithium hydroxide solution.

B100 Equipment for nuclear reactors, as follows:

a.Simulators specially designed for nuclear reactors;

b.Ultrasonic or eddy current test equipment specially designed for nuclear reactors.

B110 Software specially designed or modified for the development, production or use of equipment or materials specified in this Group.

E10 Technology applicable to the development, production or use of goods specified in entries A30, B30, B80 to B110, head b. of entry A60, sub-heads b.4. to b.8. of entry B10, head d. of entry B50, head i. of entry B50, or head d. of entry B70 in this Group.

E20 Technology applicable to the development, production or use of goods specified in this Group other than that specified in entry E10.

GROUP 3INDUSTRIAL GOODS

Interpretations, exclusions and definitions

1.  Where notes are included in any entry of this Group they are to be treated as part of the entry.

2.  This Group does not specify software which is either:

a.generally available to the public or

b.1.sold from stock at retail selling points, without restriction, by means of:

a.over-the-counter transactions;

b.mail order transactions;

c.telephone order transactions; and

2.is designed for installation by the user without further substantial support by the supplier.

3.  In this Group:

3-D vector rate” means the number of vectors generated per second which have 10 pixel poly line vectors, clip tested, randomly oriented, with either integer or floating point X-Y-Z coordinate values, whichever produces the maximum rate;

“accuracy”, usually measured in terms of inaccuracy, means the maximum deviation, positive or negative, of an indicated value from an accepted standard or true value;

active flight control systems” means systems whose function is to prevent undesirable aircraft motions, rocket motions or structural loads by autonomously processing outputs from multiple sensors and then providing necessary preventive commands to effect automatic control;

active pixel” means a minimum (single) element of the solid state array which has a photoelectric transfer function when exposed to light;

adaptive control” means a control system that adjusts the response from conditions detected during the operation;

angular position deviation” means the maximum difference between angular position and the actual, very accurately measured angular position, after the workpiece mount of the table has been turned out of its initial position;

“ASTM” means the American Society for Testing and Materials;

“asynchronous transfer mode (ATM)” means a transfer mode in which the information is organised into cells; it is asynchronous in the sense that the recurrence of cells depends on the required or instantaneous bit rate;

automatic target tracking” means a processing technique that automatically determines and provides as output an extrapolated value of the most probable position of the target in real time;

“bandwidth of one voice channel”, in the case of data communication equipment, means designed to operate in one voice channel of 3,100 Hz, as defined in CCITT Recommendation G.151;

basic gate propagation delay time” means the propagation delay time value corresponding to the basic gate used within a family of monolithic integrated circuits; this may be specified, for a given family, either as the propagation delay time per typical gate or as the typical propagation delay time per gate;

beat length” means the distance over which two orthogonally polarised signals, initially in phase, must pass in order to achieve a 2 Pi radian(s) phase difference;

bias” means an accelerometer output when no acceleration is applied;

camming” (axial displacement) means axial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle faceplate, at a point next to the circumference of the spindle faceplate;

“CCITT” means International Telegraph and Telephone Consultative Committee;

“CEP” (circle of equal probability) means a measure of accuracy defined as the radius of the circle centred at the target, at a specific range, in which 50% of the payloads impact;

chemical laser” means a laser in which the excited species is produced by the output energy from a chemical reaction;

circuit element” means a single active or passive functional part of an electronic circuit which may be a diode, a transistor, a resistor or a capacitor;

circulation-controlled anti-torque or circulation-controlled directional control systems” means systems that use air blown over aerodynamic surfaces to increase or control the forces generated by the surfaces;

commingled” means the filament to filament blending of thermoplastic fibres and reinforcement fibres in order to produce a fibre reinforcement matrix mix in total fibre form;

comminution” means a process to reduce a material to particles by crushing or grinding;

common channel signalling” means a signalling method in which a single channel between exchanges conveys, by means of labelled messages, signalling information relating to a multiplicity of circuits or calls and other information such as that used for network management;

communications channel controller” means the physical interface which controls the flow of synchronous or asynchronous digital information; it is an assembly that can be integrated into computer or telecommunications equipment to provide communications access;

composite” means a matrix and an additional phase or additional phases consisting of particles, whiskers, fibres or any combination thereof, present for a specific purpose or purposes;

composite theoretical performance” (CTP) means a measure of computational performance given in millions of theoretical operations per second (Mtops), calculated using the aggregation of computing elements (CE);

Note to composite theoretical performance (CTP)

Abbreviations used in this Note
CEcomputing element (typically an arithmetic logical unit)
FPfloating point
XPfixed point
texecution time
XORexclusive OR
CPUcentral processing unit
TPtheoretical performance (of a single CE)
CTPcomposite theoretical performance (multiple CEs)
Mtopsmillions of theoretical operations per second
Reffective calculating rate
WLword length
Lword length adjustment
*multiply
Execution time 't' is expressed in microseconds, TP and CTP are expressed in millions of theoretical operations per second (Mtops) and WL is expressed in bits.

Outline of the CTP calculation method

The following table shows the method of calculating the effective calculating rate (R) for each CE:

Step 1: The effective calculating rate R

For CEs implementing Note: Every CE must be evaluated independentlyEffective calculating rate, R

XP only

(Rxp)

if no add is implemented use:

If neither add nor multiply is implemented use the fastest available arithmetic operation as follows:

See Notes X & Y

FP only

(Rfp)

Max

See Notes X & Z

Both FP and XP

(R)

Calculate both Rxp, Rfp
For simple logic processors not implementing any of the specified arithmetic operations.

Where

  • tlog is the execute time of the XOR, or for logic hardware not implementing the XOR, the fastest simple logic operation.

See Notes X & Z

For special logic processors not using any of the specified arithmetic or logic operations.

R = R'*WL / 64

Where

  • R' is the number of results per second, WL is the number of bits upon which the logic operation occurs, and 64 is a factor to normalize to a 64 bit operation.

Rates should be calculated for all supported operand lengths considering both pipelined operations (if supported), and non-pipelined operations using the fastest executing instruction for each operand length based on:

1. Pipelined or register-to-register operations. Exclude extraordinarily short execution times generated for operations on a predetermined operand or operands (for example, multiplication by 0 or 1). If no register-to-register operations are implemented, continue with (2).

2. The faster of register-to-memory or memory-to-register operations; if these also do not exist, then continue with (3).

3. Memory-to-memory.

In each case above, use the shortest execution time certified by the manufacturer.

Step 2:  TP for each supported operand length WL

Adjust the effective rate R (or R') by the word length adjustment L as follows:

Note: The word length WL used in these calculations is the operand length in bits. (If an operation uses operands of different lengths, select the largest word length.)

The combination of a mantissa ALU and an exponent ALU of a floating point processor or unit is considered to be one CE with a Word Length (WL) equal to the number of bits in the data representation (typically 32 or 64) for purposes of the CTP calculation.

This adjustment is not applied to specialized logic processors which do not use XOR instructions. In this case TP = R.

Select the maximum resulting value of TP for:

Step 3: CTP for aggregations of CEs, including CPUs

Category 1—Materials, Chemicals, Microorganisms & Toxins
Equipment, Assemblies and Components

1A—1A001 Components made from fluorinated compounds, as follows:

a.Seals, gaskets, sealants or fuel bladders specially designed for aircraft or aerospace use made from more than 50% of any of the materials specified in heads b. or c. of entry 1C009;

b.Piezoelectric polymers and copolymers made from vinylidene fluoride:

1.In sheet or film form; and

2.With a thickness exceeding 200 micrometre;

c.Seals, gaskets, valve seats, bladders or diaphragms made from fluoroelastomers containing at least one vinylether monomer, specially designed for aircraft, aerospace or missile use.

In this sub-head, “missile” means complete rocket systems and unmanned air vehicle systems.

1A002 Composite structures or laminates, as follows(7):

a.Having an organic matrix and made from materials specified in heads c., d. or e. of entry 1C010; or

b.Having a metal or carbon matrix and made from:

1.Carbon fibrous or filamentary materials with:

a.A specific modulus exceeding 10.15 × 106m; and

b.A specific tensile strength exceeding 17.7 × 104m; or

2.Materials specified in head c. of entry 1C010.

1A003 Manufactures of non-fluorinated polymeric substances specified in head a. of entry 1C008, in film, sheet, tape or ribbon form:

a.With a thickness exceeding 0.254 mm; or

b.Coated or laminated with carbon, graphite, metals or magnetic substances.

1A102 Resaturated pyrolized carbon-carbon materials designed for systems specified in entries 9A004 or 9A104.

1A202 Composite structures, other than those specified in entry 1A002, in the form of tubes with an inside diameter of between 75 mm and 400 mm made with fibrous or filamentary materials specified in heads a. or b. of entry 1C010 or entry 1C210(8).

1A225 Platinized catalysts specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water.

1A226 Specialized packings for use in separating heavy water from ordinary water and made of phosphor bronze mesh or copper (both chemically treated to improve wettability) and designed for use in vacuum distillation towers.

1A227 High-density (lead glass or other) radiation shielding windows greater than 0.3 m on a side and with a density greater than 3 g/cm3 and a thickness of 100 mm or greater and specially designed frames therefor.

1B  Test, Inspection and Production Equipment

1B001 Equipment for the production of fibres, prepregs, preforms or composites specified in entries 1A002 or 1C010, as follows, and specially designed components and accessories therefor(9):

a.Filament winding machines of which the motions for positioning, wrapping and winding fibres are coordinated and programmed in three or more axes, specially designed for the manufacture of composite structures or laminates from fibrous or filamentary materials;

b.Tape-laying or tow-placement machines of which the motions for positioning and laying tape, tows or sheets are coordinated and programmed in two or more axes, specially designed for the manufacture of composite airframe or missile structures;

c.Multidirectional, multidimensional weaving machines or interlacing machines, including adapters and modification kits, for weaving, interlacing or braiding fibres to manufacture composite structures;

d.Equipment specially designed or adapted for the production of reinforcement fibres, as follows:

1.Equipment for converting polymeric fibres (such as polyacrylonitrile, rayon, pitch or polycarbosilane) into carbon fibres or silicon carbide fibres, including special equipment to strain the fibre during heating;

2.Equipment for the chemical vapour deposition of elements or compounds on heated filamentary substrates to manufacture silicon carbide fibres;

3.Equipment for the wet-spinning of refractory ceramics (such as aluminium oxide);

4.Equipment for converting aluminium containing precursor fibres into alumina fibres by heat treatment;

e.Equipment for producing prepregs specified in head e. of entry 1C010 by the hot melt method;

f.Non-destructive inspection equipment capable of inspecting defects three dimensionally, using ultrasonic or X-ray tomography and specially designed for composite materials.

In this entry, “missile” means complete rocket systems and unmanned air vehicle systems.

1B002 Systems and components therefor specially designed for producing metal alloys, metal alloy powder or alloyed materials specified in sub-head a.2. of entry 1C002, head b. of entry 1C002 or head c. of entry 1C002.

1B003 Tools, dies, moulds or fixtures, for superplastic forming or diffusion bonding titanium or aluminium or their alloys, specially designed for the manufacture of:

a.Airframe or aerospace structures;

b.Aircraft or aerospace engines; or

c.Specially designed components for those structures or engines.

1B101 Equipment, other than that specified in entry 1B001, for the production of structural composites as follows; and specially designed components and accessories therefor(10):

a.Filament winding machines of which the motions for positioning, wrapping and winding fibres can be coordinated and programmed in three or more axes, designed to fabricate composite structures or laminates from fibrous or filamentary materials, and coordinating and programming controls;

b.Tape-laying machines of which the motions for positioning and laying tape and sheets can be coordinated and programmed in two or more axes, designed for the manufacture of composite airframe and missile structures;

c.Multi-directional, multi-dimensional weaving machines or interlacing machines, including adapters and modification kits for weaving, interlacing or braiding fibres to manufacture composite structures;

d.Equipment designed or modified for the production of fibrous or filamentary materials as follows:

1.Equipment for converting polymeric fibres (such as polyacrylonitrile, rayon or polycarbosilane) including special provision to strain the fibre during heating;

2.Equipment for the vapour deposition of elements or compounds on heated filament substrates; and

3.Equipment for the wet-spinning of refractory ceramics (such as aluminium oxide);

e.Equipment designed or modified for special fibre surface treatment or for producing prepregs and preforms specified in entry 9A110.

1B115 Equipment for the production, handling and acceptance testing of goods specified in entry 1C115, and specially designed components therefor.

a.Batch mixers having a total volumetric capacity of 110 litres or more and at least one mixing/kneading shaft mounted off centre;

b.Continuous mixers having two or more mixing/kneading shafts and capability to open the mixing chamber.

1B116 Specially designed nozzles for producing pyrolitically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1573 K (1300°C) to 3173 K (2900°C) temperature range at pressures of 130 Pa to 20 kPa.

1B201 Filament winding machines, other than those specified in entries 1B001 or 1B101, in which the motions for positioning, wrapping, and winding fibres are coordinated and programmed in two or more axes, specially designed to fabricate composite structures or laminates from fibrous or filamentary materials and capable of winding cylindrical rotors of diameter between 75 mm and 400 mm and lengths of 600 mm or greater and coordinating and programming controls and precision mandrels therefor.

1B225 Electrolytic cells for fluorine production with a production capacity greater than 250g of fluorine per hour.

1B226 Electromagnetic isotope separators, designed for or equipped with, single or multiple ion sources capable of providing a total ion beam current of 50 mA or greater.

a.Capable of enriching stable isotopes;

b.With the ion sources and collectors both in the magnetic field and those configurations in which they are external to the field.

1B227 Ammonia synthesis converters, ammonia synthesis units in which the synthesis gas (nitrogen and hydrogen) is withdrawn from an ammonia/hydrogen high-pressure exchange column and the synthesized ammonia is returned to that column.

1B228 Hydrogen-cryogenic distillation columns having all of the following characteristics:

a.Designed to operate with internal temperatures of 35 K (-238°C) or less;

b.Designed to operate at an internal pressure of 0.5 to 5 MPa (5 to 50 atmospheres);

c.Constructed of fine-grain stainless steels of the 300 series with low sulphur content or equivalent cryogenic and H2-compatible materials; and

d.With internal diameters of 1 m or greater and effective lengths of 5 m or greater.

1B229 Water-hydrogen sulphide exchange tray columns constructed from fine carbon steel with a diameter of 1.8 m or greater to operate at a nominal pressure of 2 MPa or greater.

1.For columns which are specially designed or prepared for the production of heavy water see entry B40 of Group 2 of Part III of this Schedule.

2.This entry includes internal contactors of the columns, which are segmented trays with an effective assembled diameter of 1.8 m or greater, such as sieve trays, valve trays, bubble cap trays, and turbogrid trays designed to facilitate countercurrent contacting and constructed of materials resistant to corrosion by hydrogen sulphide/water mixtures, such as 304L or 316 stainless steel.

3.Fine Carbon steels include steels such as specified by ASTM A516.

1B230 Pumps circulating solutions of diluted or concentrated potassium amide catalyst in liquid ammonia (KNH2/NH3), with all of the following characteristics:

a.Airtight (i.e., hermetically sealed);

b.For concentrated potassium amide solutions (1% or greater), operating pressure of 1.5-60 MPa (15-600 atmospheres); for dilute potassium amide solutions (less than 1%), operating pressure of 20-60 MPa (200-600 atmospheres); and

c.A capacity greater than 8.5 m3/hr.

1B231 Facilities or plants for the production, recovery, extraction, concentration, or handling of tritium, and equipment as follows:

a.Hydrogen or helium refrigeration units capable of cooling to 23 K (-250°C) or less, with heat removal capacity greater than 150 Watts; or

b.Hydrogen isotope storage and purification systems using metal hydrides as the storage, or purification medium.

1C  Materials

1C001 Materials specially designed for use as absorbers of electromagnetic waves, or intrinsically conductive polymers, as follows(11):

a.Materials for absorbing frequencies exceeding 2 × 108 Hz but less than 3 × 1012 Hz; except:

b.Materials for absorbing frequencies exceeding 1.5 × 1014 Hz but less than 3.7 × 1014 Hz and not transparent to visible light;

c.Intrinsically conductive polymeric materials with a bulk electrical conductivity exceeding 10,000 S/m (Siemens per metre) or a sheet (surface) resistivity of less than 100 ohms/square, based on any of the following polymers:

1.Polyaniline;

2.Polypyrrole;

3.Polythiophene;

4.Poly phenylene-vinylene; or

5.Poly thienylene-vinylene.

1C002 Metal alloys, metal alloy powder or alloyed materials, as follows(12):

a.Metal alloys, as follows:

1.Nickel or titanium-based alloys in the form of aluminides, as follows, in crude or semi-fabricated forms:

a.Nickel aluminides containing 10 weight per cent or more aluminium;

b.Titanium aluminides containing 12 weight per cent or more aluminium;

2.Metal alloys, as follows, made from metal alloy powder or particulate material specified in head b. of this entry:

a.Nickel alloys with:

1.A stress-rupture life of 10,000 hours or longer at 923 K (650°C) at a stress of 550 MPa; or

2.A low cycle fatigue life of 10,000 cycles or more at 823 K (550°C) at a maximum stress of 700 MPa;

b.Niobium alloys with:

1.A stress-rupture life of 10,000 hours or longer at 1,073 K (800°C) at a stress of 400 MPa; or

2.A low cycle fatigue life of 10,000 cycles or more at 973 K (700°C) at a maximum stress of 700 MPa;

c.Titanium alloys with:

1.A stress-rupture life of 10,000 hours or longer at 723 K (450°C) at a stress of 200 MPa; or

2.A low cycle fatigue life of 10,000 cycles or more at 723 K (450°C) at a maximum stress of 400 MPa;

d.Aluminium alloys with a tensile strength of:

1.240 MPa or more at 473 K (200°C); or

2.415 MPa or more at 298 K (25°C);

e.Magnesium alloys with a tensile strength of 345 MPa or more and a corrosion rate of less than 1 mm/year in 3% sodium chloride aqueous solution measured in accordance with ASTM standard G-31;

Notes:

1.The metal alloys specified in head a. of this entry are those containing a higher percentage by weight of the stated metal than of any other element.

2.Stress-rupture life should be measured in accordance with ASTM standard E-139.

3.Low cycle fatigue life should be measured in accordance with ASTM Standard E-606 ‘Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing’. Testing should be axial with an average stress ratio equal to 1 and a stress-concentration factor (Kt) equal to 1. The average stress is defined as maximum stress minus minimum stress divided by maximum stress.

b.Metal alloy powder or particulate material for materials specified in head a. of this entry, as follows:

1.Made from any of the following composition systems:

a.Nickel alloys (Ni-Al-X, Ni-X-Al) qualified for turbine engine parts or components, i.e. with less than 3 non-metallic particles (introduced during the manufacturing process) larger than 100 micrometre in 109 alloy 15 particles;

b.Niobium alloys (Nb-Al-X or Nb-X-Al, Nb-Si-X or Nb-X-Si, Nb-Ti-X or Nb-X-Ti);

c.Titanium alloys (Ti-Al-X or Ti-X-Al);

d.Aluminium alloys (Al-Mg-X or Al-X-Mg, Al-Zn-X or Al-X-Zn, Al-Fe-X or Al-X-Fe); or

e.Magnesium alloys (Mg-Al-X or Mg-X-Al); and

2.Made in a controlled environment by any of the following processes:

a.Vacuum atomisation;

b.Gas atomisation;

c.Rotary atomisation;

d.Splat quenching;

e.Melt spinning and comminution;

f.Melt extraction and comminution; or

g.Mechanical alloying;

c.Alloyed materials, in the form of uncomminuted flakes, ribbons or thin rods produced in a controlled environment by splat quenching, melt spinning or melt extraction, used in the manufacture of metal alloy powder or particulate material specified in head b. of this entry.

1C003 Magnetic metals, of all types and of whatever form, having any of the following characteristics:

a.Initial relative permeability of 120,000 or more and a thickness of 0.05 mm or less;

b.Magnetostrictive alloys with:

1.A saturation magnetostriction of more than 5 × 10−4 or

2.A magnetomechanical coupling factor (k) of more than 0.8; or

c.Amorphous alloy strips having both of the following characteristics:

1.A composition having a minimum of 75 weight percent of iron, cobalt or nickel; and

2.A saturation magnetic induction (Bs) of 1.6 T or more, and:

a.A strip thickness of 0.02 mm or less; or

b.An electrical resistivity of 2 × 10−4 ohm cm or more.

1C004 Uranium titanium alloys or tungsten alloys with a matrix based on iron, nickel or copper, with:

a.A density exceeding 17.5 g/cm3;

b.An elastic limit exceeding 1,250 MPa;

c.An ultimate tensile strength exceeding 1,270 MPa; and

d.An elongation exceeding 8%.

1C005 Superconductive composite conductors in lengths exceeding 100 m or with a mass exceeding 100 g, as follows:

a.Multifilamentary superconductive composite conductors containing one or more niobium-titanium filaments:

1. Embedded in a matrix other than a copper or copper-based mixed matrix; or

2.With a cross-section area less than 0.28 × 10−4 mm2 (6 micrometre in diameter for circular filaments);

b.Superconductive composite conductors consisting of one or more superconductive filaments other than niobium-titanium:

1.With a critical temperature at zero magnetic induction exceeding 9.85 K (-263.31°C) but less than 24 K (-249.16°C);

2.With a cross-section area less than 0.28 × 10−4 mm2; and

3.Which remain in the superconductive state at a temperature of 4.2 K (-268.96°C) when exposed to a magnetic field corresponding to a magnetic induction of 12 T.

1C006 Fluids and lubricating materials, as follows:

a.Hydraulic fluids containing, as their principal ingredients, any of the following compounds or materials:

1.Synthetic hydrocarbon oils or silahydrocarbon oils with:

a.A flash point exceeding 477 K (204°C);

b.A pour point at 239 K (-34°C) or less;

c.A viscosity index of 75 or more; and

d.A thermal stability at 616 K (343°C); or

2.Chlorofluorocarbons with:

a.No flash point;

b.An autogenous ignition temperature exceeding 977 K (704°C);

c.A pour point at 219 K (-54°C) or less;

d.A viscosity index of 80 or more; and

e.A boiling point at 473 K (200°C) or higher;

b.Lubricating materials containing, as their principal ingredients, any of the following compounds or materials:

1.Phenylene or alkylphenylene ethers or thio-ethers, or their mixtures, containing more than two ether or thio-ether functions or mixtures thereof; or

2.Fluorinated silicone fluids with a kinematic viscosity of less than 5,000 mm2/s (5,000 centistokes) measured at 298 K (25°C);

c.Damping or flotation fluids with a purity exceeding 99.8%, containing less than 25 particles of 200 micrometre or larger in size per 100 ml and made from at least 85% of any of the following compounds or materials:

1.Dibromotetrafluoroethane;

2.Polychlorotrifluoroethylene (oily and waxy modifications only); or

3.Polybromotrifluoroethylene.

Notes:

1.Flash point is determined using the Cleveland Open Cup Methoddescribed in ASTM D-92.

2.Pour point is determined using the method described in ASTM D-97.

3.Viscosity index is determined using the method described in ASTM D-2270.

4.Thermal stability is determined by the following test procedure: Twenty ml of the fluid under test is placed in a 46 ml type 317 stainless steel chamber containing one each of 12.5 mm (nominal) diameter balls of M-10 tool steel, 52100 steel and naval bronze (60% Cu, 39% Zn, 0.75% Sn). The chamber is purged with nitrogen, sealed at atmospheric pressure and the temperature raised to and maintained at 644 ± 6 K (371 ± 6C) for six hours. The specimen will be considered thermally stable if, on completion of the above procedure, all of the following conditions are met:

a.The loss in weight of each ball is less than 10 mg/mm2 of ball surface;

b.The change in original viscosity as determined at 311 K (38°C) is less than 25%; and

c.The total acid or base number is less than 0.40.

5.Autogenous ignition temperature is determined using the methoddescribed in ASTM E-659.

1C007 Ceramic base materials, non-composite ceramic materials, ceramic-matrix composite materials and precursor materials, as follows(13):

a.Base materials of single or complex borides of titanium having total metallic impurities, excluding intentional additions, of less than 5,000 ppm, an average particle size equal to or less than 5 micrometre and no more than 10% of the particles larger than 10 micrometre;

b.Non-composite ceramic materials in crude or semi-fabricated form composed of borides of titanium with a density of 98% or more of the theoretical density; except: Abrasives;

c.Ceramic-ceramic composite materials with a glass or oxide-matrix and reinforced with fibres from any of the following systems:

1.Si-N;

2.Si-C;

3.Si-Al-O-N; or

4.Si-O-N;

d.Ceramic-ceramic composite materials, with or without a continuous metallic phase, containing finely dispersed particles or phases of any fibrous or whisker-like material, where carbides or nitrides of silicon, zirconium or boron form the matrix;

e.Precursor materials (i.e., special purpose polymeric or metallo-organic materials) for producing any phase or phases of the materials specified in head c. of this entry, as follows:

1.Polydiorganosilanes (for producing silicon carbide);

2.Polysilazanes (for producing silicon nitride);

3.Polycarbosilazanes (for producing ceramics with silicon, carbon and nitrogen components).

1C008 Non-fluorinated polymeric substances, as follows:

a.1.Bismaleimides;

2.Aromatic polyamide-imides;

3.Aromatic polyimides;

4.Aromatic polyetherimides having a glass transition temperature (Tg) exceeding 503 K (230°C) as measured by the wet method;

b.Thermoplastic liquid crystal copolymers having a heat distortion temperature exceeding 523 K (250°C) measured according to ASTM D-648, method A, with a load of 1.82 N/mm2 and composed of:

1.Either of the following:

a.Phenylene, biphenylene or naphthalene; or

b.Methyl, tertiary-butyl or phenyl substituted phenylene, biphenylene or naphthalene; and

2.Any of the following acids:

a.Terephthalic acid;

b.6-hydroxy-2 naphthoic acid; or

c.4-hydroxybenzoic acid;

c.Polyarylene ether ketones, as follows:

1.Polyether ether ketone (PEEK);

2.Polyether ketone ketone (PEKK);

3.Polyether ketone (PEK);

4.Polyether ketone ether ketone ketone (PEKEKK);

d.Polyarylene ketones;

e.Polyarylene sulphides, where the arylene group is biphenylene, triphenylene or combinations thereof;

f.Polybiphenylenethersulphone.

1C009 Unprocessed fluorinated compounds, as follows:

a.Copolymers of vinylidene fluoride having 75% or more beta crystalline structure without stretching;

b.Fluorinated polyimides containing 30% or more of combined fluorine;

c.Fluorinated phosphazene elastomers containing 30% or more of combined fluorine.

1C010 Fibrous or filamentary materials which may be used in organic matrix, metallic matrix or carbon matrix composite structures or laminates, as follows(14):

a.Organic fibrous or filamentary materials (except polyethylene) with:

1.A specific modulus exceeding 12.7 × 106m; and

2.A specific tensile strength exceeding 23.5 × 104m;

b.Carbon fibrous or filamentary materials with:

1.A specific modulus exceeding 12.7 × 106m; and

2.A specific tensile strength exceeding 23.5 × 104m;

Notes:

1.Properties for materials described in this head should be determined using Suppliers of Advance Composite Materials Association (SACMA) recommended methods SRM 12 to 17 or Japanese Industrial Standard JIS-R-7601, Paragraph 6.6.2., and based on lot average.

2.This head does not specify fabric made from fibrous or filamentary materials for the repair of aircraft structures or laminates in which the size of individual sheets does not exceed 50 cm × 90 cm.

c.Inorganic fibrous or filamentary materials with:

1.A specific modulus exceeding 2.54 × 106m; and

2.A melting, decomposition or sublimation point exceeding 1,922 K (1,649°C) in an inert environment;

a.Discontinuous, multiphase, polycrystalline alumina fibres in chopped fibre or random mat form, containing 3 weight percent or more silica, with a specific modulus of less than 10 × 106m;

b.Molybdenum and molybdenum alloy fibres;

c.Boron fibres;

d.Discontinuous ceramic fibres with a melting, decomposition or sublimation point lower than 2,043 K (1,770°C) in an inert environment.

d.Fibrous or filamentary materials:

1.Composed of any of the following:

a.Polyetherimides specified in head a. of entry 1C008; or

b.Materials specified in heads b., c., d., e. or f. of entry 1C008; or

2.Composed of materials specified in sub-head d.1. of this entry and commingled with other fibres specified in heads a., b. or c. of this entry;

e.Resin- or pitch-impregnated fibres (prepregs), metal or carbon-coated fibres (preforms) or carbon fibre preforms, as follows:

1.Made from fibrous or filamentary materials specified in heads a., b. or c. of this entry;

2.Made from organic or carbon fibrous or filamentary materials:

a.With a specific tensile strength exceeding 17.7 × 104 m;

b.With a specific modulus exceeding 10.15 × 106m;

c.Not specified in heads a. or b. of this entry; and

d.When impregnated with materials specified in entry 1C008 or head b. of entry 1C009, or with phenolic or epoxy resins, having a glass transition temperature (Tg) exceeding 383 K (110°C).

1C101 Materials and devices for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures (i.e. stealth technology), other than those specified in entry 1C001, usable in missiles and their subsystems.

1. Notes:

1.This entry includes:

a.Structural materials and coatings specially designed for reduced radar reflectivity;

b.Coatings, including paints, specially designed for reduced or tailored reflectivity or emissivity in the microwave, infra red or ultra violet regions of the electromagnetic spectrum.

2.This entry does not include coatings when specially used for the thermal control of satellites.

1C107 Graphite and ceramic materials, as follows:

a.Fine grain recrystallised bulk graphites, having a bulk density of 1.72 g/cm3 or greater, measured at 288 K (15°C), and having a particle size of 100 micrometres or less, pyrolytic or fibrous reinforced graphites, usable for rocket nozzles and reentry vehicle nose tips;

b.Ceramic composite materials (dielectric constant less than 6 at frequencies from 100 Hz to 10,000 MHz), usable for radomes, and bulk machinable silicon-carbide reinforced unfired ceramic, usable for nose tips.

1C115 Propellants and constituent chemicals for propellants, as follows:

a.Propulsive substances:

1.Spherical aluminium powder, other than that specified in ML8 of Group 1 of Part III of this Schedule, with particles of uniform diameter of less than 500 micrometre and an aluminium content of 97% by weight or greater;

2.Metal fuels, other than that specified in ML8 of Group 1 of Part III of this Schedule, in particle sizes less than 500 micrometres, whether spherical, atomized, spheroidal, flaked or ground, consisting of 97% by weight or more of any of the following:

a.Zirconium;

b.Beryllium;

c.Boron;

d.Magnesium;

e.Zinc;

f.Alloys of the metals specified by a. to e. above; or

g.Misch metal;

3.Liquid oxidisers, the following:

a.Dinitrogen trioxide;

b.Nitrogen dioxide/dinitrogen tetroxide;

c.Dinitrogen pentoxide;

b.Polymeric substances:

1.Carboxy-terminated polybutadiene (CTPB);

2.Hydroxy-terminated polybutadiene (HTPB), other than that specified in ML8 of Group 1 of Part III of this Schedule;

3.Polybutadiene-acrylic acid (PBAA);

4.Polybutadiene-acrylic acid-acrylonitrile (PBAN);

c.Other propellant additives and agents:

1.Butacene;

2.Triethylene glycol dinitrate (TEGDN);

3.2-Nitrodiphenylamine.

1C116 Maraging steels (steels generally characterised by high nickel, very low carbon content and the use of substitutional elements or precipitates to produce age-hardening) having an ultimate tensile strength of 1500 MPa or greater, measured at 293 K (20°C), in the form of sheet, plate or tubing with a wall or plate thickness equal to or less than 5 mm(15).

1C117 Tungsten, molybdenum and alloys of these metals in the form of uniform spherical or atomized particles of 500 micrometre diameter or less with a purity of 97% or greater for fabrication of rocket motor components i.e. heat shields, nozzle substrates, nozzle throats and thrust vector control surfaces.

1C202 Alloys, other than those specified in sub-head a.2.c. or head d. of entry 1C002, as follows:

a.Aluminium alloys capable of an ultimate tensile strength of 460 MPa or more at 293 K (20°C), in the form of tubes or solid forms (including forgings) with an outside diameter of more than 75 mm;

b.Titanium alloys capable of an ultimate tensile strength of 900 MPa or more at 293 K (20°C) in the form of tubes or solid forms (including forgings) with an outside diameter of more than 75 mm.

In this entry, “alloys capable of” means alloys before or after heat treatment.

1C210 Fibrous or filamentary materials, other than those specified in heads a. or b. of entry 1C010, as follows:

a.Carbon or aramid fibrous or filamentary materials having a specific modulus of 12.7 × 106 m or greater or a specific tensile strength of 23.5 × 104 m or greater; or

b.Glass fibrous or filamentary materials having a specific modulus of 3.18 × 106 m or greater and a specific tensile strength of 7.62 × 104 m or greater.

1C216 Maraging steel, other than that specified in entry 1C116, capable of an ultimate tensile strength of 2,050 MPa or more, at 293 K (20°C);

1C225 Boron and boron compounds, mixtures and loaded materials in which the boron-10 isotope is more than 20% by weight of the total boron content.

1C226 Tungsten, as follows: parts made of tungsten, tungsten carbide, or tungsten alloys (greater than 90% tungsten) having a mass greater than 20 kg and a hollow cylindrical symmetry (including cylinder segments) with an inside diameter greater than 100 mm but less than 300 mm;

1C227 Calcium (high purity) containing both less than 1,000 parts per million by weight of metallic impurities other than magnesium and less than 10 parts per million of boron.

1C228 Magnesium (high purity) containing both less than 200 parts per million by weight of metallic impurities other than calcium and less than 10 parts per million of boron.

1C229 High purity (99.99% or greater) bismuth with very low silver content (less than 10 parts per million).

1C230 Beryllium metal, alloys containing more than 50% of beryllium by weight, compounds containing beryllium, and manufactures thereof; except:

a.Metal Windows for X-ray machines;

b.Oxide shapes in fabricated or semi-fabricated forms specially designed for electronic component parts or as substrates for electronic circuits.

1C231 Hafnium metal, alloys and compounds of hafnium containing more than 60% hafnium by weight and manufactures thereof.

1C232 Helium in any form isotopically enriched in the helium-3 isotope, whether or not mixed with any other materials or contained in any equipment or device;except:

1C233 Lithium, as follows:

a.Metal, hydrides or alloys containing lithium enriched in the 6 isotope (6Li) to a concentration higher than the one existing in nature (7.5 % weight percent);

b.Any other materials containing lithium enriched in the 6 isotope (including compounds, mixtures and concentrates);

1C234 Zirconium as follows: metal, alloys containing more than 50% zirconium by weight, and compounds in which the ratio of hafnium content to zirconium content is less than 1 part to 500 parts by weight, and manufactures wholly thereof;

1C235 Tritium, tritium compounds, and mixtures containing tritium in which the ratio of tritium to hydrogen by atoms exceeds 1 part in 1000;

1C236 Alpha-emitting radionuclides having an alpha half-life of 10 days or greater but less than 200 years, including equipment, compounds and mixtures containing these radionuclides with a total alpha activity of 1 curie per kilogram (37 GBq/kg) or greater;

1C237 Radium-226;

1C238 Chlorine trifluoride (ClF3).

1C239 High explosives(16), other than those specified in ML8 of Group 1 of Part III of this Schedule, or substances or mixtures containing more than 2% thereof, with a crystal density greater than 1.8 gm/cm3 and having a detonation velocity greater than 8,000 m/s.

1C350 Chemicals, which may be used as precursors for toxic chemical agents, as follows, and preparations thereof(17):

a.1.Ammonium hydrogen fluoride;

2.Arsenic trichloride;

3.Benzilic acid;

4.2-Chloroethanol;

5.Diethylaminoethanol;

6.Diethyl ethylphosphonate;

7.Diethyl methylphosphonite;

8.Diethyl-N,N-dimethylphosphoramidate;

9.Diethyl phosphite;

10.Diisopropylamine;

11.N,N-Diisopropyl-(beta)-aminoethane thiol;

12.N,N-Diisopropyl-(beta)-amino ethanol;

13.N,N-Diisopropyl-(beta)-aminoethyl chloride;

14.N,N-Diisopropyl-(beta)-aminoethyl chloride hydrochloride;

15.Dimethyl ethylphosphonate;

16.Dimethyl methylphosphonate;

17.Dimethyl phosphite;

18.Dimethylamine;

19.Dimethylamine hydrochloride;

20.Ethyl phosphinyl dichloride;

21.Ethyl phosphinyl difluoride;

22.Ethyl phosphonyl dichloride;

23.Ethyl phosphonyl difluoride;

24.Hydrogen fluoride;

25.3-Hydroxy-1-methylpiperidine;

26.Methyl benzilate;

27.Methyl phosphinyl dichloride;

28.Methyl phosphinyl difluoride;

29.Methyl phosphonyl dichloride;

30.Phosphorus oxychloride;

31.Phosphorus pentachloride;

32.Phosphorus pentasulphide;

33.Phosphorus trichloride;

34.Pinacolone;

35.Pinacolyl alcohol;

36.Potassium fluoride;

37.Potassium cyanide;

38.Potassium hydrogen fluoride;

39.3-Quinuclidinol;

40.3-Quinuclidone;

41.Sodium bifluoride;

42.Sodium cyanide;

43.Sodium fluoride;

44.Sodium sulphide;

45.Sulphur dichloride;

46.Sulphur monochloride;

47.Thiodiglycol;

48.Thionyl chloride;

49.Triethanolamine;

50.Triethanolamine hydrochloride;

51.Triethyl phosphite;

52.Trimethyl phosphite;

1C351 Human pathogens, zoonoses and toxins (18):

a.Viruses, whether natural, enhanced or modified, either in the form of isolated live cultures or as material including living material which has been deliberately inoculated or contaminated with such cultures, as follows:

1.Chikungunya virus;

2.Congo-Crimean haemorrhagic fever virus;

3.Dengue fever virus;

4.Eastern equine encephalitis virus;

5.Ebola virus;

6.Hantaan virus;

7.Junin virus;

8.Lassa fever virus;

9.Lymphocytic choriomeningitis virus;

10.Machupo virus;

11.Marburg virus;

12.Monkey pox virus;

13.Rift Valley fever virus;

14.Russian Spring-Summer encephalitis virus;

15.Variola virus;

16.Venezuelan equine encephalitis virus;

17.Western equine encephalitis virus;

18.White pox;

19.Yellow fever virus;

20.Japanese encephalitis virus;

b.Rickettsiae, whether natural, enhanced or modified, either in the form of isolated live cultures or as material including living material which has been deliberately inoculated or contaminated with such cultures, as follows:

1.Coxiella burnetii;

2.Rickettsia quintana;

3.Rickettsia prowasecki;

4.Rickettsia rickettsii;

c.Bacteria, whether natural, enhanced or modified, either in the form of isolated live cultures or as material including living material which has been deliberately inoculated or contaminated with such cultures, as follows:

1.Bacillus anthracis;

2.Brucella abortus;

3.Brucella melitensis;

4.Brucella suis;

5.Chlamydia psittaci;

6.Clostridium botulinum;

7.Francisella tularensis;

8.Pseudomonas mallei (Burkholderia mallei);

9.Pseudomonas pseudomallei (Burkholderia pseudomallei;

10.Salmonella typhi;

11.Shigella dysenteriae;

12.Vibrio cholerae;

13.Pasteurella pseudotuberculosis var pestis (Yersinia pestis);

d.Toxins, as follows;

1.Botulinum toxins;

2.Clostridium perfringens toxins;

3.Conotoxin;

4.Ricin;

5.Saxitoxin;

6.Shiga toxin;

7.Staphylococcus aureus toxins;

8.Tetrodotoxin;

9.Verotoxin;

10.Microcystins (Cyanginosins);

1C352 Animal Pathogens, as follows(20):

a.Viruses, whether natural, enhanced or modified, either in the form of isolated live cultures or as material including living material which has been deliberately inoculated or contaminated with such cultures, as follows:

1.African swine fever virus;

2.Avian influenza virus, which are:

a.Uncharacterised; or

b.Those defined in Council Directive 92/40/EEC(21), as having high pathogenicity, as follows:

1.Type A viruses with an IVPI (intravenous pathogenicity index) in 6 week old chickens of greater than 1.2; or

2.Type A viruses H5 or H7 subtype for which nucletide sequencing has demonstrated multiple basic amino acids at the cleavage site of haemagglutinin;

3.Bluetongue virus;

4.Foot and mouth disease virus;

5.Goat pox virus;

6.Porcine herpes virus (Aujeszky’s disease);

7.Swine fever virus (Hog cholera virus);

8.Lyssa virus;

9.Newcastle disease virus;

10.Peste des petits ruminants virus;

11.Swine vesicular disease (porcine enterovirus type 9);

12.Rinderpest virus;

13.Sheep pox virus;

14.Teschen disease virus;

15.Vesicular stomatitis virus;

b.Bacteria, whether natural, enhanced or modified, either in the form of isolated live cultures or as material including living material which has been deliberately inoculated or contaminated with Mycoplasma mycoides;

1C353 Genetically-modified microorganisms, as follows(22):

a.Genetically modified microorganisms or genetic elements that contain nucleic acid sequences associated with pathogenicity and are derived from organisms specified in heads a. to c. of entry 1C351 or entries 1C352 or 1C354;

b.Genetically modified microorganisms or genetic elements that contain nucleic acid sequences coding for any of the toxins specified in head d. of entry 1C351.

1C354 Plant pathogens, as follows:

a.Bacteria, whether natural, enhanced or modified, either in the form of isolated live cultures or as material which has been deliberately inoculated or contaminated with such cultures, as follows:

1.Xanthomonas albilineans;

2.Xanthomonas campestris pv. citri including strains referred to as Xanthomonas campestris pv. citri types A,B,C,D,E or otherwise classified as Xanthomonas citri, Xanthomonas campestris pv. aurantifolia or Xanthomonas campestris pv. citrumelo;

b.Fungi, whether natural, enhanced or modified, either in the form of isolated live cultures or as material which has been deliberately inoculated or contaminated with such cultures, as follows:

1.Colletotrichum coffeanum var. virulans;

2.Cochlibolus miyabeanus (Helminthosporium oryzae);

3.Microcyclus ulei(syn. Dothidella ulei);

4.Puccinia graminis (syn. Puccinia graminis f. sp. tritici);

5.Puccinia striiformis (syn. Puccinia glumarum);

6.Magnaporthe grisea (Pyricularia grisea/Pyricularia oryzae).

1C991 Other explosives and propellants and related substances as follows(23):

a.Amatol;

b.Nitrocellulose (containing more than 12.5% nitrogen);

c.Nitroglycol;

d.Pentaerythritol tetranitrate (PETN);

e.Picryl chloride;

f.Trinitrophenylmethylnitramine (tetryl);

g.2,4,6-Trinitrotoluene (TNT).

1C992 Vaccines for protection against either of the following:

a.Bacillus anthracis; or

b.Botulinum toxin.

1D  Software

1D001 Software specially designed or modified for the development, production or use of goods specified in entries 1B001 to 1B003.

1D002 Software for the development of organic matrix, metal matrix or carbon matrix laminates or composites.

1D101 Software specially designed for the use of goods specified in entry 1B101.

1D103 Software specially designed for analysis of reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures.

1D201 Software specially designed for the use of goods specified in entry 1B201.

1E  Technology

1E001 Technology required for the development or production of goods specified in heads b. or c. of entry 1A001, or entries 1A002, 1A003, or sub-categories 1B or 1C.

1E002 Other technology:

a.Technology for the development or production of polybenzothiazoles or polybenzoxazoles;

b.Technology for the development or production of fluoroelastomer compounds containing at least one vinylether monomer;

c.Technology for the design or production of the following base materials or non-composite ceramic materials:

1.Base materials having all of the following characteristics:

a.Any of the following compositions:

1.Single or complex oxides of zirconium and complex oxides of silicon or aluminium;

2.Single nitrides of boron (cubic crystalline forms);

3.Single or complex carbides of silicon or boron; or

4.Single or complex nitrides of silicon;

b.Total metallic impurities, excluding intentional additions, of less than:

1.1,000 ppm for single oxides or carbides; or

2.5,000 ppm for complex compounds or single nitrides; and

1.

Average particle size equal to or less than 5 micrometre and no more than 10% of the particles larger than 10 micrometre; or

Note: For zirconia, these limits are 1 micrometre and 5 micrometre respectively.

2.
a.

Platelets with a length to thickness ratio exceeding 5;

b.

Whiskers with a length to diameter ratio exceeding 10 for diameters less than 2 micrometre; and

c.

Continuous or chopped fibres less than 10 micrometre in diameter;

2.Non-composite ceramic materials (except abrasives) composed of the materials described in sub-head c.1. of this entry;

d.Technology for the production of aromatic polyamide fibres;

e.Technology for the installation, maintenance or repair of materials specified in entry 1C001;

f.Technology for the repair of composite structures, laminates or materials specified in entry 1A002 and heads c. or d. of entry 1C007.

1E101 Technology required for the use of goods specified in entries 1A102, 1B001, 1B101, 1B115, 1B116, 1C001, 1C101, 1C107, 1C115 to 1C117, 1D101 or 1D103.

1E102 Technology required for the development of software specified in entries 1D001, 1D101 or 1D103.

1E103 Technology for the regulation of temperature, pressure or atmosphere in autoclaves or hydroclaves, when used for the production of composites or partially processed composites.

1E104 Technology relating to the production of pyrolitically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1,573 K (1,300°C) to 3,173 K (2,900°C) temperature range at pressures of 130 Pa to 20 kPa.Note: This entry includes technology for the composition of precursor gases, flowrates and process control schedules and parameters.

1E201 Technology required for the use of goods specified in entries 1A002, 1A202, 1A225 to 1A227, 1B201, 1B225 to 1B231, sub-heads a.2.c. and a.2.d. of entry 1C002, head b. of entry 1C010, or entries 1C202, 1C210, 1C216, 1C225 to 1C239 or 1D201.

1E202 Technology required for the development or production of goods specified in entries 1A202, 1A225 to 1A227.

1E203 Technology required for the development of software specified in entry 1D201.

Category 2—Materials Processing
Equipment, Assemblies and Components

2A  Notes to 2A001 to 2A006:

1. DN is the product of the bearing bore diameter in mm and the bearing rotational velocity in rpm.

2. Operating temperatures include those temperatures obtained when a gas turbine engine has stopped after operation.

2A001 Ball bearings or solid roller bearings (except tapered roller bearings) having tolerances specified by the manufacturer in accordance with ISO Standard Class 4 (Annular Bearing Engineers Committee (ABEC) 7, ABEC 7P, ABEC 7T) or better, and having any of the following characteristics:

a.Rings, balls or rollers made from monel or beryllium;

b.Manufactured for use at operating temperatures above 573 K (300°C) either by using special materials or by special heat treatment; or

c.With lubricating elements or component modifications that, according to the manufacturer’s specifications, are specially designed to enable the bearings to operate at speeds exceeding 2.3 million DN.

2A002 Other ball bearings or solid roller bearings (except tapered roller bearings) having tolerances specified by the manufacturer in accordance with ISO Standard Class 2 (Annular Bearing Engineers Committee (ABEC) 9, ABEC 9P or better).

2A003 Solid tapered roller bearings, having tolerances specified by the manufacturer in accordance with American National Standards Institute (ANSI)/Anti-Friction Bearing Manufacturers Association (AFBMA) Class 00 (inch) or Class A (metric) or better and having either of the following characteristics:

a.With lubricating elements or component modifications that, according to the manufacturer’s specifications, are specially designed to enable the bearings to operate at speeds exceeding 2.3 million DN; or

b.Manufactured for use at operating temperatures below 219 K (-54°C) or above 423 K (150°C).

2A004 Gas-lubricated foil bearings manufactured for use at operating temperatures of 561 K (288°C) or higher and with a unit load capacity exceeding 1 MPa.

2A005 Active magnetic bearing systems.

2A006 Fabric-lined self-aligning or fabric-lined journal sliding bearings manufactured for use at operating temperatures below 219 K (-54°C) or above 423 K (150°C).

2A225 Crucibles made of materials resistant to liquid actinide metals, as follows:

a.Crucibles with a volume of between 150 ml and 8 litres and made of or coated with any of the following materials having a purity of 98% or greater:

1.Calcium fluoride (CaF2);

2.Calcium zirconate (metazirconate) (Ca2ZrO3);

3.Cerium sulphide (Ce2S3);

4.Erbium oxide (erbia) (Er203);

5.Hafnium oxide (hafnia) (HfO2);

6.Magnesium oxide (MgO);

7.Nitrided niobium-titanium-tungsten alloy (approximately 50% Nb, 30% Ti, 20%W);

8.Yttrium oxide (yttria) (Y2O3); or

9.Zirconium oxide (zirconia) (ZrO2);

b.Crucibles with a volume of between 50 ml and 2 litres and made of or lined with tantalum, having a purity of 99.9% or greater;

c.Crucibles with a volume of between 50 ml and 2 litres and made of or lined with tantalum (having a purity of 98% or greater) coated with tantalum carbide, nitride or boride (or any combination of these).

2A226 Valves 5 mm or greater in diameter, with a bellows seal, wholly made of or lined with aluminium, aluminium alloy, nickel or alloy containing 60% or more nickel, either manually or automatically operated.

2B Test, Inspection and Production Equipment

2B001 Numerical control units, motion control boards specially designed for numerical control applications on machine tools, machine tools, and specially designed components therefor, as follows:

1.Secondary parallel contouring axes, e.g., the w-axis on horizontal boring mills or a secondary rotary axis the centre line of which is parallel to the primary rotary axis, are not counted in the total number of contouring axes.

2.Axis nomenclature shall be in accordance with International Standard ISO 841, ‘Numerical Control Machines – Axis and Motion Nomenclature’.

a.Numerical control units for machine tools, as follows, and specially designed components therefor:

a.Modified for and incorporated in machines not specified in this entry; or

b.Specially designed for machines not specified in this entry.

1.Having more than four interpolating axes which can be coordinated simultaneously for contouring control;

2.Having two, three or four interpolating axes which can be coordinated simultaneously for contouring control and:

a.Capable of real time processing of data to modify, during the machining operation, tool path, feed rate and spindle data by either:

1.Automatic calculation and modification of part programme data for machining in two or more axes by means of measuring cycles and access to source data; or

2.Adaptive control with more than one physical variable measured and processing by means of a computing model (strategy) to change one or more machining instructions to optimize the process;

b.Capable of receiving directly (on-line) and processing computer aided design (CAD) data for internal preparation of machine instructions; or

c.Capable, without modification, according to the manufacturer’s technical specifications, of accepting additional boards which would permit an increase above the levels specified in this entry, in the number of interpolating axes which can be coordinated simultaneously for contouring control, even if they do not contain these additional boards;

b.Motion control boards specially designed for machine tools and having any of the following characteristics:

1.Interpolation in more than four axes;

2.Capable of real time processing as described in sub-head a.2.a. of this entry; or

3.Capable of receiving and processing CAD data as described in sub-head a.2.b. of this entry;

c.Machine tools, as follows, for removing or cutting metals, ceramics or composites, which, according to the manufacturer’s technical specifications, can be equipped with electronic devices for simultaneous contouring control in two or more axes:

1.Machine tools for turning, grinding, milling or any combination thereof which:

a.Have two or more axes which can be coordinated simultaneously for contouring control; and

b.Have any of the following characteristics:

1.Two or more contouring rotary axes;

2.One or more contouring tilting spindles;

3.Camming (axial displacement) in one revolution of the spindle less (better) than 0.0006 mm total indicator reading (TIR);

4.Run out (out-of-true running) in one revolution of the spindle less (better) than 0.0006 mm TIR;

5.The positioning accuracies, with all compensations available, are less (better) than:

a.0.001° on any rotary axis; or

b.

1.0.004 mm along any linear axis (overall positioning) for grinding machines;

2.0.006 mm along any linear axis (overall positioning) for turning or milling machines; or

Notes:

1.Sub-head c.1.b.5. of this entry does not specify milling or turning machine tools with a positioning accuracy along one axis, with all compensations available, equal to or more (worse) than 0.005 mm.

2.The positioning accuracy of numerically controlled machine tools is to be determined and presented in accordance with ISO 230/2 paragraph 2.13, in conjunction with the requirements below:

a.Test conditions (paragraph 3):

1.For 12 hours before and during measurements, the machine tool and accuracy measuring equipment will be kept at the same ambient temperature. During the premeasurement time the slides of the machine will be continuously cycled in the same manner that the accuracy measurements will be taken;

2.The machine shall be equipped with any mechanical, electronic, or software compensation to be exported with the machine;

3.Accuracy of measuring equipment for the measurements shall be at least four times more accurate than the expected machine tool accuracy;

4.Power supply for slide drives shall be as follows:

a.Line voltage variation shall not exceed ± 10% of nominal rated voltage;

b.Frequency variation shall not exceed ±2 Hz of normal frequency;

c.Lineouts or interrupted service are not permitted;

b.Test programme (paragraph 4):

1.Feed rate (velocity of slides) during measurement shall be the rapid traverse rate, except in the case of machine tools which generate optical quality surfaces, the feed rate shall be equal to or less than 50 mm per minute;

2.Measurements shall be made in an incremental manner from one limit of the axis travel to the other without returning to the starting position for each move to the target position;

3.Axes not being measured shall be retained at mid travel during test of an axis;

c.Presentation of test results (paragraph 2): The results of the measurements must include:

1.Positioning accuracy (A); and

2.The mean reversal error (B).

6.

a.A positioning accuracy less (better) than 0.007 mm; and

b.A slide motion from rest for all slides within 20% of a motion command input for inputs of less than 0.5 micrometre;

Notes:

1.Minimum increment of motion test (slide motion from rest): The test is conducted only if the machine tool is equipped with a control unit the minimum increment of which is less (better) than 0.5 micrometre. Prepare the machine for testing in accordance with ISO 230/2 paragraphs 3.1, 3.2, 3.3.Conduct the test on each axis (slide) of the machine tool as follows:

a.Move the axis over at least 50% of the maximum travel in plus and minus directions twice at maximum feed rate, rapid traverse rate or jog control;

b.Wait at least 10 seconds;

c.With manual data input, input the minimum programmable increment of the control unit;

d.Measure the axis movement;

e.Clear the control unit with the servo null, reset or whatever clears any signal (voltage) in the servo loop;

f.Repeat steps b. to e. above five times, twice in the same direction of the axis travel and three times in the opposite direction of travel for a total of six test points;

g.If the axis movement is between 80% and 120% of the minimum programmable input for four of the six test points, the machine is controlled.

2.Sub-head c.1. of this entry does not specify cylindrical external, internal and external-internal grinding machines having all of the following characteristics:

a.Not centreless (shoe-type) grinding machines;

b.Limited to cylindrical grinding;

c.A maximum workpiece capacity of 150 mm outside diameter or length;

d.Only two axes which can be coordinated simultaneously for contouring control; and

e.No contouring c axis.

3.Sub-head c.1. of this entry does not specify machines designed specifically as jig grinders having both of the following characteristics:

a.Axes limited to x, y, c and a, where the c axis is used to maintain the grinding wheel normal to the work surface and the a axis is configured to grind barrel cams; and

b.A spindle run out not less (not better) than 0.0006 mm.

4.Sub-head c.1. of this entry does not specify tool or cutter grinding machines having all of the following characteristics:

a.Shipped as a complete system with software specially designed for the production of tools or cutters;

b.No more than two rotary axes which can be coordinated simultaneously for contouring control;

c.Run out (out-of-true running) in one revolution of the spindle not less (not better) than 0.0006 mm TIR; and

d.The positioning accuracies, with all compensations available, are not less (not better) than:

1.0.004 mm along any linear axis for overall positioning; or

2.0.001° on any rotary axis.

2.Electrical discharge machines (EDM) of the wire feed type which have five or more axes which can be coordinated simultaneously for contouring control;

3.Electrical discharge machines (EDM) of the non-wire type which have two or more rotary axes which can be coordinated simultaneously for contouring control;

4.Machine tools for removing metals, ceramics or composites:

a.By means of:

1.Water or other liquid jets, including those employing abrasive additives;

2.Electron beam; or

3.Laser beam; and

b.Having two or more rotary axes which:

1.Can be coordinated simultaneously for contouring control; and

2.Have a positioning accuracy of less (better) than 0.003°.

2B002 Non-numerically controlled machine tools for generating optical quality surfaces, as follows:

a.Turning machines using a single point cutting tool and having all of the following characteristics:

1.Slide positioning accuracy less (better) than 0.0005 mm per 300 mm of travel;

2.Bidirectional slide positioning repeatability less (better) than 0.00025 mm per 300 mm of travel;

3.Spindle run out and camming less (better) than 0.0004 mm TIR;

4.Angular deviation of the slide movement (yaw, pitch and roll) less (better) than 2 seconds of arc, TIR, over full travel; and

5.Slide perpendicularity less (better) than 0.001 mm per 300 mm of travel;

b.Fly cutting machines having both of the following characteristics:

1.Spindle run out and camming less (better) than 0.0004 mm TIR; and

2.Angular deviation of slide movement (yaw, pitch and roll) less (better) than 2 seconds of arc, TIR, over full travel.

2B003 Numerically controlled or manual machine tools specially designed for cutting, finishing, grinding or honing either of the following classes of bevel or parallel axis hardened (Rc = 40 or more) gears, and specially designed components, controls and accessories therefor:

a.Hardened bevel gears finished to a quality of better than ISO 1328 class 4; or

b.Hardened spur, helical and double-helical gears with a pitch diameter exceeding 1,250 mm and a face width of 15% of pitch diameter or larger finished to a quality of ISO 1328 class 3 or better.

2B004 Hot isostatic presses, as follows, and specially designed dies, moulds, components, accessories and controls therefor(24):

a.Having a controlled thermal environment within the closed cavity and possessing a chamber cavity with an inside diameter of 406 mm or more; and

b.Having:

1.A maximum working pressure exceeding 207 MPa;

2.A controlled thermal environment exceeding 1,773 K (1,500°C); or

3.A facility for hydrocarbon impregnation and removal of resultant gaseous degradation products.

2B005 Equipment specially designed for the deposition, processing and in-process control of inorganic overlays, coatings and surface modifications, as follows, for non-electronic substrates, by processes shown in the Table and associated Notes following head d. of entry 2E003, and specially designed automated handling, positioning, manipulation and control components therefor:

a.Stored programme controlled chemical vapour deposition (CVD) production equipment with both of the following:

1.Process modified for one of the following:

a.Pulsating CVD;

b.Controlled nucleation thermal decomposition (CNTD); or

c.Plasma enhanced or plasma assisted CVD; and

2.Either of the following:

a.Incorporating high vacuum (equal to or less than 0.01 Pa) rotating seals; or

b.Incorporating in situ coating thickness control;

b.Stored programme controlled ion implantation production equipment having beam currents of 5 mA or more;

c.Stored programme controlled electron beam physical vapour deposition (EBPVD) production equipment incorporating:

1.Power systems rated for over 80 kW;

2.A liquid pool level laser control system which regulates precisely the ingots feed rate; and

3.A computer controlled rate monitor operating on the principle of photoluminescence of the ionised atoms in the evaporant stream to control the deposition rate of a coating containing two or more elements;

d.Stored programme controlled plasma spraying production equipment having either of the following characteristics:

1.Operating at reduced pressure controlled atmosphere (equal to or less than 10 kPa measured above and within 300 mm of the gun nozzle exit) in a vacuum chamber capable of evacuation down to 0.01 Pa prior to the spraying process; or

2.Incorporating in situ coating thickness control;

e.Stored programme controlled sputter deposition production equipment capable of current densities of 0.1 mA/mm2 or higher at a deposition rate of 15 micrometre/hr or more;

f.Stored programme controlled cathodic arc deposition production equipment incorporating a grid of electromagnets for steering control of the arc spot on the cathode;

g.Stored programme controlled ion plating production equipment allowing for the in situ measurement of either:

1.Coating thickness on the substrate and rate control; or

2.Optical characteristics.

2B006 Dimensional inspection or measuring systems or equipment, as follows:

a.Computer controlled, numerically controlled or stored programme controlled dimensional inspection machines, having both of the following characteristics:

1.Two or more axes; and

2.A one dimensional length measurement uncertainty equal to or less (better) than (1.25 + L/1,000) micrometre tested with a probe with an accuracy of less (better) than 0.2 micrometre (L is the measured length in mm);

b.Linear and angular displacement measuring instruments, as follows:

1.Linear measuring instruments having any of the following characteristics:

a.Non-contact type measuring systems with a resolution equal to or less (better) than 0.2 micrometre within a measuring range up to 0.2 mm;

b.Linear voltage differential transformer systems with both of the following characteristics:

1.Linearity equal to or less (better) than 0.1% within a measuring range up to 5 mm; and

2.Drift equal to or less (better) than 0.1% per day at a standard ambient test room temperature ±1 K; or

c.Measuring systems having both of the following characteristics:

1.Containing a laser; and

2.Maintaining, for at least 12 hours, over a temperature range of ± 1 K around a standard temperature and at a standard pressure:

a.A resolution over their full scale of 0.1 micrometre or less (better); and

b.A measurement uncertainty equal to or less (better) than (0.2 +L/2,000) micrometre (L is the measured length in mm);

2.Angular measuring instruments having an angular position deviation equal to or less (better) than 0.00025°;

c.Systems for simultaneous linear-angular inspection of hemishells, having both of the following characteristics:

1.Measurement uncertainty along any linear axis equal to or less (better) than 3.5 micrometre per 5 mm; and

2.Angular position deviation equal to or less (better) than 0.02°;

d.Equipment for measuring surface irregularities, by measuring optical scatter as a function of angle, with a sensitivity of 0.5 nm or less (better).

Notes:

1.The probe used in determining the measurement uncertainty of a dimensional inspection system shall be as described in Verein Deutscher Ingenieure (VDI) / Verband Deutscher Elektrotechniker (VDE) 2617 Parts 2, 3 and 4.

2.All measurement values in this entry represent permissible positive and negative deviations from the target value, i.e., not total band.

3.Machine tools which can be used as measuring machines are specified if they meet or exceed the criteria specified for the machine tool function or the measuring machine function.

4.A machine described in this entry is specified if it exceeds the threshold anywhere within its operating range.

5.In this entry measurement uncertainty means the characteristic parameter which specifies in what range around the output value the correct value of the measurable variable lies with a confidence level of 95%. It includes the uncorrected systematic deviations, the uncorrected backlash and the random deviations (Reference: VDI/VDE 2617).

2B007 Robots, as follows, and specially designed controllers and end-effectors therefor(25):

a.Capable in real time of full three-dimensional image processing or full three-dimensional scene analysis to generate or modify programmes or to generate or modify numerical programme data;

b.Specially designed to comply with national safety standards applicable to explosive munitions environments; or

c.Specially designed or rated as radiation-hardened beyond that necessary to withstand normal industrial (i.e., non-nuclear industry) ionizing radiation.

2B008 Assemblies, units or inserts specially designed for machine tools, or for equipment specified in entries 2B006 or 2B007, as follows:

a.Spindle assemblies, consisting of spindles and bearings as a minimal assembly, with radial (run out) or axial (camming) axis motion in one revolution of the spindle less (better) than 0.0006 mm TIR;

b.Linear position feedback units (e.g., inductive type devices, graduated scales, infrared systems or laser systems) having an overall accuracy less (better) than (800 + (600 × L × 10−3)) nm (L equals the effective length in mm);

c.Rotary position feedback units, e.g., inductive type devices, graduated scales, infrared systems or laser systems, having an accuracy less (better) than 0.00025°;

d.Slide way assemblies consisting of a minimal assembly of ways, bed and slide having all of the following characteristics:

1.A yaw, pitch or roll of less (better) than 2 seconds of arc TIR over full travel;

2.A horizontal straightness of less (better) than 2 micrometre per 300 mm length; and

3.A vertical straightness of less (better) than 2 micrometre per 300 mm length;

e.Single point diamond cutting tool inserts, having all of the following characteristics:

1.Flawless and chip-free cutting edge when magnified 400 times in any direction;

2.Cutting radius from 0.1 to 5 mm inclusive; and

3.Cutting radius out-of-roundness less (better) than 0.002 mm TIR.

2B009 Specially designed printed circuit boards with mounted components and software therefor, or compound rotary tables or tilting spindles, capable of upgrading, according to the manufacturer’s specifications, numerical control units, machine tools or feed-back devices to or above the levels specified in entries 2B001 to 2B008.

2B104 Equipment and process controls designed or modified for densification and pyrolysis of structural composite rocket nozzles and reentry vehicle nose tips.

2B115 Flow-forming machines, and specially designed components therefor(26), which:

a.According to the manufacturer’s technical specification, can be equipped with numerical control units or a computer control, even when not equipped with such units; and

b.With more than two axes which can be coordinated simultaneously for contouring control.

2B116 Vibration test equipment and components therefor, the following:

a.Vibration test systems employing feedback or closed loop techniques and incorporating a digital controller, capable of vibrating a system at 10 g rms or more over the entire range 20 Hz to 2000 Hz and imparting forces of 50 kN (11,250 lbs), measured bare table, or greater;

b.Digital controllers, combined with specially designed vibration test software, with a real-time bandwidth greater than 5 kHz and designed for use with vibration test systems in head a. of this entry;

c.Vibration thrusters (shaker units), with or without associated amplifiers, capable of imparting a force of 50 kN (11,250 lbs), measured bare table, or greater and usable in vibration test systems in head a. of this entry;

d.Test piece support structures and electronic units designed to combine multiple shaker units in a system capable of providing an effective combined force of 50 kN, measured bare table, or greater, and usable in vibration systems in head a. of this entry.

In this entry, “bare table” means a flat table, or surface, with no fixtures or fittings.

2B204 Isostatic presses, other than those specified in entries 2B004 or 2B104, capable of achieving a maximum working pressure of 69 MPa or greater and having a chamber cavity with an inside diameter in excess of 152 mm and specially designed dies, moulds and controls therefor.

2B207 Robots and end-effectors, other than those specified in entry 2B007, specially designed to comply with national safety standards applicable to handling high explosives (for example, meeting electrical code ratings for high explosives) and specially designed controllers therefor.

2B215 Spin-forming and flow-forming machines, other than those specified in entry 2B115, and precision rotor-forming mandrels designed to form cylindrical rotors of inside diameter between 75 mm and 400 mm therefor, which:

a.According to the manufacturer’s technical specification, can be equipped with numerical control units or a computer control; and

b. With two or more axes that can be coordinated simultaneously for contouring control.

2B225 Remote manipulators that provide mechanical translation of human operator actions by electrical, hydraulic or mechanical means to an operating arm and terminal fixture that can be used to provide remote actions in radiochemical separation operations and hot cells, as follows:

a.Having a capability of penetrating 0.6 m or more of cell wall; or

b.Having a capability to bridge over the top of a cell wall with a thickness of 0.6 m or more.

2B226 Vacuum or controlled environment (inert gas) induction furnaces capable of operating above 1,123 K (850°C) and having induction coils 600 mm or less in diameter and specially designed power supplies therefor with an output rating of 5 kW or more(27).

2B227 Vacuum and controlled atmosphere metallurgical melting and casting furnaces as follows; and specially configured computer control and monitoring systems therefor:

a.Arc remelt and casting furnaces with consumable electrode capacities between 1000 cm3 and 20,000 cm3, capable of operating with melting temperatures above 1973 K (1700°C);

b.Electron beam melting and plasma atomization and melting furnaces, with a power of 50 kW or greater, capable of operating with melting temperatures above 1473 K (1200°C).

2B228 Rotor fabrication and assembly equipment and bellows-forming mandrels and dies, as follows:

a.Rotor assembly equipment for assembly of gas centrifuge rotor tube sections, baffles and end caps, including associated precision mandrels, clamps and shrink fit machines;

b.Rotor straightening equipment for alignment of gas centrifuge rotor tube sections to a common axis;

c.Bellows-forming mandrels and dies for producing single-convolution bellows (bellows made of high-strength aluminium alloys, maraging steel or high strength filamentary materials). The bellows have all of the following dimensions:

1.75 mm to 400 mm inside diameter;

2.12.7 mm or more in length; and

3.Single convolution depth more than 2 mm.

2B229 Centrifugal multiplane balancing machines, fixed or portable, horizontal or vertical, as follows:

a.Centrifugal balancing machines designed for balancing flexible rotors having a length of 600 mm or more and having all of the following characteristics:

1.A swing or journal diameter of 75 mm or more;

2.Mass capability of from 0.9 to 23 kg; and

3.Capable of balancing speed of revolution more than 5000 rpm;

b.Centrifugal balancing machines designed for balancing hollow cylindrical rotor components and having all of the following characteristics:

1.A journal diameter of 75 mm or more;

2.Mass capability of from 0.9 to 23 kg;

3.Capable of balancing to a residual imbalance of 0.01 kg mm/kg per plane or better; and

4.Belt drive type.

2B230 Instruments capable of measuring pressures up to 13 kPa to an accuracy of better than 1% (full-scale), with corrosion-resistant pressure-sensing elements constructed of nickel, nickel alloys, phosphor bronze, stainless steel, aluminium or aluminium alloys.

2B231 Vacuum pumps with an input throat size of 380 mm or greater with a pumping speed of 15,000 litres/s or greater and capable of producing an ultimate vacuum better than 13 mPa.

2B232 Multistage light gas gun or other high-velocity gun systems (coil, electromagnetic, electrothermal or other advanced systems) capable of accelerating projectiles to 2 km/s or greater.

2B350 Chemical manufacturing facilities and equipment, as follows:

a.Reaction vessels or reactors, with or without agitators, with total internal (geometric) volume greater than 0.1 m3 (100 litres) and less than 20 m3 (20,000 litres), where all surfaces that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coating or glass lining);

4.Nickel or alloys with more than 40% nickel by weight;

5.Tantalum or tantalum alloys;

6.Titanium or titanium alloys; or

7.Zirconium or zirconium alloys;

b.Agitators for use in reaction vessels or reactors where all surfaces of the agitator that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coating or glass lining);

4.Nickel or alloys with more than 40% nickel by weight;

5.Tantalum or tantalum alloys;

6.Titanium or titanium alloys; or

7.Zirconium or zirconium alloys;

c.Storage tanks, containers or receivers with a total internal (geometric) volume greater than 0.1 m3 (100 litres) where all surfaces that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coatings or glass lining);

4.Nickel or alloys with more than 40% nickel by weight;

5.Tantalum or tantalum alloys;

6.Titanium or titanium alloys; or

7.Zirconium or zirconium alloys;

d.Heat exchangers or condensers with a heat transfer surface area of less than 20 m2, where all surfaces that come in direct contact with the chemical(s) being processed are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coatings or glass lining);

4.Graphite;

5.Nickel or alloys with more than 40% nickel by weight;

6.Tantalum or tantalum alloys;

7.Titanium or titanium alloys; or

8.Zirconium or zirconium alloys;

e.Distillation or absorption columns of internal diameter greater than 0.1 m, where all surfaces that come in direct contact with the chemical(s) being processed are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coatings or glass lining);

4.Graphite;

5.Nickel or alloys with more than 40% nickel by weight;

6.Tantalum or tantalum alloys;

7.Titanium or titanium alloys; or

8.Zirconium or zirconium alloys;

f.Remotely operated filling equipment in which all surfaces that come in direct contact with the chemical(s) being processed are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight; or

2.Nickel or alloys with more than 40% nickel by weight;

g.Multiple seal valves incorporating a leak detection port, bellows-seal valves, non-return (check) valves or diaphragm valves, in which all surfaces that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coatings or glass lining);

4.Nickel or alloys with more than 40% nickel by weight;

5.Tantalum or tantalum alloys;

6.Titanium or titanium alloys; or

7.Zirconium or zirconium alloys;

h.Multi-walled piping incorporating a leak detection port, in which all surfaces that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Fluoropolymers;

3.Glass (including vitrified or enamelled coatings or glass lining);

4.Graphite;

5.Nickel or alloys with more than 40% nickel by weight;

6.Tantalum or tantalum alloys;

7.Titanium or titanium alloys; or

8.Zirconium or zirconium alloys;

i.Multiple-seal, canned drive, magnetic drive, bellows or diaphragm pumps, with manufacturer’s specified maximum flow-rate greater than 0.6 m3/hour, or vacuum pumps with manufacturer’s specified maximum flow-rate greater than 5 m3/hour (under standard temperature (273 K (0°C)) and pressure (101.3 kPa) conditions), in which all surfaces that come in direct contact with the chemical(s) being processed are made from any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Ceramics;

3.Ferrosilicon;

4.Fluoropolymers;

5.Glass (including vitrified or enamelled coatings or glass lining);

6.Graphite;

7.Nickel or alloys with more than 40% nickel by weight;

8.Tantalum or tantalum alloys;

9.Titanium or titanium alloys; or

10.Zirconium or zirconium alloys;

j.Incinerators designed to destroy chemicals specified in entry 1C350, having specially designed waste supply systems, special handling facilities and an average combustion chamber temperature greater than 1273 K (1000°C), in which all surfaces in the waste supply system that come into direct contact with the waste products are made from or lined with any of the following materials:

1.Alloys with more than 25% nickel and 20% chromium by weight;

2.Ceramics; or

3.Nickel or alloys with more than 40% nickel by weight.

2B351 Toxic gas monitoring systems, as follows, and dedicated detectors therefor:

a.Designed for continuous operation and usable for the detection of chemical warfare agents, chemicals specified in entry 1C350 or organic compounds containing phosphorus, sulphur, fluorine or chlorine, at concentrations of less than 0.3 mg/m3; or

b.Designed for the detection of cholinesterase-inhibiting activity.

2B352 Equipment capable of use in biological manufacturing, as follows;

a.Containment facilities at Containment Level (ACDP) 3 or 4, and related equipment, as follows:

1.Facilities that meet the criteria for Containment Level 3 or 4 as specified in guidance from the Advisory Committee on Dangerous Pathogens approved by the Health and Safety Commission (published by HMSO, Second Edition 1990);

2.Independently ventilated protective full or half suits;

3.Biological safety cabinets or isolators, which allow manual operations to be performed within, whilst providing an environment equivalent to Class III biological protection;

Note: In this sub-head, “isolators” include flexible isolators, dry boxes, anaerobic chambers and glove boxes.

b.Fermenters, bioreactors, chemostats and continuous-flow systems, capable of operation without the propagation of aerosols, having all the following characteristics:

1.Capacity of 300 litres or more;

2.Double or multiple sealing joints within the steam containment area; and

3.Capable of in-situ sterilisation in a closed state;

c.Centrifugal separators or decanters, capable of continuous separation without the propagation of aerosols, having all the following characteristics:

1.Flow rate exceeding 100 litres per hour;

2.Components of polished stainless steel or titanium;

3.Double or multiple sealing joints within the steam containment area; and

4.Capable of in-situ sterilisation in a closed state;

d.Cross-flow filtration equipment, designed for continuous separation without the propagation of aerosols, having both of the following characteristics:

1.Equal to or greater than 5 square metres; and

2.Capable of in-situ sterilization;

e.Steam sterilisable freeze drying equipment with a condenser capacity exceeding 50 kg of ice in 24 hours and less than 1,000 kg of ice in 24 hours;

f.Chambers designed for aerosol challenge testing with pathogenic microorganisms or toxins and having a capacity of 1 m3 or greater.

2C  Materials

2D  Software

2D001 Software specially designed or modified for the development, production or use of goods specified in entries 2A001 to 2A006 or 2B001 to 2B009.

2D002 Specific software, as follows:

a.Software to provide adaptive control and having both of the following characteristics:

1.For flexible manufacturing units (FMUs) which consist at least of equipment described in sub-heads b.1. and b.2. of the definition of flexible manufacturing unit; and

2.Capable of generating or modifying, in real time processing, programmes or data by using the signals obtained simultaneously by means of at least two detection techniques, such as:

a.Machine vision (optical ranging);

b.Infrared imaging;

c.Acoustical imaging (acoustical ranging);

d.Tactile measurement;

e.Inertial positioning;

f.Force measurement;

g.Torque measurement;

b.Software for electronic devices other than those described in heads a. or b. of entry 2B001, which provides the numerical control capability of the goods specified in entry 2B001.

2D101 Software specially designed for the use of goods specified in entries 2B104, 2B115 or 2B116(28).

2D201 Software specially designed for the use of goods specified in entries 2B204, 2B207, 2B215, 2B227 or 2B229.

Technology

2E—2E001 Technology required for the development of goods specified in sub-categories 2A, 2B or 2D.

2E002 Technology required for the production of goods specified in sub-categories 2A or 2B.

2E003 Other technology, as follows:

a.Technology:

1.For the development of interactive graphics as an integrated part in numerical control units for preparation or modification of part programmes;

2.For the development of generators of machine tool instructions (e.g., part programmes) from design data residing inside numerical control units;

3.For the development of integration software for incorporation of expert systems for advanced decision support of shop floor operations into numerical control units;

b.Technology for metal-working manufacturing processes, as follows:

1.Technology for the design of tools, dies or fixtures specially designed for the following processes:

a.Superplastic forming;

b.Diffusion bonding;

c.Direct-acting hydraulic pressing;

2.Technical data consisting of process methods or parameters as listed below used to control:

a.Superplastic forming of aluminium alloys, titanium alloys or superalloys:

1.Surface preparation;

2.Strain rate;

3.Temperature;

4.Pressure;

b.Diffusion bonding of superalloys or titanium alloys:

1.Surface preparation;

2.Temperature;

3.Pressure;

c.Direct-acting hydraulic pressing of aluminium alloys or titanium alloys:

1.Pressure;

2.Cycle time;

d.Hot isostatic densification of titanium alloys, aluminium alloys or superalloys:

1.Temperature;

2.Pressure;

3.Cycle time;

c.Technology for the development or production of hydraulic stretch-forming machines and dies therefor, for the manufacture of airframe structures;

d.Technology for:

Table—Deposition Techniques—Notes

1.  The term “coating process” includes coating repair and refurbishing as well as original coating.

2.  The term “alloyed aluminide coating” includes single or multiple-step coatings in which an element or elements are deposited prior to or during application of the aluminide coating, even if these elements are deposited by another coating process. It does not, however, include the multiple use of single-step pack cementation processes to achieve alloyed aluminides.

3.  The term “noble metal modified aluminide” coating includes multiple-step coatings in which the noble metal or noble metals are laid down by some other coating process prior to application of the aluminide coating.

4.  Mixtures consist of infiltrated material, graded compositions, co-deposits and multilayer deposits and are obtained by one or more of the coating processes specified in the Table.

5.  MCrA1X refers to a coating alloy where M equals cobalt, iron, nickel or combinations thereof and X equals hafnium, yttrium, silicon, tantalum in any amount or other intentional additions over 0.01 weight percent in various proportions and combinations;

a. CoCrAlY coatings which contain less than 22 weight percent of chromium, less than 7 weight percent of aluminium and less than 2 weight percent of yttrium;

b. CoCrAlY coatings which contain 22 to 24 weight percent of chromium, 10 to 12 weight percent of aluminium and 0.5 to 0.7 weight percent of yttrium; or

c. NiCrAlY coatings which contain 21 to 23 weight percent of chromium, 10 to 12 weight percent of aluminium and 0.9 to 1.1 weight percent of yttrium.

6.  The term “aluminium alloys” means alloys having an ultimate tensile strength of 190 MPa or more measured at 293 K (20°C).

7.  The term “corrosion resistant steel” means AISI (American Iron and Steel Institute) 300 series or equivalent national standard steels.

8.  Refractory metals consist of the following metals and their alloys: niobium (columbium), molybdenum, tungsten and tantalum.

9.  Sensor window materials, as follows: alumina, silicon, germanium, zinc sulphide, zinc selenide, gallium arsenide and the following metal halides: potassium iodide, potassium fluoride, or sensor window materials of more than 40 mm diameter for thallium bromide and thallium chlorobromide.

10.  Technology for single-step pack cementation of solid airfoils is not specified in Category 2.

11.  Polymers, as follows: polyimide, polyester, polysulphide, polycarbonates and polyurethanes.

12.  Modified zirconia refers to additions of other metal oxides, e.g., calcia, magnesia, yttria, hafnia, rare earth oxides, etc., to zirconia in order to stabilise certain crystallographic phases and phase compositions. Thermal barrier coatings made of zirconia, modified with calcia or magnesia by mixing or fusion, are not controlled.

13.  Titanium alloys refers to aerospace alloys having an ultimate tensile strength of 900 MPa or more measured at 293 K (20°C).

14.  Low-expansion glasses refers to glasses which have a coefficient of thermal expansion of 1 × 10−7 K−1 or less measured at 293 K (20°C).

15.  Dielectric layers are coatings constructed of multi-layers of insulator materials in which the interference properties of a design composed of materials of various refractive indices are used to reflect, transmit or absorb various wavelength bands. Dielectric layers refers to more than four dielectric layers or dielectric/metal composite layers.

16.  Cemented tungsten carbide does not include cutting and forming tool materials consisting of tungsten carbide/(cobalt, nickel), titanium carbide/(cobalt, nickel), chromium carbide/nickel-chromium and chromium carbide/nickel.

17.  Processes specified in Column 1 of the Table are defined as follows:

a. Chemical Vapour Deposition (CVD) is an overlay coating or surface modification coating process wherein a metal, alloy, composite, dielectric or ceramic is deposited upon a heated substrate. Gaseous reactants are decomposed or combined in the vicinity of a substrate resulting in the deposition of the desired elemental, alloy or compound material on the substrate. Energy for this decomposition or chemical reaction process may be provided by the heat of the substrate, a glow discharge plasma, or laser irradiation.

1.CVD includes the following processes: directed gas flow out-of-pack deposition, pulsating CVD, controlled nucleation thermal decomposition (CNTD), plasma enhanced or plasma assisted CVD processes.

2.Pack denotes a substrate immersed in a powder mixture.

3.The gaseous reactants used in the out-of-pack process are produced using the same basic reactions and parameters as the pack cementation process, except: that the substrate to be coated is not in contact with the powder mixture.

b. Thermal Evaporation-Physical Vapour Deposition (TE-PVD) is an overlay coating process conducted in a vacuum with a pressure less than 0.1 Pa wherein a source of thermal energy is used to vaporize the coating material. This process results in the condensation, or deposition, of the evaporated species onto appropriately positioned substrates.

c. Ion plating is a special modification of a general TE-PVD process in which a plasma or an ion source is used to ionize the species to be deposited, and a negative bias is applied to the substrate in order to facilitate the extraction of the species to be deposited from the plasma. The introduction of reactive species, evaporation of solids within the process chamber, and the use of monitors to provide in-process measurement of optical characteristics and thicknesses of coatings are ordinary modifications of the process.

d. Pack cementation is a surface modification coating or overlay coating process wherein a substrate is immersed in a powder mixture (a pack), that consists of:

1.The metallic powders that are to be deposited (usually aluminium, chromium, silicon or combinations thereof);

2.An activator (normally a halide salt); and

3.An inert powder, most frequently alumina.

e. Plasma spraying is an overlay coating process wherein a gun (spray torch) which produces and controls a plasma accepts powder or wire coating materials, melts them and propels them towards a substrate, whereon an integrally bonded coating is formed. Plasma spraying constitutes either low pressure plasma spraying or high velocity plasma spraying carried out underwater.

1.Low pressure means less than ambient atmospheric pressure.

2.High velocity refers to nozzle-exit gas velocity exceeding750 m/s calculated at 293 K (20°C) at 0.1 MPa.

f. Slurry deposition is a surface modification coating or overlay coating process wherein a metallic or ceramic powder with an organic binder is suspended in a liquid and is applied to a substrate by either spraying, dipping or painting, subsequent air or oven drying, and heat treatment to obtain the desired coating.

g. Sputter deposition is an overlay coating process based on a momentum transfer phenomenon, wherein positive ions are accelerated by an electric field towards the surface of a target (coating material). The kinetic energy of the impacting ions is sufficient to cause target surface atoms to be released and deposited on an appropriately positioned substrate.

1.The Table refers only to triode, magnetron or reactive sputter deposition which is used to increase adhesion of the coating and rate of deposition and to radio frequency (RF) augmented sputter deposition used to permit vaporization of non-metallic coating materials.

2.Low-energy ion beams (less than 5 keV) can be used to activatethe deposition.

h. Ion implantation is a surface modification coating process in which the element to be alloyed is ionized, accelerated through a potential gradient and implanted into the surface region of the substrate. This includes processes in which ion implantation is performed simultaneously with electron beam physical vapour deposition or sputter deposition.

2E101 Technology required for the use of equipment or software specified in entries 2B004, 2B104, 2B115, 2B116 or 2D101.

2E201 Technology required for the use of equipment or software specified in entries 2A225, 2A226, 2B001,2B006, head b. of entry 2B007, head c. of entry 2B007, or entries 2B008, 2B009, 2B204, 2B207, 2B215, 2B225 to 2B232 or 2D201.

2E301 Technology required for the use of goods specified in entries 2B350 to 2B352.

Category 3—Electronics
Equipment, Assemblies and Components

3A—3A Notes:

1.The control on export of equipment, devices and components described in entries 3A001 or 3A002, other than those described in sub-heads a.3. to a.10. or sub-head a.12. of entry 3A001, which are specially designed for, or which have the same functional characteristics as other equipment, is determined by the export control requirements applying to that other equipment.

2.The control on export of integrated circuits described in sub-heads a.3. to a.9. or sub-head a.12. of entry 3A001, which are unalterably programmed or designed for a specific function in a piece of equipment, is determined by the export control requirements applying to that other equipment.

1.When the export control requirements applying to the equipment cannot be determined, the integrated circuits are evaluated against the parameters in entry 3A001.

2.For silicon based microcomputer microcircuits or micro-controller microcircuits, having an operand (data) word length of 8 bits or less, the export control requirements thereof are determined only in sub-head a.3. of entry 3A001.

a. Electronic devices and components:

a.General purpose integrated circuits, as follows:

1.Wafers (finished or unfinished), in which the function has been determined, are evaluated against the parameters of this head.

2.Integrated circuits include the following types:

1.Integrated circuits, designed or rated as radiation hardened to withstand either of the following:

a.a total dose of 5 × 105 rads(Si), or higher; or

b.a dose rate upset of 5 × 108 rads(Si)/s or higher;

2.Microprocessor microcircuits, microcomputer microcircuits, microcontroller microcircuits, electrical erasable programmable read-only memories (EEPROMs), static random-access memories (SRAMs), storage integrated circuits manufactured from a compound semiconductor, analogue-to-digital converters, digital-to-analogue converters, electro-optical or optical integrated circuits for signal processing, field programmable gate arrays, field programmable logic arrays, neural network integrated circuits, custom integrated circuits for which either the function is unknown or the control status of the equipment in which the integrated circuit will be used is unknown, or Fast Fourier Transform (FFT) processors, as follows:

a.Rated for operation at an ambient temperature above 398 K (125°C);

b.Rated for operation at an ambient temperature below 218 K (-55°C); or

c.Rated for operation over the entire ambient temperature range from 218 K (-55°C) to 398 K (125°C);

3.Microprocessor microcircuits, microcomputer microcircuits and microcontroller microcircuits, having any of the following:Note: Sub-head a.3. of this entry includes digital signal processors, digital array processors and digital coprocessors.

a.An arithmetic logic unit with an access width of 32 bit or more and a composite theoretical performance (CTP) of 80 million theoretical operations per second (Mtops) or more;

b.Manufactured from a compound semiconductor and operating at a clock frequency exceeding 40 MHz; or

c.More than one data or instruction bus or serial communication port for external interconnection in a parallel processor with a transfer rate exceeding 2.5 Mbyte/s;

4.Electrically erasable programmable read-only memories (EEPROMs) static random-access memories (SRAMs) and storage integrated circuits manufactured from a compound semiconductor, as follows:

a.EEPROMs with a storage capacity:

1.Exceeding 16 Mbit per package for flash memory types; or

2.Exceeding either of the following limits for all other EEPROMtypes:

a.4 Mbit per package; or

b.1 Mbit per package and having a maximum access time of lessthan 80 ns;

b.SRAMs with a storage capacity:

1.Exceeding 4 Mbit per package; or

2.Exceeding 1 Mbit per package and having a maximum access time of less than 20 ns;

c.Storage integrated circuits manufactured from a compoundsemiconductor;

5.Analogue-to-digital and digital-to-analogue converter integrated circuits, as follows:

a.Analogue-to-digital converters having any of the following:

1.A resolution of 8 bit or more, but less than 12 bit, with a total conversion time to maximum resolution of less than 10 ns;

2.A resolution of 12 bit with a total conversion time to maximumresolution of less than 200 ns; or

3.A resolution of more than 12 bit with a total conversion time to maximum resolution of less than 2 microseconds;

b.Digital-to-analogue converters with a resolution of 12 bit or more, and a settling time of less than 10 ns;

6.Electro-optical or optical integrated circuits for signal processing having all of the following:

a.One or more internal laser diodes;

b.One or more internal light detecting elements; and

c.Optical waveguides;

7.Field programmable gate arrays having either of the following:

a.An equivalent usable gate count of more than 30,000 (2 input gates); or

b.A typical basic gate propagation delay time of less than 0.4 ns;

8.Field programmable logic arrays having either of the following:

a.An equivalent usable gate count of more than 30,000 (2 input gates); or

b.A toggle frequency exceeding 133 MHz;

9.Neural network integrated circuits;

10.Custom integrated circuits, for which either the function is unknown, or the control status of the equipment in which the integrated circuit will be used is unknown, having any of the following:

a.More than 144 terminals;

b.A typical basic gate propagation delay time of less than 0.4 ns; or

c.An operating frequency exceeding 3 GHz;

11.Digital integrated circuits based upon any compound semiconductor and having either of the following:

a.An equivalent gate count of more than 300 (2 input gates); or

b.A toggle frequency exceeding 1.2 GHz;

12.Fast Fourier Transform (FFT) processors having any of the following:

a.A rated execution time for a 1,024 point complex FFT of less than 1 ms;

b.A rated execution time for an N-point complex FFT of other than 1,024 points of less than N log2 N/10,240 ms, where N is the number of points; or

c.A butterfly throughput of more than 5.12 MHz;

b.Microwave or millimetre wave devices:

1.Electronic vacuum tubes and cathodes, as follows:

a.

Travelling wave tubes, pulsed or continuous wave, as follows:

1.

Operating at frequencies higher than 31 GHz;

2.

Having a cathode heater element with a turn on time to rated RF power of less than 3 seconds;

3.

Coupled cavity tubes, or derivatives thereof with an instantaneous bandwidth of more than 7% or a peak power exceeding 2.5 kW;

4.

Helix tubes, or derivatives thereof, with any of the following characteristics:

a.

An instantaneous bandwidth of more than one octave, and average power (expressed in kW) times frequency (expressed in GHz) of more than 0.5;

b.

An instantaneous bandwidth of one octave or less, and average power (expressed in kW) times frequency (expressed in GHz) of more than 1; or

c.

Space qualified;

b.

Crossed-field amplifier tubes with a gain of more than 17 dB;

c.

Impregnated cathodes for electronic tubes, with either of the following:

1.

Having a turn on time to rated emission of less than 3 seconds; or

2.

Producing a continuous emission current density at rated operating conditions exceeding 5 A/cm2;

2.Microwave integrated circuits or modules containing monolithic integrated circuits operating at frequencies exceeding 3 GHz;

3.Microwave transistors rated for operation at frequencies exceeding 31 GHz;

4.Microwave solid state amplifiers, as follows:

a.Operating at frequencies exceeding 10.5 GHz and having an instantaneous bandwidth of more than half an octave;

b.Operating at frequencies exceeding 31 GHz;

5.Electronically or magnetically tunable band-pass or band-stop filters having more than 5 tunable resonators capable of tuning across a 1.5:1 frequency band (fmax/fmin) in less than 10 microseconds with either:

a.A band-pass bandwidth of more than 0.5% of centre frequency; or

b.A band-stop bandwidth of less than 0.5% of centre frequency;

6.Microwave assemblies capable of operating at frequencies exceeding 31 GHz;

7.Mixers and converters designed to extend the frequency range of equipment described in heads c., e. or f. of entry 3A002 beyond the limits stated therein;

c.Acoustic wave devices, as follows, and specially designed components therefor:

1.Surface acoustic wave and surface skimming (shallow bulk) acoustic wave devices (i.e., signal processing devices employing elastic waves in materials), having any of the following:

a.A carrier frequency exceeding 2.5 GHz;

b.A carrier frequency of 2.5 GHz or less, and:

1.A frequency side-lobe rejection exceeding 55 dB;

2.A product of the maximum delay time and the bandwidth (time in microseconds and bandwidth in MHz) of more than 100; or

3.A dispersive delay of more than 10 microseconds; or

c.A carrier frequency exceeding 1 GHz and a bandwidth of 250 MHz or more;

2.Bulk (volume) acoustic wave devices (i.e., signal processing devices employing elastic waves) which permit direct processing of signals at frequencies exceeding 1 GHz;

3.Acoustic-optic signal processing devices employing interaction between acoustic waves (bulk wave or surface wave) and light waves which permit the direct processing of signals or images, including spectral analysis, correlation or convolution;

d.Electronic devices or circuits containing components, manufactured from superconductive materials specially designed for operation at temperatures below the critical temperature of at least one of the superconductive constituents, with any of the following:

1.Electromagnetic amplification:

a.At frequencies equal to or less than 31 GHz with a noise figure of less than 0.5 dB; or

b.At frequencies exceeding 31 GHz;

2.Current switching for digital circuits using superconductive gates with a product of delay time per gate (in seconds) and power dissipation per gate (in watts) of less than 10−14 J; or

3.Frequency selection at all frequencies using resonant circuits with Q-values exceeding 10,000;

e.High energy devices, as follows:

1.Batteries, as follows:

a.Primary cells and batteries having an energy density exceeding 480 Wh/kg and rated for operation in the temperature range from below 243 K (-30°C) to above 343 K (70°C);

b.Rechargeable cells and batteries having an energy density exceeding 150 Wh/kg after 75 charge/discharge cycles at a discharge current equal to C/5 hours (C being the nominal capacity in ampere hours) when operating in the temperature range from below 253 K (-20°C) to above 333 K (60°C);

c.Space qualified and radiation hardened photovoltaic arrays with a specific power exceeding 160 W/m2 at an operating temperature of 301 K (28°C) under a tungsten illumination of 1 kW/m2 at 2,800 K (2,527°C);

2.High energy storage capacitors, as follows(29):

a.Capacitors with a repetition rate of less than 10 Hz (single shot capacitors) having all of the following:

1.A voltage rating equal to or more than 5 kV;

2.An energy density equal to or more than 250 J/kg; and

3.A total energy equal to or more than 25 kJ;

b.Capacitors with a repetition rate of 10 Hz or more (repetition rated capacitors) having all of the following:

1.A voltage rating equal to or more than 5 kV;

2.An energy density equal to or more than 50 J/kg;

3.A total energy equal to or more than 100 J; and

4.A charge/discharge cycle life equal to or more than 10,000;

3.Superconductive electromagnets or solenoids specially designed to be fully charged or discharged in less than one second, having all of the following(30):

a.Energy delivered during the discharge exceeding 10 kJ in the first second;

b.Inner diameter of the current carrying windings of more than 250 mm; and

c.Rated for a magnetic induction of more than 8 T or overall current density in the winding of more than 300 A/mm2;

4.Circuits or systems for electromagnetic energy storage, containing components manufactured from superconductive materials specially designed for operation at temperatures below the critical temperature of at least one of their superconductive constituents, having all of the following:

a.Resonant operating frequencies exceeding 1 MHz;

b.A stored energy density of 1 MJ/m3 or more; and

c.A discharge time of less than 1 ms;

5.Flash discharge type X-ray systems, and tubes therefor, having all of the following(31):

a.A peak power exceeding 500 MW;

b.An output voltage exceeding 500 kV; and

c.A pulse width of less than 0.2 microsecond;

f.Rotary input type shaft absolute position encoders having either of the following:

1.A resolution of better than 1 part in 265,000 (18 bit resolution) of full scale; or

2.An accuracy better than ± 2.5 seconds of arc.

3A002 General purpose electronic equipment:

a.Recording equipment, as follows, and specially designed test tape therefor:

1.Analogue instrumentation magnetic tape recorders, including those permitting the recording of digital signals (e.g., using a high density digital recording (HDDR) module), having any of the following:

a.A bandwidth exceeding 4 MHz per electronic channel or track;

b.A bandwidth exceeding 2 MHz per electronic channel or track and having more than 42 tracks; or

c.A time displacement (base) error, measured in accordance with applicable Inter Range Instrumentation Group (IRIG) or Electronic Industries Association (EIA) documents, of less than ± 0.1 microsecond;

2.Digital video magnetic tape recorders having a maximum digital interface transfer rate exceeding 180 Mbit/s, except: those specially designed for television recording using a signal format standardized or recommended by the International Radio Consultative Committee (CCIR) or the International Technical Commission (IEC) for civil television applications;

3.Digital instrumentation magnetic tape data recorders employing helical scan techniques or fixed head techniques, having either of the following:

a.A maximum digital interface transfer rate exceeding 175 Mbit/s; or

b.Space qualified;

4.Equipment, with a maximum digital interface transfer rate exceeding 175 Mbit/s, designed to convert digital video magnetic tape recorders for use as digital instrumentation data recorders;

5.Waveform digitisers and transient recorders with both of the following(32):

a.Digitising rates equal to or more than 200 million samples per second and a resolution of 10 bits or more; and

b.A continuous throughput of 2 Gbits/s or more;

b.Frequency synthesiser electronic assemblies having a frequency switching time from one selected frequency to another of less than 1 ms;

c.Signal analysers, as follows:

1.Capable of analysing frequencies exceeding 31 GHz;

2.Dynamic signal analysers with a real-time bandwidth exceeding 25.6 kHz; except:

d.Frequency synthesised signal generators producing output frequencies, the accuracy and short term and long term stability of which are controlled, derived from or disciplined by the internal master frequency, and having any of the following:

1.A maximum synthesised frequency exceeding 31 GHz;

2.A frequency switching time from one selected frequency to another of less than 1 ms; or

3.A single sideband (SSB) phase noise better than -(126 + 20 log10F − 20 log10f) in dBc/Hz, where F is the off-set from the operating frequency in Hz and f is the operating frequency in MHz;

e.Network analysers with a maximum operating frequency exceeding 31 GHz;

f.Microwave test receivers with both of the following:

1.A maximum operating frequency exceeding 31 GHz; and

2.Capable of measuring amplitude and phase simultaneously;

g.Atomic frequency standards having either of the following characteristics:

1.Long term stability (aging) less (better) than 1 × 10−11/month; or

2.Space qualified;

h.Emulators for microcircuits specified in sub-heads a.3. or a.9. of entry 3A001.

3A101 Electronic devices and components, other than those specified in entry 3A001, as follows:

a.Analogue-to-digital converters, usable in missiles, designed to meet military specifications for ruggedized equipment;

b.Accelerators capable of delivering electromagnetic radiation produced by bremsstrahlung from accelerated electrons of 2 MeV or greater, and systems containing those accelerators.

3A201 Electronic devices and components, other than those specified in entry 3A001, as follows:

a.Capacitors with the following characteristics:

1.Voltage rating greater than 1.4 kV, energy storage greater than 10J, capacitance greater than 500 nF and series inductance less than 50 nH; or

2.Voltage rating greater than 750 V, capacitance greater than 250 nF and series inductance less than 10 nH;

b.Superconducting solenoidal electromagnets with all of the following characteristics:

1.Capable of creating magnetic fields of more than 2 Teslas (20 kilogauss);

2.With an L/D ratio (length divided by inner diameter) greater than 2;

3.With an inner diameter of more than 300 mm; and

4.With a magnetic field uniform to better than 1% over the central 50% of the inner volume.

Note: Head b. of this entry does not specify magnets specially designed for and exported as parts of medical nuclear magnetic resonance (NMR) imaging systems. In this entry, “as part of” does not necessarily mean physical part in the same shipment; separate shipments from different sources are allowed, provided the related export documents clearly specify that the shipments are dispatched “as part of” the same imaging systems.

c.Flash X-ray generators or pulsed electron accelerators with peak energy of 500 keV or greater, as follows;

3A202 Oscilloscopes and transient recorders other than those specified in sub-head a.5. of entry 3A002, as follows; and specially designed components therefor:

a.Non-modular analogue oscilloscopes having a bandwidth of 1 GHz or greater;

b.Modular analogue oscilloscope systems having either of the following characteristics:

1.A mainframe with a bandwidth of 1 GHz or greater; or

2.Plug-in modules with an individual bandwidth of 4 GHz or greater;

c.Analogue sampling oscilloscopes for the analysis of recurring phenomena with an effective bandwidth greater than 4 GHz;

d.Digital oscilloscopes and transient recorders, using analogue-to-digital conversion techniques, capable of storing transients by sequentially sampling single-shot inputs at successive intervals of less than 1 ns (greater than 1 giga-sample per second), digitizing to 8 bits or greater resolution and storing 256 or more samples.

1.Specially designed components specified in this entry are the following, for analogue oscilloscopes:

a.Plug-in units;

b.External amplifiers;

c.Pre-amplifiers;

d.Sampling devices;

e.Cathode ray tubes.

2.In this entry, the term “bandwidth” means the band of frequencies over which the deflection on the cathode ray tube does not fall below 70.7% of that at the maximum point measured with a constant input voltage to the oscilloscope amplifier.

3A225 Frequency changers (also known as converters or inverters) or generators, other than those specified in entry B10b.2.k. of Group 2 of Part III of this Schedule, having all of the following characteristics:

a.A multiphase output capable of providing a power of 40 W or more;

b.Capable of operating in the frequency range between 600 and 2000 Hz;

c.Total harmonic distortion below 10%; and

d.Frequency control better than 0.1%.

3A226 Direct current high-power supplies capable of continuously producing, over a time period of 8 hours, 100 V or greater with current output of 500 A or greater and with current or voltage regulation better than 0.1%.

3A227 High-voltage direct current power supplies capable of continuously producing, over a time period of 8 hours, 20,000 V or greater with current output of 1 A or greater and with current or voltage regulation better than 0.1%.

3A228 Switching devices, as follows:

a.Cold-cathode tubes (including gas krytron tubes and vacuum sprytron tubes), whether gas filled or not, operating similarly to a spark gap, containing three or more electrodes, and having all of the following characteristics:

1.Anode peak voltage rating of 2,500 V or more;

2.Anode peak current rating of 100 A or more; and

3.Anode delay time of 10 microsecond or less;

b.Triggered spark-gaps having an anode delay time of 15 microsecond or less and rated for a peak current of 500 A or more;

c.Modules or assemblies with a fast switching function having all of the following characteristics:

1.Anode peak voltage rating greater than 2,000 V;

2.Anode peak current rating of 500 A or more; and

3.Turn-on time of 1 microsecond or less.

3A229 Firing sets and equivalent high-current pulse generators (for controlled detonators), as follows(33):

a.Explosive detonator firing sets designed to drive multiple controlled detonators specified in entry 3A232;

b.Modular electrical pulse generators (pulsers) designed for portable, mobile or ruggedized use (including xenon flash-lamp drivers) having all the following characteristics:

1.Capable of delivering their energy in less than 15 microsecond;

2.Having an output greater than 100 A;

3.Having a rise time of less than 10 microsecond into loads of less than 40 ohms (rise time is the time interval from 10% to 90% current amplitude when driving a resistive load);

4.Enclosed in a dust-tight enclosure;

5.No dimension greater than 254 mm;

6.Weight less than 25 kg; and

7.Specified for use over an extended temperature range (223 K [-50°C] to 373 K [100°C]) or specified as suitable for aerospace use.

3A230 High-speed pulse generators with output voltages greater than 6 volts into a less than 55 ohm resistive load, and with pulse transition times less than 500 picoseconds.

In this entry, “pulse transition time” means the time interval between 10% and 90% voltage amplitude.

3A231 Neutron generator systems, including tubes, designed for operation without an external vacuum system and utilizing electrostatic acceleration to induce a tritium-deu-terium nuclear reaction.

3A232 Detonators and multipoint initiation systems, as follows(34):

a.Electrically driven explosive detonators, the following:

1.Exploding bridge (EB);

2.Exploding bridge wire (EBW);

3.Slapper;

4.Exploding foil initiators (EFI);

b.Arrangements using single or multiple detonators designed to nearly simultaneously initiate an explosive surface (over greater than 5000 mm2) from a single firing signal (with an initiation timing spread over the surface of less than 2.5 microseconds).

1.This entry does not specify detonators using only primary explosives, such as lead azide.

2.The detonators in this entry all utilise a small electrical conductor (bridge, bridge wire or foil) that explosively vaporizes when a fast, high-current electrical pulse is passed through it. In nonslapper types, the exploding conductor starts a chemical detonation in a contacting high-explosive material such as PETN (Pentaerythritoltetranitrate). In slapper detonators, the explosive vaporization of the electrical conductor drives a flyer or slapper across a gap and the impact of the slapper on an explosive starts a chemical detonation. The slapper in some designs is driven by a magnetic force. The term 'exploding foil' detonator may refer to either an EB or a slapper-type detonator.

3A233 Mass spectrometers, other than those specified in entry B20g. of Group 2 of Part III of this Schedule, capable of measuring ions of 230 atomic mass units or greater and having a resolution of better than 2 parts in 230, as follows; and ion sources therefor:

a.Inductively coupled plasma mass spectrometers (ICP/MS);

b.Glow discharge mass spectrometers (GDMS);

c.Thermal ionization mass spectrometers (TIMS);

d.Electron bombardment mass spectrometers which have a source chamber constructed from, lined with or plated with materials resistant to UF6;

e.Molecular beam mass spectrometers as follows:

1.Which have a source chamber constructed from, lined with or plated with stainless steel or molybdenum and have a cold trap capable of cooling to 193 K (-80°C) or less; or

2.Which have a source chamber constructed from, lined with or plated with materials resistant to UF6; or

f.Mass spectrometers equipped with a microfluorination ion source designed for use with actinides or actinide fluorides.

3A990 Apparatus or devices, other than those specified in entry PL5006 of Group 1 of Part III of this Schedule or entries 3A229 to 3A232 of this Group, designed for the handling, control, discharging, decoying, jamming, detonation, disruption or detection of explosive devices or improvised explosive devices;

3B  Test, Inspection and Production Equipment

3B Equipment for the manufacture or testing of semiconductor devices or materials, as follows, and specially designed components and accessories therefor:

3B001 Stored programme controlled equipment for epitaxial growth, as follows:

a.Capable of producing a layer thickness uniform to less than ± 2.5% across a distance of 75 mm or more;

b.Metal organic chemical vapour deposition (MOCVD) reactors specially designed for compound semiconductor crystal growth by the chemical reaction between materials specified in entries 3C003 or 3C004;

c.Molecular beam epitaxial growth equipment using gas sources.

3B002 Stored programme controlled equipment designed for ion implantation, having any of the following:

a.An accelerating voltage exceeding 200 keV;

b.Specially designed and optimized to operate at an accelerating voltage of less than 10 keV;

c.Direct write capability; or

d.Capable of high energy oxygen implant into a heated semiconductor material substrate.

3B003 Stored programme controlled anisotropic plasma dry etching equipment, as follows:

a.With cassette-to-cassette operation and load-locks, and having either of the following:

1.Magnetic confinement; or

2.Electron cyclotron resonance (ECR);

b.Specially designed for equipment specified in entry 3B005 and having either of the following:

1.Magnetic confinement; or

2.Electron cyclotron resonance (ECR).

3B004 Stored programme controlled plasma enhanced CVD equipment, as follows:

a.With cassette-to-cassette operation and load-locks, and having either of the following:

1.Magnetic confinement; or

2.Electron cyclotron resonance (ECR);

b.Specially designed for equipment specified in entry 3B005 and having either of the following:

1.Magnetic confinement; or

2.Electron cyclotron resonance (ECR).

3B005 Stored programme controlled automatic loading multi-chamber central wafer handling systems, having interfaces for wafer input and output, to which more than two pieces of semiconductor processing equipment are to be connected, to form an integrated system in a vacuum environment for sequential multiple wafer processing.

3B006 Stored programme controlled lithography equipment, as follows:

a.Align and expose step and repeat equipment for wafer processing using photo-optical or X-ray methods, having either of the following:

1.A light source wavelength shorter than 400 nm; or

2.Capable of producing a pattern with a minimum resolvable feature size of 0.7 micrometre or less when calculated by the following formula:

where:

  • “MRF” means the minimum resolvable feature size;

  • the “K factor” = 0.7; and

  • wavelength” means the exposure light source wavelength;

b.Equipment specially designed for mask making or semiconductor device processing using deflected focussed electron beam, ion beam or laser beam, with any of the following:

1.A spot size smaller than 0.2 micrometre;

2.Capable of producing a pattern with a feature size of less than 1 micrometre; or

3.An overlay accuracy of better than ± 0.20 micrometre (3 sigma).

3B007 Masks or reticles, as follows:

a.For integrated circuits specified in entry 3A001;

b.Multi-layer masks with a phase shift layer.

3B008 Stored programme controlled test equipment, specially designed for testing semiconductor devices and unencapsulated dice, as follows:

a.For testing S-parameters of transistor devices at frequencies exceeding 31 GHz;

b.For testing integrated circuits, and capable of performing functional (truth table) testing at a pattern rate of more than 40 MHz;

1.Electronic assemblies or a class of electronic assemblies for home or entertainment applications;

2.Electronic components, electronic assemblies or integrated circuits not specified in this Group.

c.For testing microwave integrated circuits at frequencies exceeding 3 GHz;

d.Electron beam systems designed for operation at or below 3 keV, or laser beam systems, for the non-contactive probing of powered-up semiconductor devices, with both of the following:

1.Stroboscopic capability with either beam-blanking or detector strobing; and

2.An electron spectrometer for voltage measurement with a resolution of less than 0.5 V.

3C  Materials

3C001 Hetero-epitaxial materials consisting of a substrate with stacked epitaxially grown multiple layers of:

a.Silicon;

b.Germanium; or

c.III/V compounds of gallium or indium.

3C002 Resist materials, as follows, and substrates coated with controlled resists:

a.Positive resists for semiconductor lithography specially adjusted (optimised) for use at wavelengths below 370 nm;

b.All resists, for use with electron beams or ion beams, with a sensitivity of 0.01 microcoulomb/mm2 or better;

c.All resists, for use with X-rays, with a sensitivity of 2.5 mJ/mm2 or better;

d.All resists optimized for surface imaging technologies, including silylated resists.

3C003 Organo-inorganic compounds as follows:

a.Organo-metallic compounds of aluminium, gallium or indium, having a purity (metal basis) better than 99.999%;

b.Organo-arsenic, organo-antimony and organo-phosphorus compounds having a purity (inorganic element basis) better than 99.999%.

3C004 Hydrides of phosphorus, arsenic or antimony, having a purity better than 99.999%, even diluted in inert gases or hydrogen.

3D  Software

3D001 Software specially designed for the development or production of goods specified in head b. of entry 3A001 to head h. of entry 3A002 or Sub-category 3B.

3D002 Software specially designed for the use of stored programme controlled equipment specified in sub-category 3B.

3D003 Computer-aided-design (CAD) software for semiconductor devices or integrated circuits, having any of the following:

a.Design rules or circuit verification rules;

b.Simulation of the physically laid out circuits; or

c.Lithographic processing simulators for design.

3D101 Software specially designed for the use of goods specified in head b. of entry 3A101.

3E  Technology

3E001 Technology required for the development or production of goods specified in sub-categories 3A, 3B or 3C;

a.Microwave transistors operating at frequencies below 31 GHz;

b.Integrated circuits specified in sub-heads a.3. to a.12. of entry 3A001, having both of the following characteristics:

1.Using technology of one micrometre or more; and

2.Not incorporating multi-layer structures.

3E002 Other technology for the development or production of:

a.Vacuum microelectronic devices;

b.Hetero-structure semiconductor devices such as high electron mobility transistors (HEMT), hetero-bipolar transistors (HBT), quantum well or super lattice devices;

c.Superconductive electronic devices;

d.Substrates of films of diamond for electronic components.

3E101 Technology required for the use of goods specified in sub-heads a.1. or a.2. of entry 3A001, entries 3A101 or 3D101.

3E102 Technology required for the development of software specified in entry 3D101.

3E201 Technology required for the use of goods specified in sub-head e.2. of entry 3A001, sub-head e.3. of entry 3A001, sub-head e.5. of entry 3A001, or entries 3A201, 3A202, 3A225 to 3A233.

3E990 Technology required for the use of goods specified in entry 3A990.

Category 4—Computers
Notes:

1. In order to determine the export control requirements on computers, related equipment or software performing telecommunications or local area network functions they must also be evaluated against Category 5 (Part 1 – Telecommunications).

1.Control units which directly interconnect the buses or channels of central processing units, main storage or disk controllers are not regarded as telecommunications equipment described in Category 5 (Part 1 – Telecommunications).

2.Software which provides routing or switching of datagram or fast select packets (i.e., packet by packet route selection) or of software specially designed for packet switching, is specified in Category 5 (Part 1 – Telecommunications).

2. Computers, related equipment or software performing cryptographic, cryptanalytic, certifiable multilevel security or certifiable user isolation functions, or which limit electromagnetic compatibility (EMC), must also be evaluated against the performance characteristics in Category 5 (Part 2—Information Security).

4A  Equipment, Assemblies and Components

4A001 Electronic computers and related equipment, as follows, and electronic assemblies and specially designed components therefor(35):

a.Specially designed to have either of the following characteristics:

1.Rated for operation at an ambient temperature below 228 K (-45°C) or above 358 K (85°C); or

2.Radiation hardened to exceed any of the following specifications:

a.Total Dose 5 × 105 Rads (Si);

b.Dose Rate Upset 5 × 108 Rads (Si)/sec; or

c.Single Event Upset 1 × 10−7 Error/bit/day;

b.Having characteristics or performing functions exceeding the limits in Category 5 (Part 2—Information Security).

4A002 Hybrid computers, as follows, and electronic assemblies and specially designed components therefor(36):

a.Containing digital computers specified in entry 4A003;

b.Containing analogue-to-digital converters having both of the following characteristics:

1.32 channels or more; and

2.A resolution of 14 bits (plus sign bit) or more with a conversion rate of 200,000 conversions/s or more.

4A003 Digital computers, electronic assemblies, and related equipment therefor, as follows, and specially designed components therefor:

a.Designed or modified for fault tolerance;

b.Digital computers having a composite theoretical performance (CTP) exceeding 260 million theoretical operations per second (Mtops);

c.Electronic assemblies specially designed or modified to be capable of enhancing performance by aggregation of computing elements so that the composite theoretical performance (CTP) of the aggregation exceeds the limit in head b. of this entry;

d.Graphics accelerators or graphics coprocessors exceeding a 3-D vector rate of 1,600,000;

e.Equipment performing analogue-to-digital conversions exceeding the limits in sub-head a.5. of entry 3A001;

f.Equipment containing terminal interface equipment exceeding the limits in sub-head b.3. of entry 5A001;

g.Equipment specially designed to provide for the external interconnection of digital computers or associated equipment which allows communications at data rates exceeding 80 Mbytes/s.

4A004 Computers, as follows, and specially designed related equipment, electronic assemblies and components therefor:

a.Systolic array computers;

b.Neural computers;

c.Optical computers.

4A101 Analogue computers, digital computers or digital differential analysers, other than those specified in sub-head a.1. of entry 4A001, which are ruggedized and designed or modified for use in systems specified in entries 9A004 or 9A104.

4A102 Hybrid Computers specially designed for modelling, simulation or design integration of systems specified in entries 9A004 or 9A104.

4B  Test, Inspection and Production Equipment

4C  Materials

4D  Software

4D001 Software specially designed or modified for the development, production or use of goods specified in entries 4A001 to 4A004, or sub-category 4D.

4D002 Software specially designed or modified to support technology specified in subcategory 4E.

4D003 Specific software, as follows:

a.Operating system software, software development tools and compilers specially designed for multi-data-stream processing equipment, in source code;

b.Expert systems or software for expert system inference engines providing both:

1.Time dependent rules; and

2.Primitives to handle the time characteristics of the rules and the facts;

c.Software having characteristics or performing functions exceeding the limits in Category 5 (Part 2-Information Security);

d.Operating systems specially designed for real time processing equipment which guarantees a global interrupt latency time of less than 20 microseconds.

4E  Technology

4E001 Technology required for the development, production or use of goods specified in sub-categories 4A or 4D.

4E002 a. Technology for the development or production of goods designed for multi-data-stream processing where the composite theoretical performance (CTP) exceeds 120 Mtops;

b.Technology required for the development or production of magnetic hard disk drives with a maximum bit transfer rate exceeding 47 Mbit/s.

Category 5 —Telecommunications and Information Security

Part 1 —Telecommunications

Notes:

1. Components, lasers, test and production equipment, materials and software therefor, which are specially designed for telecommunications equipment or systems are described in this Category.

2. Digital computers, related equipment or software, when essential for the operation and support of telecommunications equipment specified in or of a type described in this Category, are regarded as specially designed components, provided they are the standard models customarily supplied by the manufacturer. This includes operation, administration, maintenance, engineering or billing computer systems.

5A1  Equipment, Assemblies and Components

5A001 a. Any type of telecommunications equipment having any of the following characteristics, functions or features:

1.Specially designed to withstand transitory electronic effects or electromagnetic pulse arising from a nuclear explosion;

2.Specially hardened to withstand gamma, neutron or ion radiation;

3.Specially designed to operate outside the temperature range from 218 K (-55°C) to 397 K (124°C);

b.Telecommunication transmission equipment or systems, and specially designed components and accessories therefor, having any of the following characteristics, functions or features:

1.Employing digital techniques, including digital processing of analogue signals, and designed to operate at a digital transfer rate at the highest multiplex level exceeding 45 Mbit/s or a total digital transfer rate exceeding 90 Mbit/s;

2.Being stored programme controlled digital cross connect equipment with a digital transfer rate exceeding 8.5 Mbit/s per port;

3.Being equipment containing:

a.Modems using the bandwidth of one voice channel with a data signalling rate exceeding 28,800 bit/s;

b.Communication channel controllers with a digital output having a data signalling rate exceeding 2.1 Mbit/s per channel; or

c.Network access controllers and their related common medium having a digital transfer rate exceeding 156 Mbit/s;

4.Employing a laser and having any of the following characteristics:

a.A transmission wavelength exceeding 1,000 nm;

b.Employing analogue techniques and having a bandwidth exceeding 45 MHz;

c.Employing coherent optical transmission or coherent optical detection techniques (also called optical heterodyne or homodyne techniques);

d.Employing wavelength division multiplexing techniques; or

e.Performing optical amplification;

5.Being radio equipment operating at input or output frequencies exceeding:

a.31 GHz for satellite-earth station applications;

b.26.5 GHz for other applications;

6.Being radio equipment:

a.Employing quadrature-amplitude-modulation (QAM) techniques above level 4 if the total digital transfer rate exceeds 8.5 Mbit/s;

b.Employing quadrature-amplitude-modulation (QAM) techniques above level 16 if the total digital transfer rate is equal to or less than 8.5 Mbit/s; or

c.Employing other digital modulation techniques and having a spectral efficiency exceeding 3 bit/sec/Hz;

1.Sub-head b.6. of this entry does not specify equipment specially designed to be integrated and operated in any satellite system for civil use.

2.Sub-head b.6. of this entry does not specify radio relay equipment for operation in an International Telecommunications Union

a.

1.Not exceeding 960 MHz; or

2.With a total digital transfer rate not exceeding 8.5 Mbit/s; and

b.Having a spectral efficiency not exceeding 4 bit/sec/Hz.

7.Being radio equipment operating in the 1.5 to 87.5 MHz band and having either of the following characteristics:

a.

1.Automatically predicting and selecting frequencies and total digital transfer rates per channel to optimize the transmission; and

2.Incorporating a linear power amplifier configuration having a capability to support multiple signals simultaneously at an output power of 1 kW or more in the 1.5 to 30 MHz frequency range or 250 W or more in the 30 to 87.5 MHz frequency range, over an instantaneous bandwidth of one octave or more and with an output harmonic and distortion content of better than -80 dB; or

b.Incorporating adaptive techniques providing more than 15 dB suppression of an interfering signal;

8.Being radio equipment employing spread spectrum or frequency agility (frequency hopping) techniques having either of the following characteristics:

a.User programmable spreading codes; or

b.A total transmitted bandwidth which is 100 or more times the bandwidth of any one information channel and in excess of 50 kHz;

9.Being digitally controlled radio receivers having more than 1,000 channels, which:

a.Search or scan automatically a part of the electromagnetic spectrum;

b.Identify the received signals or the type of transmitter; and

c.Have a frequency switching time of less than 1 ms;

10.Providing functions of digital signal processing as follows:

a.Voice coding at rates of less than 2,400 bit/s;

b.Employing circuitry which incorporates user-accessible programmability of digital signal processing circuits exceeding the limits of head b. of entry 4A003;

11.Being underwater communications systems having any of the following characteristics:

a.An acoustic carrier frequency outside the range from 20 to 60 kHz;

b.Using an electromagnetic carrier frequency below 30 kHz; or

c.Using electronic beam steering techniques;

c.Stored programme controlled switching equipment and related signalling systems, having any of the following characteristics, functions or features, and specially designed components and accessories therefor;

1.Common channel signalling;

2.Containing Integrated Services Digital Network (ISDN) functions and having either of the following:

a.Switch-terminal (e.g., subscriber line) interfaces with a digital transfer rate at the highest multiplex level exceeding 192,000 bit/s, including the associated signalling channel (e.g., 2B+D); or

b.The capability that a signalling message received by a switch on a given channel that is related to a communication on another channel may be passed through to another switch;

1.The evaluation and appropriate actions taken by the receiving switch;

2.Unrelated user message traffic on a D channel of Integrated Services Digital Network (ISDN).

3.Multi-level priority and pre-emption for circuit switching;

4.Dynamic adaptive routing;

5.Routing or switching of datagram packets;

6.Routing or switching of fast select packets;

7.Designed for automatic hand-off of cellular radio calls to other cellular switches or for automatic connection to a centralized subscriber data base common to more than one switch;

8.Being packet switches, circuit switches and routers with ports or lines exceeding either:

a.A data signalling rate of 64,000 bit/s per channel for a communications channel controller; or

b.A digital transfer rate of 33 Mbit/s for a network access controller and related common medium;

9.Optical switching;

10.Employing Asynchronous Transfer Mode (ATM) techniques;

11.Containing stored programme controlled digital crossconnect equipment with a digital transfer rate exceeding 8.5 Mbit/s per port;

d.Centralized network control having both of the following characteristics:

1.Receives data from the nodes; and

2.Processes these data in order to provide control of traffic not requiring operator decisions, thereby performing dynamic adaptive routing;

e.Optical fibre communication cables, optical fibres and accessories, as follows:

1.Optical fibres or cables of more than 50 m in length having either of the following characteristics:

a.Designed for single mode operation; or

b.For optical fibres, capable of withstanding a Proof Test tensile stress of 2 × 109 N/m2 or more;

2.Optical fibre cables and accessories designed for underwater use(37);

f.Phased array antennae, operating above 10.5 GHz, containing active elements and distributed components, and designed to permit electronic control of beam shaping and pointing.

5A101 Telemetering and telecontrol equipment usable for missiles.

5A990 The export of goods specified in this entry is prohibited to any destination in Iran, Iraq or Libya.

5B1  Test, Inspection and Production Equipment

5B001 a. Equipment and specially designed components and accessories therefor, specially designed for:

1.Development of equipment, materials, functions or features specified in entries 5A001, 5B001, 5C001, 5D001 or 5E001, including measuring or test equipment;

2.Production of equipment, materials, functions or features specified in entries 5A001, 5B001, 5C001, 5D001 or 5E001, including measuring, test or repair equipment;

3.Use of equipment, materials, functions or features exceeding any of the least stringent export control requirements specified in entries 5A001, 5B001, 5C001, 5D001 or 5E001, including measuring, test or repair equipment;

b.Other equipment as follows:

1.Bit error rate (BER) test equipment designed or modified to test the equipment specified in sub-head b.1. of entry 5A001;

2.Data communication protocol analyzers, testers and simulators specially designed for functions specified in entry 5A001;

3.Stand alone stored programme controlled radio transmission media simulators/channel estimators specially designed for testing equipment specified in sub-head b.5. of entry 5A001.

5C1  Materials

5C001 Preforms of glass or of any other material optimized for the manufacture of optical fibres specified in head e. of entry 5A001.

5D1  Software(38)

5D001 a. Software specially designed or modified for the development, production or use of goods specified in entries 5A001, 5B001 or 5C001;

b.Software specially designed or modified to support technology specified in entry 5E001;

c.Specific software as follows:

1.Generic software, other than in machine-executable form, specially designed or modified for the use of stored programme controlled digital switching equipment or systems;

2.Software, other than in machine-executable form, specially designed or modified for the use of digital cellular radio equipment or systems;

3.Software specially designed or modified to provide characteristics, functions or features of equipment specified in entries 5A001 or 5B001;

4.Software which provides the capability of recovering source code of telecommunications software specified in this Category;

5.Software specially designed for the development or production of software specified in this entry.

5E1  Technology

5E001 a. Technology required for the development, production or use (excluding operation) of goods specified in entries 5A001, 5B001, 5C001 or 5D001;

b.Specific technologies, as follows:

1.Required technology for the development or production of telecommunications equipment specially designed to be used on board satellites;

2.Technology for the development or use of laser communication techniques with the capability of automatically acquiring and tracking signals and maintaining communications through exoatmosphere or sub-surface (water) media;

3.Technology for the processing and application of coatings to optical fibre specially designed to make it suitable for underwater use;

4.Technology for the development or production of equipment employing Synchronous Digital Hierarchy (SDH) or Synchronous Optical Network (SONET) techniques;

5.Technology for the development or production of switch fabric exceeding 64,000 bit/s per information channel other than for digital cross connect integrated in the switch;

6.Technology for the development or production of centralized network control;

7.Technology for the development or production of digital cellular radio systems;

8.Technology for the development or production of Integrated Services Digital Network (ISDN);

9.Technology for the development of QAM techniques, for radio equipment, above level 4.

5E101 Technology required for the development, production or use of goods specified in entry 5A101.

5E990 The export of goods specified in this entry is prohibited to any destination in Iran, Iraq or Libya.

Part 2 —Information Security

Note: Information security equipment, software, systems, application specific electronic assemblies, modules, integrated circuits, components or functions are specified in this Category even if they are components or electronic assemblies of other equipment.

5A2  Equipment, Assemblies and Components

5A002 Systems, equipment, application specific electronic assemblies, modules or integrated circuits for information security, as follows, and other specially designed components therefor:

a.Designed or modified to use cryptography employing digital techniques to ensure information security;

b.Designed or modified to perform cryptanalytic functions;

c.Designed or modified to use cryptography employing analogue techniques to ensure information security;

d.Designed or modified to suppress the compromising emanations of information-bearing signals;

e.Designed or modified to use cryptographic techniques to generate the spreading code for spread spectrum or the hopping code for frequency agility systems;

f.Designed or modified to provide certified or certifiable multilevel security or user isolation at a level exceeding Class B2 of the Trusted Computer System Evaluation Criteria (TCSEC);

g.Communications cable systems which are designed or modified to use mechanical, electrical or electronic means to detect surreptitious intrusion.

5B2  Test, Inspection and Production Equipment

5B002 a. Equipment specially designed for:

1.The development of equipment or functions specified in entries 5A002, 5B002, 5D002 or 5E002, including measuring or test equipment;

2.The production of equipment or functions specified in entries 5A002, 5B002, 5D002 or 5E002, including measuring, test, repair or production equipment;

b.Measuring equipment specially designed to evaluate and validate the information security functions specified in entries 5A002 or 5D002.

5C2  Materials

5D2  Software

5D002 a. Software specially designed or modified for the development, production or use of equipment or software specified in entries 5A002, 5B002 or 5D002;

b.Software specially designed or modified to support technology specified in entry 5E002;

c.Specific software as follows:

1.Software having the characteristics, or performing or simulating the functions of the equipment specified in entries 5A002 or 5B002;

2.Software to certify software specified in sub-head c.1. of this entry;

3.Software designed or modified to protect against malicious computer damage, e.g., viruses.

5E2  Technology

5E002 Technology required for the development, production or use of goods specified in entries 5A002, 5B002 or 5D002.

Category 6 — Sensors and Lasers

6A    Equipment, Assemblies and Components

Acoustics

6A001 a. Marine acoustic systems, equipment or specially designed components therefor, as follows:

1.Active (transmitting or transmitting-and-receiving) systems, equipment or specially designed components therefor, as follows:

a.Depth sounders operating vertically below the apparatus, not including a scanning function exceeding ± 10°, and limited to measuring the depth of water, the distance of submerged or buried objects or fish finding;

b.Acoustic beacons, as follows:

1.Acoustic emergency beacons; or

2.Pingers specially designed for relocating or returning to an underwater position.

a.Wide-swath bathymetric survey systems for sea bed topographic mapping:

1.Designed:

a.To take measurements at an angle exceeding 10° from the vertical; and

b.To measure depths exceeding 600 m below the water surface; and

2.Designed:

a.To incorporate multiple beams any of which is less than 2°; or

b.To provide data accuracies of better than 0.5% of water depth across the swath averaged over the individual measurements within the swath;

b.Object detection or location systems having any of the following:

1.A transmitting frequency below 10 kHz;

2.Sound pressure level exceeding 224 dB (reference 1 micropascal at 1 m) for equipment with an operating frequency in the band from 10 kHz to 24 kHz inclusive;

3.Sound pressure level exceeding 235 dB (reference 1 micropascal at 1m) for equipment with an operating frequency in the band between 24 kHz and 30 kHz;

4.Forming beams of less than 1° on any axis and having an operating frequency of less than 100 kHz;

5.Designed to withstand pressure during normal operation at depths exceeding 1,000 m and having transducers:

a.Dynamically compensated for pressure; or

b.Incorporating other than lead zirconate titanate as the transduction element; or

6.Designed to operate with an unambiguous display range exceeding 5,120 m;

c.Acoustic projectors, including transducers, incorporating piezoelectric, magnetostrictive, electrostrictive, electrodynamic or hydraulic elements operating individually or in a designed combination, having any of the following:

1.The control on export of acoustic projectors, including transducers, specially designed for other equipment is determined by the export control requirements applying to that equipment.

2.Sub-head a.1.c. of this entry does not specify electronic sources which direct the sound vertically only, or mechanical (e.g., air gun or vapour-shock gun) or chemical (e.g., explosive) sources.

1.An instantaneous radiated acoustic power density exceeding 0.01 mW/mm2/Hz for devices operating at frequencies below 10 kHz;

2.A continuously radiated acoustic power density exceeding 0.001 mW/mm2/Hz for devices operating at frequencies below 10 kHz;

3.Designed to withstand pressure during normal operation at depths exceeding 1,000 m; or

4.Side-lobe suppression exceeding 22 dB;

d.Acoustic systems, equipment or specially designed components for determining the position of surface vessels or underwater vehicles designed:

1.To operate at a range exceeding 1,000 m with a positioning accuracy of less than 10 m rms when measured at a range of 1,000 m; or

2.To withstand pressure at depths exceeding 1,000 m;

2.Passive (receiving, whether or not related in normal application to separate active equipment) systems, equipment or specially designed components therefor, as follows:

a.Hydrophones (transducers) with any of the following characteristics:

1.Incorporating continuous flexible sensors or assemblies of discrete sensor elements with either a diameter or length less than 20 mm and with a separation between elements of less than 20 mm;

2.Having any of the following sensing elements:

a.Optical fibres;

b.Piezoelectric polymers; or

c.Flexible piezoelectric ceramic materials;

3.Hydrophone sensitivity better than -180 dB at any depth with no acceleration compensation;

4.When designed to operate at depths not exceeding 35 m, hydrophone sensitivity better than -186 dB with acceleration compensation;

5.When designed for normal operation at depths exceeding 35 m, hydrophone sensitivity better than -192 dB with acceleration compensation;

6.When designed for normal operation at depths exceeding 100 m, hydrophone sensitivity better than -204 dB; or

7.Designed for operation at depths exceeding 1,000 m;

b.Towed acoustic hydrophone arrays with any of the following:

1.Hydrophone group spacing of less than 12.5 m;

2.Hydrophone group spacing of 12.5 m to less than 25 m and designed or able to be modified to operate at depths exceeding 35 m;

3.Hydrophone group spacing of 25 m or more and designed to operate at depths exceeding 100 m;

4.Heading sensors specified in sub-head a.2.d. of this entry;

5.Non-metallic strength members or longitudinally reinforced array hoses;

6.An assembled array of less than 40 mm in diameter;

7.Multiplexed hydrophone group signals; or

8.Hydrophone characteristics specified in sub-head a.2.a. of this entry;

c.Processing equipment, specially designed for towed acoustic hydrophone arrays, with either of the following:

1.A Fast Fourier or other transform of 1,024 or more complex points in less than 20 ms with no user-accessible programmability; or

2.Time or frequency domain processing and correlation, including spectral analysis, digital filtering and beamforming using Fast Fourier or other transforms or processes with user-accessible programmability;

d.Heading sensors having an accuracy of better than ± 0.5°; and

1.Designed to be incorporated within the array hosing and to operate at depths exceeding 35 m or having an adjustable or removable depth sensing device in order to operate at depths exceeding 35 m; or

2.Designed to be mounted external to the array hosing and having a sensor unit capable of operating with 360° roll at depths exceeding 35 m;

b.Terrestrial geophones capable of conversion for use in marine systems, equipment or specially designed components specified in sub-head a.2.a. of this entry;

c.Correlation-velocity sonar log equipment designed to measure the horizontal speed of the equipment carrier relative to the sea bed at distances between the carrier and the sea bed exceeding 500 m.

6A002 Optical sensors

a.

Optical detectors, as follows(39):

Note: Head a. of this entry does not specify germanium or silicon photodevices.

1.

Space-qualified solid state detectors having any of the following:

a.
1.

A peak response in the wavelength range exceeding 10 nm but not exceeding 300 nm; and

2.

A response of less than 0.1% relative to the peak response at a wavelength exceeding 400 nm;

b.
1.

A peak response in the wavelength range exceeding 900 nm but not exceeding 1,200 nm; and

2.

A response time constant of 95 ns or less; or

c.

A peak response in the wavelength range exceeding 1,200 nm but not exceeding 30,000 nm;

2.

Image intensifier tubes and specially designed components therefor, as follows:

a.

Image intensifier tubes having all of the following:

1.

A peak response in the wavelength range exceeding 400 nm but not exceeding 1,050 nm;

2.

A microchannel plate for electron image amplification with a hole pitch (centre-to-centre spacing) of less than 25 micrometres; and

3.
a.

An S-20, S-25 or multialkali photocathode; or

b.

A GaAs or GaInAs photocathode;

b.

Specially designed components, as follows:

1.

Fibre optic image inverters;

2.

Microchannel plates having both of the following characteristics:

a.

15,000 or more hollow tubes per plate; and

b.

Hole pitch (centre-to-centre spacing) of less than 25 micro-metres;

3.

GaAs or GaInAs photocathodes;

3.

Non-space-qualified focal plane arrays, having any of the following:

Notes:

1.

Linear or two-dimensional multi-element detector arrays are referred to as focal plane arrays.

2.

Sub-head a.3. of this entry includes photoconductive arrays and photovoltaic arrays.

3.

Sub-head a.3. of this entry does not specify silicon focal plane arrays, multi-element (not to exceed 16 elements) encapsulated photoconductive cells or pyroelectric detectors using any of the following:

a.

Lead sulphide;

b.

Triglycine sulphate and variants;

c.

Lead-lanthanum-zirconium titanate and variants;

d.

Lithium tantalate;

e.

Polyvinylidene fluoride and variants;

f.

Strontium barium niobate and variants; or

g.

Lead selenide.

a.
1.

Individual elements with a peak response within the wavelength range exceeding 900 nm but not exceeding 1,050 nm; and

2.

A response time constant of less than 0.5 ns;

b.
1.

Individual elements with a peak response in the wavelength range exceeding 1,050 nm but not exceeding 1,200 nm; and

2.

A response time constant of 95 ns or less; or

c.

Individual elements with a peak response in the wavelength range exceeding 1,200 nm but not exceeding 30,000 nm;

4.

Non-space-qualified single-element or non-focal-plane multi-element semi-conductor photodiodes or phototransistors having both of the following:

a.

A peak response in the wavelength range exceeding 1,200 nm but not exceeding 30,000 nm; and

b.

A response time constant of 0.5 ns or less;

b.

Multispectral imaging sensors designed for remote sensing applications, having either of the following characteristics:

1.

An Instantaneous-Field-Of-View (IFOV) of less than 200 microradians; or

2.

Specified for operation in the wavelength range exceeding 400 nm but not exceeding 30,000 nm; and

a.

Providing output imaging data in digital format; and

b.
1.

Space-qualified; or

2.

Designed for airborne operation, using other than silicon detectors, and having an IFOV of less than 2.5 milliradians;

c.

Direct view imaging equipment operating in the visible or infrared spectrum, incorporating either of the following:

1.

Image intensifier tubes having the characteristics listed in sub-head a.2.a. of this entry; or

2.

Focal plane arrays having the characteristics listed in sub-head a.3. of this entry;

Notes:

a.

In this entry “direct view” means imaging equipment, operating in the visible or infrared spectrum, that presents a visual image to a human observer without converting the image into an electronic signal for television display, and that cannot record or store the image photographically, electronically or by any other means.

b.

Head c. of this entry does not specify the following equipment incorporating other than GaAs or GaInAs photocathodes:

a.

Industrial or civilian intrusion alarm, traffic or industrial movement control or counting systems;

b.

Medical equipment;

c.

Industrial equipment used for inspection, sorting or analysis of the properties of materials;

d.

Flame detectors for industrial furnaces;

e.

Equipment specially designed for laboratory use.

d.

Special support components for optical sensors, as follows:

1.

Space-qualified cryocoolers;

2.

Non-space-qualified cryocoolers with a cooling source temperature below 218 K (-55°C), as follows:

a.

Closed cycle with a specified Mean-Time-To-Failure (MTTF), or Mean-Time-Between-Failures (MTBF), exceeding 2,500 hours;

b.

Joule-Thomson (JT) self-regulating minicoolers with bore (outside) diameters of less than 8 mm;

3.

Optical sensing fibres:

a.

Specially fabricated either compositionally or structurally, or modified by coating, to be acoustically, thermally, inertially, electromagnetically or nuclear radiation sensitive; or

b.

Modified structurally to have a beat length of less than 50 mm (high birefringence).

6A003 Cameras(40)

a.Instrumentation cameras, as follows:

1.High-speed cinema recording cameras using any film format from 8 mm to 16 mm inclusive, in which the film is continuously advanced throughout the recording period, and that are capable of recording at framing rates exceeding 13,150 frames per second;

2.Mechanical high speed cameras, in which the film does not move, capable of recording at rates exceeding 1,000,000 frames per second for the full framing height of 35 mm film, or at proportionately higher rates for lesser frame heights, or at proportionately lower rates for greater frame heights;

3.Mechanical or electronic streak cameras with writing speeds exceeding 10 mm per microsecond;

4.Electronic framing cameras having a speed exceeding 1,000,000 frames per second;

5.Electronic cameras having:

a.An electronic shutter speed (gating capability) of less than 1 microsecond per full frame; and

b.A read out time allowing a framing rate of more than 125 full frames per second;

b.Imaging cameras(41), as follows:

1.Video cameras incorporating solid state sensors, having any of the following:

a.More than 4 × 106 active pixels per solid state array for monochrome (black and white) cameras;

b.More than 4 × 106 active pixels per solid state array for colour cameras incorporating three solid state arrays; or

c.More than 12 × 106 active pixels for solid state array colour cameras incorporating one solid state array;

2.Scanning cameras and scanning camera systems:

a.Incorporating linear detector arrays with more than 8,192 elements per array; and

b.Having mechanical scanning in one direction;

3.Incorporating image intensifiers specified in sub-head a.2.a. of entry 6A002;

4.Incorporating focal plane arrays specified in sub-head a.3. of entry 6A002.

6A004 Optics

a.Optical mirrors (reflectors), as follows:

1.Deformable mirrors with either continuous or multi-element surfaces, and specially designed components therefor, capable of dynamically repositioning portions of the surface of the mirror at rates exceeding 100 Hz;

2.Lightweight monolithic mirrors with an average equivalent density of less than 30 kg/m2 and a total weight exceeding 10 kg;

3.Lightweight composite or foam mirror structures with an average equivalent density of less than 30 kg/m2 and a total weight exceeding 2 kg;

4.Beam steering mirrors more than 100 mm in diameter or length of major axis which maintain a flatness of lambda/2 or better (lambda is equal to 633 nm) with a control bandwidth exceeding 100 Hz;

b.Optical components made from zinc selenide (ZnSe) or zinc sulphide (ZnS) with transmission in the wavelength range exceeding 3,000 nm but not exceeding 25,000 nm and either of the following:

1.Exceeding 100 cm3 in volume; or

2.Exceeding 80 mm in diameter or length of major axis and 20 mm in thickness (depth);

c.Space-qualified components for optical systems, as follows:

1.Lightweighted to less than 20% equivalent density compared with a solid blank of the same aperture and thickness;

2.Substrates, substrates with surface coatings (single-layer or multi-layer, metallic or dielectric, conducting, semiconducting or insulating) or with protective films;

3.Segments or assemblies of mirrors designed to be assembled in space into an optical system with a collecting aperture equivalent to or larger than a single optic 1 metre in diameter;

4.Manufactured from composite materials having a coefficient of linear thermal expansion equal to or less than 5 × 10−6 in any coordinate direction;

d.Optical filters, as follows:

1.For wavelengths longer than 250 nm, comprised of multi-layer optical coatings and having either of the following:

a.Bandwidths equal to or less than 1 nm Full Width Half Intensity (FWHI) and peak transmission of 90% or more; or

b.Bandwidths equal to or less than 0.1 nm FWHI and peak transmission of 50% or more;

2.For wavelengths longer than 250 nm, having all of the following:

a.Tunable over a spectral range of 500 nm or more;

b.Instantaneous optical bandpass of 1.25 nm or less;

c.Wavelength resettable within 0.1 ms to an accuracy of 1 nm or better within the tunable spectral range; and

d.A single peak transmission of 91% or more;

3.Optical opacity switches (filters) with a field of view of 30° or wider and a response time equal to or less than 1 ns;

e.Optical control equipment, as follows:

1.Specially designed to maintain the surface figure or orientation of the space-qualified components specified in sub-heads c.1. or c.3. of this entry;

2.Having steering, tracking, stabilization or resonator alignment bandwidths equal to or more than 100 Hz and an accuracy of 10 microradians or less;

3.Gimbals having a maximum slew exceeding 5°, a bandwidth equal to or more than 100 Hz, and either of the following:

1.

Exceeding 0.15 m but not exceeding 1 m in diameter or major axis length;

2.

Capable of angular accelerations exceeding 2 radians/s2; and

3.

Having angular pointing errors equal to or less than 200 microradians; or

1.

Exceeding 1 m in diameter or major axis length;

2.

Capable of angular accelerations exceeding 0.5 radians/2; and

3.

Having angular pointing errors equal to or less than 200 microradians;

4.Specially designed to maintain the alignment of phased array or phased segment mirror systems consisting of mirrors with a segment diameter or major axis length of 1 m or more;

f.Fluoride fibre cable, or optical fibres therefor, having an attenuation of less than 4 dB/km in the wavelength range exceeding 1,000 nm but not exceeding 3,000 nm.

6A005 Lasers, components and optical equipment, as follows(42):

a.Gas lasers, as follows:

1.Excimer lasers having any of the following:

a.An output wavelength not exceeding 150 nm and:

1.An output energy exceeding 50 mJ per pulse; or

2.An average or CW output power exceeding 1 W;

b.An output wavelength exceeding 150 nm but not exceeding 190 nm and:

1.An output energy exceeding 1.5 J per pulse; or

2.An average or CW output power exceeding 120 W;

c.An output wavelength exceeding 190 nm but not exceeding 360 nm and:

1.An output energy exceeding 10 J per pulse; or

2.An average or CW output power exceeding 500 W; or

d.An output wavelength exceeding 360 nm and:

1.An output energy exceeding 1.5 J per pulse; or

2.An average or CW output power exceeding 30 W;

2.Metal vapour lasers, as follows:

a.Copper (Cu) lasers with an average or CW output power exceeding 20 W;

b.Gold (Au) lasers with an average or CW output power exceeding 5 W;

c.Sodium (Na) lasers with an output power exceeding 5 W;

d.Barium (Ba) lasers with an average or CW output power exceeding 2 W;

3.Carbon monoxide (CO) lasers having either:

a.An output energy exceeding 2 J per pulse and a pulsed peak power exceeding 5 kW; or

b.An average or CW output power exceeding 5 kW;

4.Carbon dioxide (CO2) lasers having any of the following:

a.A CW output power exceeding 10 kW;

b.A pulsed output with a pulse duration exceeding 10 microseconds and:

1.An average output power exceeding 10 kW; or

2.A pulsed peak power exceeding 100 kW; or

c.A pulsed output with a pulse duration equal to or less than 10 microseconds and:

1.A pulse energy exceeding 5 J per pulse and peak power exceeding 2.5 kW; or

2.An average output power exceeding 2.5 kW;

5.Chemical lasers, as follows:

a.Hydrogen Fluoride (HF) lasers;

b.Deuterium Fluoride (DF) lasers;

c.Transfer lasers:

1.Oxygen Iodine (O2-I) lasers;

2.Deuterium Fluoride-Carbon dioxide (DF-CO2) lasers;

6.Gas discharge and ion lasers, i.e., krypton ion or argon ion lasers, as follows:

a.An output energy exceeding 1.5 J per pulse and a pulsed peak power exceeding 50 W; or

b.An average or CW output power exceeding 50 W; or

7.Other gas lasers, except nitrogen lasers, having any of the following:

a.An output wavelength not exceeding 150 nm and:

1.An output energy exceeding 50 mJ per pulse and a pulsed peak power exceeding 1 W; or

2.An average or CW output power exceeding 1 W;

b.An output wavelength exceeding 150 nm but not exceeding 800 nm and:

1.An output energy exceeding 1.5 J per pulse and a pulsed peak power exceeding 30 W; or

2.An average or CW output power exceeding 30 W;

c.An output wavelength exceeding 800 nm but not exceeding 1,400 nm and:

1.An output energy exceeding 0.25 J per pulse and a pulsed peak power exceeding 10 W; or

2.An average or CW output power exceeding 10 W; or

d.An output wavelength exceeding 1,400 nm and an average or CW output power exceeding 1 W;

b.Semiconductor lasers, as follows:

1.Individual, single-transverse mode semiconductor lasers having:

a.An average output power exceeding 100 mW; or

b.A wavelength exceeding 1,050 nm;

2.Individual, multiple-transverse mode semiconductor lasers, or arrays of individual semiconductor lasers, having:

a.An output energy exceeding 500 microjoules per pulse and a pulsed peak power exceeding 10 W;

b.An average or CW output power exceeding 10 W; or

c.A wavelength exceeding 1,050 nm;

c.Solid state lasers, as follows:

1.Tunable lasers having any of the following:

a.An output wavelength less than 600 nm and:

1.An output energy exceeding 50 mJ per pulse and a pulsed peak power exceeding 1 W; or

2.An average or CW output power exceeding 1 W;

b.An output wavelength of 600 nm or more but not exceeding 1,400 nm and:

1.An output energy exceeding 1 J per pulse and a pulsed peak power exceeding 20 W; or

2.An average or CW output power exceeding 20 W; or

c.An output wavelength exceeding 1,400 nm and:

1.An output energy exceeding 50 mJ per pulse and a pulsed peak power exceeding 1 W; or

2.An average or CW output power exceeding 1 W;

2.Non-tunable lasers, as follows:

a.Ruby lasers having an output energy exceeding 20 J per pulse;

b.Neodymium glass lasers, as follows:

1.Q-switched lasers having:

a.An output energy exceeding 20 J but not exceeding 50 J per pulse and an average output power exceeding 10 W; or

b.An output energy exceeding 50 J per pulse;

2.Non-Q-switched lasers having:

a.An output energy exceeding 50 J but not exceeding 100 J per pulse and an average output power exceeding 20 W; or

b.An output energy exceeding 100 J per pulse;

c.Neodymium-doped (other than glass) lasers(43), as follows, with an output wavelength exceeding 1,000 nm but not exceeding 1,100 nm:

1.Pulse excited, mode-locked, Q-switched lasers with a pulse duration of less than 1 ns and:

a.A peak power exceeding 5 GW;

b.An average output power exceeding 10 W; or

c.A pulsed energy exceeding 0.1 J;

2.Pulse-excited, Q-switched lasers, with a pulse duration equal to or more than 1 ns, and:

a.A single-transverse mode output with:

1.A peak power exceeding 100 MW;

2.An average output power exceeding 20 W; or

3.A pulsed energy exceeding 2 J; or

b.A multiple-transverse mode output with:

1.A peak power exceeding 200 MW;

2.An average output power exceeding 50 W; or

3.A pulsed energy exceeding 2 J;

3.Pulse-excited, non-Q-switched lasers, having:

a.A single-transverse mode output with:

1.A peak power exceeding 500 kW; or

2.An average output power exceeding 150 W; or

b.A multiple-transverse mode output with:

1.A peak power exceeding 1 MW; or

2.An average power exceeding 500 W;

4.Continuously excited lasers having:

a.A single-transverse mode output with:

1.A peak power exceeding 500 kW; or

2.An average or CW output power exceeding 150 W; or

b.A multiple-transverse mode output with:

1.A peak power exceeding 1 MW; or

2.An average or CW output power exceeding 500 W;

d.Other non-tunable lasers, having any of the following:

1.A wavelength less than 150 nm and:

a.An output energy exceeding 50 mJ per pulse and a pulsed peak power exceeding 1 W; or

b.An average or CW output power exceeding 1 W;

2.A wavelength of 150 nm or more but not exceeding 800 nm and:

a.An output energy exceeding 1.5 J per pulse and a pulsed peak power exceeding 30 W; or

b.An average or CW output power exceeding 30 W;

3.A wavelength exceeding 800 nm but not exceeding 1,400 nm, as follows:

a.Q-switched lasers with:

1.An output energy exceeding 0.5 J per pulse and a pulsed peak power exceeding 50 W; or

2.An average output power exceeding:

a.10 W for single-mode lasers;

b.30 W for multimode lasers;

b.Non-Q-switched lasers with:

1.An output energy exceeding 2 J per pulse and a pulsed peak power exceeding 50 W; or

2.An average or CW output power exceeding 50 W; or

4.A wavelength exceeding 1,400 nm and:

a.An output energy exceeding 100 mJ per pulse and a pulsed peak power exceeding 1 W; or

b.An average or CW output power exceeding 1 W;

d.Dye and other liquid lasers, having any of the following:

1.A wavelength less than 150 nm and:

a.An output energy exceeding 50 mJ per pulse and a pulsed peak power exceeding 1 W; or

b.An average or CW output power exceeding 1 W;

2.A wavelength of 150 nm or more but not exceeding 800 nm and:

a.An output energy exceeding 1.5 J per pulse and a pulsed peak power exceeding 20 W;

b.An average or CW output power exceeding 20 W; or

c.A pulsed single longitudinal mode oscillator with an average output power exceeding 1 W and a repetition rate exceeding 1 kHz if the pulse duration is less than 100 ns;

3.A wavelength exceeding 800 nm but not exceeding 1,400 nm and:

a.An output energy exceeding 0.5 J per pulse and a pulsed peak power exceeding 10 W; or

b.An average or CW output power exceeding 10 W; or

4.A wavelength exceeding 1,400 nm and:

a.An output energy exceeding 100 mJ per pulse and a pulsed peak power exceeding 1 W; or

b.An average or CW output power exceeding 1 W;

e.Free electron lasers;

f.Components, as follows:

1.Mirrors cooled either by active cooling or by heat pipe cooling, 1 mm or less below the reflective surface;

2.Optical mirrors or transmissive or partially transmissive optical or electro-optical components specially designed for use with specified lasers;

g.Optical equipment(44), as follows:

1.Dynamic wavefront (phase) measuring equipment capable of mapping at least 50 positions on a beam wavefront with:

a.Frame rates equal to or more than 100 Hz and phase discrimination of at least 5% of the beam’s wavelength; or

b.Frame rates equal to or more than 1,000 Hz and phase discrimination of at least 20% of the beam’s wavelength;

2.Laser diagnostic equipment capable of measuring Super-High Power Laser (SHPL) system angular beam steering errors of equal to or less than 10 microradians;

3.Optical equipment, assemblies or components specially designed for a phased-array SHPL system for coherent beam combination to an accuracy of Lambda/10 at the designed wavelength, or 0.1 micrometre, whichever is the smaller;

4.Projection telescopes specially designed for use with SHPL systems.

6A006 Magnetometers, magnetic gradiometers, intrinsic magnetic gradiometers and compensation systems, and specially designed components therefor, as follows:

a.Magnetometers using superconductive, optically pumped or nuclear precession (proton/Overhauser) technology having a noise level (sensitivity) lower (better) than 0.05 nT rms per square root Hz;

b.Induction coil magnetometers having a noise level (sensitivity) lower (better) than:

1.0.05 nT rms per square root Hz at frequencies of less than 1 Hz;

2.1 × 10−3 nT rms per square root Hz at frequencies of 1 Hz or more but not exceeding 10 Hz; or

3.1 × 10−4 nT rms per square root Hz at frequencies exceeding 10 Hz;

c.Fibre optic magnetometers having a noise level (sensitivity) lower (better) than 1 nT rms per square root Hz;

d.Magnetic gradiometers using multiple magnetometers specified in heads a., b. or c. of this entry;

e.Fibre optic intrinsic magnetic gradiometers having a magnetic gradient field noise level (sensitivity) lower (better) than 0.3 nT/m rms per square root Hz;

f.Intrinsic magnetic gradiometers, using technology other than fibre-optic technology, having a magnetic gradient field noise level (sensitivity) lower (better) than 0.015 nT/m rms per square root Hz;

g.Magnetic compensation systems for magnetic sensors designed for operation on mobile platforms;

h.Superconductive electromagnetic sensors, containing components manufactured from superconductive materials, as follows:

1.Designed for operation at temperatures below the critical temperature of at least one of their superconductive constituents (including Josephson effect devices or superconductive quantum interference devices (SQUIDS));

2.Designed for sensing electromagnetic field variations at frequencies of 1 kHz or less; and

3.Having any of the following characteristics:

a.Incorporating thin-film SQUIDS with a minimum feature size of less than 2 micrometres and with associated input and output coupling circuits;

b.Designed to operate with a magnetic field slew rate exceeding 1 × 106 magnetic flux quanta per second;

c.Designed to function without magnetic shielding in the earth’s ambient magnetic field; or

d.Having a temperature coefficient less (smaller) than 0.1 magnetic flux quantum/K.

6A007 Gravity meters (gravimeters) and gravity gradiometers, as follows(45):

a.Gravity meters for ground use having a static accuracy of less (better) than 10 microgal;

b.Gravity meters for mobile platforms for ground, marine, submersible, space or airborne use having:

1.A static accuracy of less (better) than 0.7 milligal; and

2.An in-service (operational) accuracy of less (better) than 0.7 milligal with a time-to-steady-state registration of less than 2 minutes under any combination of attendant corrective compensations and motional influences;

c.Gravity gradiometers.

6A008 Radar systems, equipment and assemblies having any of the following characteristics, and specially designed components therefor(46):

a.Operating at frequencies from 40 GHz to 230 GHz and having an average output power exceeding 100 mW;

b.Having a tunable bandwidth exceeding ± 6.25% of the centre operating frequency;

c.Capable of operating simultaneously on more than two carrier frequencies;

d.Capable of operating in synthetic aperture (SAR), inverse synthetic aperture (ISAR) or sidelooking airborne (SLAR) radar mode;

e.Incorporating electronically steerable phased array antennae;

f.Capable of heightfinding non-cooperative targets;

g.Designed specially for airborne (balloon or airframe mounted) operation and having Doppler signal processing for the detection of moving targets;

h.Employing processing of radar signals using:

1.Radar spread spectrum techniques; or

2.Radar frequency agility techniques;

i.Providing ground-based operation with a maximum instrumented range exceeding 185 km;

j.Laser radar or Light Detection and Ranging (LIDAR) equipment, having either of the following:

1.Space-qualified; or

2.Employing coherent heterodyne or homodyne detection techniques and having an angular resolution of less (better) than 20 microradians;

k.Having signal processing sub-systems using pulse compression with:

1.A pulse compression ratio exceeding 150; or

2.A pulse width of less than 200 ns; or

l.Having data processing sub-systems with:

1.Automatic target tracking providing, at any antenna rotation, the predicted target position beyond the time of the next antenna beam passage;

2.Calculation of target velocity from primary radar having non-periodic (variable) scanning rates;

3.Processing for automatic pattern recognition (feature extraction) and comparison with target characteristic data bases (waveforms or imagery) to identify or classify targets; or

4.Superposition and correlation, or fusion, of target data from two or more geographically dispersed and interconnected radar sensors to enhance and discriminate targets.

6A102 Radiation hardened detectors, other than those specified in entry 6A002, for use in protecting against nuclear effects (e.g. electromagnetic pulse (EMP), X-rays, combined blast and thermal effects), and usable for missiles, designed or rated to withstand radiation levels which meet or exceed a total irradiation dose of 5 × 105 rads (Si).

In this entry, “a detector” means a mechanical, electrical, optical or chemical device that automatically identifies and records, or registers a stimulus such as an environmental change in pressure or temperature, an electrical or electromagnetic signal or radiation from a radioactive material.

6A107 Specially designed components for gravity meters and gravity gradiometers specified in heads b. and c. of entry 6A007.

6A108 Radar systems and tracking systems, other than those specified in entry 6A008, as follows:

a.Radar and laser radar systems designed or modified for use in systems specified in entries 9A004 or 9A104;

b.Precision tracking systems, usable for missiles, as follows:

1.Tracking systems which use a code translator in conjunction with either surface or airborne references or navigation satellite systems to provide real-time measurements of in-flight position and velocity;

2.Range instrumentation radars including associated optical/infrared trackers with all of the following capabilities:

a.angular resolution better than 3 milliradians (0.5 mils);

b.range of 30 km or greater with a range resolution better than 10 m rms;

c.velocity resolution better than 3 m/s.

6A202 Photomultiplier tubes with a photocathode area of greater than 20 cm2 having an anode pulse rise time of less than 1 ns.

6A203 Cameras and components, other than those specified in entry 6A003, as follows:

a.Mechanical rotating mirror cameras and specially designed components therefor, as follows:

1.Mechanical framing cameras with recording rates greater than 225,000 frames per second;

2.Streak cameras with writing speeds greater than 0.5 mm per microsecond;

Note: Components of such cameras include specially designed synchronizing electronics and specially designed rotor assemblies (consisting of turbines, mirrors and bearings).

b.Electronic streak and framing cameras and tubes, as follows:

1.Electronic streak cameras capable of 50 ns or less time resolution and streak tubes therefor;

2.Electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time;

3.Framing tubes and solid-state imaging devices for use with cameras specified in sub-head b.2. of this entry, as follows:

a.Proximity focused image intensifier tubes having the photocathode deposited on a transparent conductive coating to decrease photocathode sheet resistance;

b.Gate silicon intensifier target (SIT) videcon tubes, where a fast system allows gating the photoelectrons from the photocathode before they impinge on the SIT plate;

c.Kerr or pockel cell electro-optical shuttering; or

d.Other framing tubes and solid-state imaging devices having a fast-image gating time of less than 50 ns specially designed for cameras specified in sub-head b.2. of this entry;

c.Radiation-hardened TV cameras specially designed or rated as radiation hardened to withstand greater than 5 × 104 grays (Si)(5 × 106 rad (Si)) without operational degradation and specially designed lenses used therein.

6A205 Lasers, other than those specified in entry 6A005, as follows:

a.Argon ion lasers with greater than 40 W average output power operating at wavelengths between 400 nm and 515 nm;

b.Tunable pulsed single-mode dye oscillators capable of an average power output of greater than 1 W, a repetition rate greater than 1 kHz, a pulse less than 100 ns, and a wavelength between 300 nm and 800 nm;

c.Tunable pulsed dye laser amplifiers and oscillators, with an average power output of greater than 30W, a repetition rate greater than 1 kHz, a pulse width less than 100 ns, and a wavelength between 300 nm and 800 nm;

d.Pulsed carbon dioxide lasers with a repetition rate greater than 250 Hz, an average power output of greater than 500 W, and a pulse of less than 200 ns operating at wavelengths between 9,000 nm and 11,000 nm;

e.Para-hydrogen Raman shifters designed to operate at 16 micrometres output wavelength and at a repetition rate greater than 250 Hz.

6A225 Velocity interferometers for measuring velocities in excess of 1 km/s during time intervals of less than 10 microsecond (VISARs, Doppler laser interferometers (DLIs), etc.).

6A226 Pressure sensors, as follows:

a.Manganin gauges for pressures greater than 100 kilobars; or

b.Quartz pressure transducers for pressures greater than 100 kilobars.

Test, Inspection and Production Equipment

6B004 a. Equipment for measuring absolute reflectance to an accuracy of ± 0.1% of the reflectance value;

b.Equipment other than optical surface scattering measurement equipment, having an unobscured aperture of more than 10 cm, specially designed for the non-contact optical measurement of a non-planar optical surface figure (profile) to an accuracy of 2 nm or less (better) against the required profile.

6B005 Specially designed or modified equipment, including tools, dies, fixtures or gauges, as follows, and other specially designed components and accessories therefor:

a.For the manufacture or inspection of:

1.Free electron laser magnet wigglers;

2.Free electron laser photo injectors;

b.For the adjustment, to required tolerances, of the longitudinal magnetic field of free electron lasers.

6B007 Equipment to produce, align and calibrate land-based gravity meters with a static accuracy of better than 0.1 milligal.

6B008 Pulse radar cross-section measurement systems having transmit pulse widths of 100 ns or less and specially designed components therefor.

6B108 Systems specially designed for radar cross section measurement usable for missiles and their subsystems.

Materials

6C002 Optical Sensors:

a.Elemental tellurium (Te) of purity levels equal to or more than 99.9995%;

b.Single crystals of cadmium telluride (CdTe), cadmium zinc telluride (CdZnTe) or mercury cadmium telluride (HgCdTe) of any purity level, including epitaxial wafers thereof;

c.Optical fibre preforms specially designed for the manufacture of high birefringence fibres specified in sub-head d.3. of entry 6A002.

6C004 Optics:

a.Zinc selenide (ZnSe) and zinc sulphide (ZnS) substrate blanks produced by the chemical vapour deposition process:

1.Larger than 100 cm3 in volume; or

2.Larger than 80 mm in diameter with a thickness equal to or more than 20 mm;

b.Boules of the following electro-optic materials:

1.Potassium titanyl arsenate (KTA);

2.Silver gallium selenide (AgGaSe2); or

3.Thallium arsenic selenide (Tl3AsSe3, also known as TAS);

c.Non-linear optical materials having:

1.Third order susceptibility (chi 3) equal to or less than 1 W/m2; and

2.A response time of less than 1 ms;

d.Substrate blanks of silicon carbide or beryllium beryllium (Be/Be) deposited materials exceeding 300 mm in diameter or major axis length;

e.Low optical absorption materials, as follows:

1.Bulk fluoride compounds containing ingredients with a purity of 99.999% or better;

2.Bulk fluoride glass made from compounds specified in sub-head e.1. of this entry;

f.Glass, including fused silica, phosphate glass, fluorophosphate glass, zirconium fluoride (ZrF4) and hafnium fluoride (HfF4) with:

1.A hydroxyl ion (OH—) concentration of less than 5 ppm;

2.Integrated metallic purity levels of less than 1 ppm; and

3.High homogeneity (index of refraction variance) less than 5 × 10−6;

g.Synthetically produced diamond material with an absorption of less than 10−5 cm−1 for wavelengths exceeding 200 nm but not exceeding 14,000 nm;

h.Optical fibre preforms made from bulk fluoride compounds containing ingredients with a purity of 99.999% or better, specially designed for the manufacture of fluoride fibres specified in head f. of entry 6A004.

6C005 Synthetic crystalline laser host material in unfinished form, as follows:

a.Titanium doped sapphire;

b.Alexandrite.

Software

6D001 Software specially designed for the development or production of goods specified in entries 6A004, 6A005, 6A008 or 6B008.

6D002 Software specially designed for the use of goods specified in head b. of entry 6A002, or entries 6A008 or 6B008.

6D003 Other software, as follows:

a.1.Software specially designed for acoustic beam forming for the real time processing of acoustic data for passive reception using towed hydrophone arrays;

2.Source code for the real time processing of acoustic data for passive reception using towed hydrophone arrays;

b.1.Software specially designed for magnetic compensation systems for magnetic sensors designed to operate on mobile platforms;

2.Software specially designed for magnetic anomaly detection on mobile platforms;

c.Software specially designed to correct motional influences of gravity meters or gravity gradiometers;

d.1.Air Traffic Control software application programmes hosted on general purpose computers located at Air Traffic Control centres and capable of any of the following:

a.Processing and displaying more than 150 simultaneous system tracks;

b.Accepting radar target data from more than four primary radars; or

c.Automatically handing over primary radar target data (if not correlated with secondary surveillance radar (SSR) data) from the host ATC centre to another ATC centre;

2.Software for the design or production of radomes which:

a.Are specially designed to protect the electronically steerable phased array antennae specified in head e. of entry 6A008; and

b.Limit the average side-lobe level increase by less than 13 dB for frequencies equal to or higher than 2 GHz.

6D102 Software specially designed for the use of goods specified in entry 6A108.

6D103 Software which processes post-flight, recorded data, obtained from the systems specified in head b. of entry 6A108, enabling determination of vehicle position throughout its flight path.

Technology

6E001 Technology required for the development of goods specified in sub-categories 6A, 6B, 6C or 6D.

6E002 Technology required for the production of goods specified in sub-categories 6A, 6B or 6C.

6E003 Other technology, as follows:

a.1.Optical surface coating and treatment technology required to achieve uniformity of 99.5% or better for optical coatings 500 mm or more in diameter or major axis length and with a total loss (absorption and scatter) of less than 5 × 10−3

2.Optical fabrication technologies, as follows:

a.For serially producing optical components at a rate exceeding 10 m2 of surface area per year on any single spindle and with:

1.An area exceeding 1 m2; and

2.A surface figure exceeding lambda/10 rms at the designed wave-length;

b.Single point diamond turning techniques producing surface finish accuracies of better than 10 nm rms on non-planar surfaces exceeding 0.5m2(47);

b.1.Technology for optical filters with a bandwidth equal to or less than 10 nm, a field of view (FOV) exceeding 40° and a resolution exceeding 0.75 line pairs per milliradian;

2.Technology required for the development, production or use of specially designed diagnostic instruments or targets in test facilities for Super High Power Lasers (SHPL) testing or testing or evaluation of materials irradiated by SHPL beams;

c.Technology required for the development or production of fluxgate magnetometers or fluxgate magnetometer systems having a noise level:

1.Less than 0.05 nT rms per square root Hz at frequencies of less than 1 Hz; or

2.1 × 10−3 nT rms per square root Hz at frequencies of 1 Hz or more.

6El01 Technology required for the use of goods specified in entry 6A002, heads b. and c. of entry 6A007, entries 6A008, 6A102, 6A107, 6A108, 6B108, 6D102 or 6D103.

6E201 Technology required for the use of goods specified in entry 6A003, sub-head a.1.c. of entry 6A005, sub-head a.2.a. of entry 6A005, sub-head c.1.b. of entry 6A005, sub-head c.2.c.2. of entry 6A005, sub-head c.2.d.2.b. of entry 6A005, entries 6A202, 6A203, 6A205, 6A225, or 6A226.

Category 7 — Navigation and Avionics

Equipment, Assemblies and Components

7A—7A001 Accelerometers designed for use in inertial navigation or guidance systems and having any of the following characteristics, and specially designed components therefor(48):

a.A bias stability of less (better) than 130 micro g with respect to a fixed calibration value over a period of one year;

b.A scale factor stability of less (better) than 130 ppm with respect to a fixed calibration value over a period of one year;

c.Specified to function at linear acceleration levels exceeding 100 g.

7A002 Gyros having any of the following characteristics, and specially designed components therefor(49):

a.A drift rate stability, when measured in a 1 g environment over a period of three months and with respect to a fixed calibration value, of:

1.Less (better) than 0.1° per hour when specified to function at linear acceleration levels below 10 g; or

2.Less (better) than 0.5° per hour when specified to function at linear acceleration levels from 10 g to 100 g inclusive;

b.Specified to function at linear acceleration levels above 100 g.

7A003 Inertial navigation systems (gimballed and strapdown) and inertial equipment for attitude, guidance or control having any of the following characteristics, and specially designed components therefor(50):

a.For aircraft:

1.Navigation error (free inertial) of 0.8 nautical mile per hour (50% Circular Error Probable (CEP)) or less (better) subsequent to normal alignment;

2.Not certified for use on civil aircraft by civil aviation authorities; or

3.Specified to function at linear acceleration levels exceeding 10 g;

b.For land or spacecraft:

1.Navigation error (free inertial) of 0.8 nautical mile per hour (50% CEP) or less (better) subsequent to normal alignment; or

2.Specified to function at linear acceleration levels exceeding 10 g.

7A004 Gyro-astro compasses, and other devices which derive position or orientation by means of automatically tracking celestial bodies or satellites, with an azimuth accuracy of equal to or less (better) than 5 seconds of arc(51).

7A005 Global Positioning Satellite (GPS) receiving equipment having either of the following characteristics, and specially designed components therefor(52):

a.Employing encryption/decryption; or

b.A null-steerable antenna.

7A006 Airborne altimeters(53) operating at frequencies other than 4.2 to 4.4 GHz inclusive, having either of the following characteristics(54):

a.Power management; or

b.Using phase shift key modulation.

7A101 Accelerometers, other than those specified in entry 7A001, with a threshold of 0.05 g or less, or a linearity error within 0.25% of full scale output, or both, which are designed for use in inertial navigation systems or in guidance systems of all types and specially designed components therefor.

7A102 All types of gyros, other than those specified in entry 7A002, usable in missiles, with a rated drift rate stability of less than 0.5° (1 sigma or rms) per hour in a 1 g environment and specially designed components therefor.

7A103 Instrumentation, navigation and direction finding equipment and systems, other than those specified in entry 7A003, as follows; and specially designed components therefor:

a.Inertial or other equipment using accelerometers or gyros specified in entries 7A001, 7A002, 7A101 or 7A102 and systems incorporating such equipment;

b.Integrated flight instrument systems, which include gyrostabilisers or automatic pilots, designed or modified for use in systems specified in entries 9A004 or 9A104.

7A104 Gyro-astro compasses and other devices, other than those specified in entry 7A004, which derive position or orientation by means of automatically tracking celestial bodies or satellites and specially designed components therefor.

7A105 Global Positioning Systems (GPS) or similar satellite receivers, other than those specified in entry 7A005, capable of providing navigation information under the following operational conditions and designed or modified for use in systems specified in entry 9A004 or 9A104;

a.At speeds in excess of 515 m/s; and

b.At altitudes in excess of 18 km.

7A106 Altimeters, other than those specified in entry 7A006, of radar or laser radar type, designed or modified for use in systems specified in entry 9A004 or 9A104.

7A115 Passive sensors for determining bearing to specific electromagnetic source (direction finding equipment) or terrain characteristics, designed or modified for use in systems specified in entry 9A004 or 9A104.

7A116 Flight Control systems, as follows; designed or modified for systems specified in entry 9A004 or 9A104:

a.Hydraulic, mechanical, electro-optical, electro-mechanical or fly by wire types;

b.Attitude control equipment.

7A117 Guidance sets, usable in missiles, capable of achieving system accuracy of 3.33% or less of the range (e.g., a CEP of 10 km or less at a range of 300 km).

7B  Test, Inspection and Production Equipment

7B001 Test, calibration or alignment equipment specially designed for equipment specified in sub-category 7A except: equipment for Maintenance Level I or Maintenance Level II.

7B002 Equipment, as follows(55), specially designed to characterize mirrors for ring laser gyros:

a.Scatterometers having a measurement accuracy of 10 ppm or less (better);

b.Profilometers having a measurement accuracy of 0.5 nm (5 angstrom) or less (better).

7B003 Equipment specially designed for the production of equipment specified in sub-category 7A, including:

a.Gyro tuning test stations;

b.Gyro dynamic balance stations;

c.Gyro run-in/motor test stations;

d.Gyro evacuation and fill stations;

e.Centrifuge Fixture for Gyro bearing;

f.Accelerometer axis align stations.

7B102 Reflectometers specially designed to characterise mirrors, for laser gyros, having a measurement accuracy of 50 ppm or less (better).

7B103 Specially designed production facilities for equipment specified in entry 7A117.

7C  Materials

7D  Software

7D001 Software specially designed or modified for the development or production of goods specified in sub-categories 7A or 7B.

7D002 Source code for the use of any inertial navigation equipment or Attitude Heading Reference Systems (AHRS) (except: gimballed AHRS) including inertial equipment not specified in entries 7A003 or 7A004.

7D003 Other software, as follows:

a.Software specially designed or modified to improve the operational performance or reduce the navigational error of systems to the levels specified in entries 7A003 or 7A004;

b.Source code for hybrid integrated systems which improves the operational performance or reduces the navigational error of systems to the level specified in entry 7A003 by continuously combining inertial data with any of the following navigation data:

1.Doppler radar velocity;

2.Global Positioning Satellite (GPS) references; or

3.Terrain data base;

c.Source code for integrated avionics or mission systems which combine sensor data and employ knowledge-based expert systems;

d.Source code for the development of:

1.Digital flight management systems for flight path optimization;

2.Integrated propulsion and flight control systems;

3.Fly-by-wire or fly-by-light control systems;

4.Fault-tolerant or self-reconfiguring active flight control systems;

5.Airborne automatic direction finding equipment;

6.Air data systems based on surface static data;

7.Raster-type head-up displays or three dimensional displays.

7D101 Software specially designed for the use of goods specified in entries 7A001 to 7A006, 7A101 to 7A106, 7A115, 7B002, 7B003, 7B102 or 7B103.

7D102 Integration software for the goods specified in entries 7A003 or 7A103.

7D103 Software specially designed for modelling or simulation of the guidance sets specified in entry 7A117 or for their design integration with the systems specified in entries 9A004 or 9A104.

7E  Technology

7E001 Technology required for the development of goods or software specified in sub-categories 7A, 7B or 7D.

7E002 Technology required for the production of goods specified in sub-categories 7A or 7B.

7E003 Technology required for the repair, refurbishing or overhaul of goods specified in entries 7A001 to 7A004;

for maintenance technology directly associated with calibration, removal or replacement of damaged or unserviceable LRUs and SRAs of a civil aircraft as described in Maintenance Level I or Maintenance Level II(56).

7E004 Other technology, as follows:

a.Technology for the development or production of:

1.Airborne automatic direction finding equipment operating at frequencies exceeding 5 MHz;

2.Air data systems based on surface static data only, i.e., which dispense with conventional air data probes;

3.Raster-type head-up displays or three dimensional displays for aircraft;

4.Inertial navigation systems or gyro-astro compasses containing accelerometers or gyros specified in entries 7A001 or 7A002;

b.Development technology, as follows, for active flight control systems (including fly-by-wire or fly-by-light):

1.Configuration design for interconnecting multiple microelectronic processing elements (on-board computers) to achieve real time processing for control law implementation;

2.Control law compensation for sensor location or dynamic airframe loads, i.e., compensation for sensor vibration environment or for variation of sensor location from the centre of gravity;

3.Electronic management of data redundancy or systems redundancy for fault detection, fault tolerance, fault isolation or reconfiguration;

4.Flight controls which permit inflight reconfiguration of force and moment controls for real time autonomous air vehicle control;

5.Integration of digital flight control, navigation and propulsion control data into a digital flight management system for flight path optimization;

development technology for aircraft flight instrument systems integrated solely for VOR, DME, ILS or MLS navigation or approaches;

6.Full authority digital flight control or multi sensor mission management systems incorporating knowledge-based expert systems (57);

c.Technology for the development of helicopter systems, as follows:

1.Multi-axis fly-by-wire or fly-by-light controllers which combine the functions of at least two of the following into one controlling element:

a.Collective controls;

b.Cyclic controls;

c.Yaw controls;

2.Circulation-controlled anti-torque or circulation-controlled directional control systems;

3.Rotor blades incorporating variable geometry airfoils for use in systems using individual blade control.

7E101 Technology required for the use of goods specified in entries 7A001 to 7A006, 7A101 to 7A106, 7A115 to 7A117, 7B002, 7B003, 7B102, 7B103 or 7D101 to 7D103.

7E102 Technology for protection of avionics and electrical subsystems against electromagnetic pulse (EMP) and electromagnetic interference (EMI) hazards, from external sources, as follows:

a.Design technology for shielding systems;

b.Design technology for the configuration of hardened electrical circuits and sub-systems;

c.Design technology for the determination of hardening criteria for heads a. or b. of this entry.

7E104 Technology for the integration of the flight control, guidance, and propulsion data into a flight management system for optimization of rocket system trajectory.

Category 8 — Marine

Equipment, Assemblies and Components

8A—8A001 Submersible vehicles(58) or surface vessels, as follows:

a.Manned, tethered submersible vehicles designed to operate at depths exceeding 1,000 m;

b.Manned, untethered submersible vehicles:

1.Designed to operate autonomously and having a lifting capacity of:

a.10% or more of their weight in air; and

b.15 kN or more;

2.Designed to operate at depths exceeding 1,000 m; or

3.a.Designed to carry a crew of 4 or more;

b.Designed to operate autonomously for 10 hours or more;

c.Having a range of 25 nautical miles or more; and

d.Having a length of 21 m or less;

c.Unmanned, tethered submersible vehicles designed to operate at depths exceeding 1,000 m:

1.Designed for self-propelled manoeuvre using propulsion motors or thrusters specified in sub-head a.2. of entry 8A002; or

2.Having a fibre optic data link;

d.Unmanned, untethered submersible vehicles:

1.Designed for deciding a course relative to any geographical reference without real-time human assistance;

2.Having an acoustic data or command link; or

3.Having a fibre optic data or command link exceeding 1,000 m;

e.Ocean salvage systems with a lifting capacity exceeding 5 MN for salvaging objects from depths exceeding 250 m and having either of the following:

1.Dynamic positioning systems capable of position keeping within 20 m of a given point provided by the navigation system; or

2.Seafloor navigation and navigation integration systems for depths exceeding 1,000 m with positioning accuracies to within 10 m of a predetermined point;

f.Surface-effect vehicles (fully skirted variety) with a maximum design speed, fully loaded, exceeding 30 knots in a significant wave height of 1.25 m (Sea State 3) or more, a cushion pressure exceeding 3,830 Pa, and a light-ship-to-full-load displacement ratio of less than 0.7;

g.Surface-effect vehicles (rigid sidewalls) with a maximum design speed, fully loaded, exceeding 40 knots in a significant wave height of 3.25 m (Sea State 5) or more;

h.Hydrofoil vessels with active systems for automatically controlling foil systems, with a maximum design speed, fully loaded, of 40 knots or more in a significant wave height of 3.25 m (Sea State 5) or more;

i.Small waterplane area vessels with:

1.A full load displacement exceeding 500 tonnes with a maximum design speed, fully loaded, exceeding 35 knots in a significant wave height of 3.25 m (Sea State 5) or more; or

2.A full load displacement exceeding 1,500 tonnes with a maximum design speed, fully loaded, exceeding 25 knots in a significant wave height of 4 m (Sea State 6) or more.

8A002 Systems or equipment(59), as follows:

8A990 The export of goods specified in this entry is prohibited to any destination in Iran or Iraq.

8A991 The export of goods specified in this entry is prohibited to any destination in Libya.

8B  Test, Inspection and Production Equipment

8B001 Water tunnels, having a background noise of less than 100 dB (reference 1 micro-pascal, 1 Hz) in the frequency range from 0 to 500 Hz, designed for measuring acoustic fields generated by a hydro-flow around propulsion system models.

8C  Materials

8C001 Syntactic foam for underwater use:

a.Designed for marine depths exceeding 1,000 m; and

b.With a density less than 561 kg/m3.

8D  Software

8D001 Software specially designed or modified for the development, production or use of goods specified in sub-categories 8A, 8B or 8C.

8D002 Specific software specially designed or modified for the development, production, repair, overhaul or refurbishing (re-machining) of propellers specially designed for underwater noise reduction.

8E  Technology

8E001 Technology required for the development or production of goods specified in entries 8A001 and 8A002, or sub-categories 8B or 8C.

8E002 Other technology, as follows:

a.Technology for the development, production, repair, overhaul or refurbishing (re-machining) of propellers specially designed for underwater noise reduction;

b.Technology for the overhaul or refurbishing of equipment specified in entry 8A001 or heads b., j., o. or p. of entry 8A002.

8E990 The export of goods specified in this entry is prohibited to any destination in Iran or Iraq.

8E991 The export of goods specified in this entry is prohibited to any destination in Libya.

Category 9 — Aircraft, Space Vehicles, Propulsion Systems and Related Equipment

Equipment, Assemblies and Components

9A—9A001 Aero gas turbine engines incorporating any of the technologies specified in head a. of entry 9E003., as follows(60):

a.Not certified for the specific civil aircraft for which they are intended;

b.Not certified for civil use by the aviation authorities in a relevant country;

In this head, “relevant country” means an authority in Australia, Belgium, Canada, Denmark, Eire, France, Germany, Greece, Italy, Japan, Luxembourg, Netherlands, Norway, Portugal, Spain, Turkey, United Kingdom or United States of America.

c.Designed to cruise at speeds exceeding Mach 1.2 for more than thirty minutes.

9A002 Marine gas turbine engines with an ISO standard continuous power rating of 24,245 kW or more and a specific fuel consumption of less than 0.219 kg/kWh at any point in the power range from 35 to 100%, and specially designed assemblies and components therefor.

9A003 Specially designed assemblies and components, incorporating any of the technologies specified in head a. of entry 9E003, for the following gas turbine engine propulsion systems:

a.Specified in entry 9A001; or

b.Whose design or production origins are unknown to the manufacturer.

9A004 Space launch vehicles or spacecraft (not including their payloads)(61).

9A005 Liquid rocket propulsion systems containing any of the systems or components specified in entry 9A006(62).

9A006 Systems or components, as follows(63), specially designed for liquid rocket propulsion systems:

a.Cryogenic refrigerators, flightweight dewars, cryogenic heat pipes or cryogenic systems specially designed for use in space vehicles and capable of restricting cryogenic fluid losses to less than 30% per year;

b.Cryogenic containers or closed-cycle refrigeration systems capable of providing temperatures of 100 K (-173°C) or less for aircraft capable of sustained flight at speeds exceeding Mach 3, launch vehicles or spacecraft;

c.Slush hydrogen storage or transfer systems;

d.High pressure (exceeding 17.5 MPa) turbo pumps, pump components or their associated gas generator or expander cycle turbine drive systems;

e.High-pressure (exceeding 10.6 MPa) thrust chambers and nozzles therefor;

f.Propellant storage systems using the principle of capillary containment or positive expulsion (i.e., with flexible bladders).

9A007 Solid rocket propulsion systems with any of the following,(64):

a.1.Total impulse capacity exceeding 1.1 MNs; or

2.Specific impulse of 2.4 kNs/kg or more when the nozzle flow is expanded to ambient sea level conditions for an adjusted chamber pressure of 7 MPa;

b.1.Stage mass fractions exceeding 88%; and

2.Propellant solid loadings exceeding 86%;

c.Any of the components specified in entry 9A008; or

d.Insulation and propellant bonding systems using direct-bonded motor designs to provide a strong mechanical bond or a barrier to chemical migration between the solid propellant and case insulation material.

9A008 Components, as follows(65), specially designed for solid rocket propulsion systems:

a.Insulation and propellant bonding systems using liners to provide a strong mechanical bond or a barrier to chemical migration between the solid propellant and case insulation material;

b.Filament-wound composite motor cases exceeding 0.61 m in diameter or having structural efficiency ratios (PV/W) exceeding 25 km;

c.Nozzles with thrust levels exceeding 45 kN or nozzle throat erosion rates of less than 0.075 mm/s;

d.Movable nozzle or secondary fluid injection thrust vector control systems capable of:

1.Omni-axial movement exceeding ±5°;

2.Angular vector rotations of 20°/s or more; or

3.Angular vector accelerations of 40°/s2 or more.

9A009 Hybrid rocket propulsion systems(66) with:

a.Total impulse capacity exceeding 1.1 MNs; or

b.Thrust levels exceeding 220 kN in vacuum exit conditions.

9A010 Specially designed components or structures, for launch vehicles or launch vehicle propulsion systems, manufactured using metal matrix composite, organic composite, ceramic matrix or intermetallic reinforced materials specified in entries 1C007 or 1C010(67).

9A011 Ramjet, scramjet or combined cycle engines and specially designed components therefor(68).

9A101 Lightweight turbojet and turbofan engines (including turbocompound engines) usable in missiles, other than those specified in entry 9A001, as follows;

a.Engines having both of the following characteristics:

1.Maximum thrust value greater than 1 kN (achieved un-installed) excluding civil certified engines with a maximum thrust value greater than 8.89 kN (achieved un-installed); and

2.Specific fuel consumption of 0.13 kg/N/hr or less (at sea level static and standard conditions); or

b.Engines designed or modified for use in missiles.

9A104 Sounding rockets, capable of a range of at least 300 km.

9A105 Liquid propellant rocket engines usable in missiles, other than those specified in entry 9A005, having a total impulse capacity of 0.841 MNs or greater(69).

9A106 Systems or components, other than those specified in entry 9A006, usable in missiles, as follows, specially designed for liquid rocket propulsion systems:

a.Rocket nozzles;

b.Thrust vector control sub-systems;

c.Liquid and slurry propellant (including oxidiser) control systems, and specially designed components therefor, designed or modified to operate in vibration environments of more than 10 g rms between 20 Hz and 2000 Hz.

9A107 Solid propellant rocket engines, usable in missiles, other than those specified in entry 9A007 having a total impulse capacity of 0.841 MNs or greater(70).

9A108 Components, other than those specified in entry 9A008, usable in missiles, as follows, specially designed for solid rocket propulsion systems:

a.Rocket motor cases, interior lining and insulation therefor;

b.Rocket nozzles;

c.Thrust vector control sub-systems.

9A109 Hybrid rocket motors, usable in missiles, other than those specified in entry 9A009, and specially designed components therefor(71).

9A110 Composite structures, laminates and manufactures thereof, other than those specified in entry 9A010, specially designed for use in the systems specified in entries 9A004 or 9A104 or the subsystems specified in entries 9A005, 9A007, 9A105 to 9A108, 9A116 or 9A119, and resin impregnated fibre prepregs and metal coated fibre preforms therefor, made either with organic matrix or metal matrix utilising fibrous or filamentary reinforcements having a specific tensile strength greater than 7.62 x 104 m and a specific modulus greater than 3.18 x 106 m(72).

9A111 Pulse jet engines, usable in missiles, and specially designed components therefor(73).

9A115 Launch support equipment, designed or modified for systems specified in entries 9A004 or 9A104, as follows:

a.Apparatus and devices for handling, control, activation or launching;

b.Vehicles for transport, handling, control, activation or launching.

9A116 Reentry vehicles, usable in missiles, and equipment designed or modified therefor, as follows:

a.Heat shields and components therefor fabricated of ceramic or ablative materials;

b.Heat sinks and components therefor fabricated of light-weight, high heat capacity materials;

c.Electronic equipment specially designed for reentry vehicles.

9A117 Staging mechanisms, separation mechanisms, and interstages, usable in missiles.

9A118 Devices to regulate combustion usable in engines, which are usable in missiles, specified in entries 9A011 or 9A111.

9A119 Individual rocket stages, usable in missiles, other than those specified in entries 9A005, 9A007, 9A009, 9A105, 9A107 or 9A109.

9A990 The export of goods specified in this entry is prohibited to any destination in Libya, Iran, Iraq, Syria or South Africa.

9A991 Aircraft or steerable parachutes other than those specified in entry ML10 of Group 1 of Part III of this Schedule, having a maximum all up weight of not more than 390 kg.

9A993 The export of goods specified in this entry is prohibited to any destination in Libya.

9B  Test, Inspection and Production Equipment

9B001 Specially designed equipment, tooling or fixtures, as follows, for manufacturing or measuring gas turbine blades, vanes or tip shroud castings:

a.Automated equipment using non-mechanical methods for measuring airfoil wall thickness;

b.Tooling, fixtures or measuring equipment for the laser, water jet or ECM/EDM hole drilling processes specified in head c. of entry 9E003;

c.Directional solidification or single crystal casting equipment;

d.Ceramic cores or shells;

e.Ceramic core manufacturing equipment or tools;

f.Ceramic core leaching equipment;

g.Ceramic shell wax pattern preparation equipment;

h.Ceramic shell burn out or firing equipment.

9B002 On-line (real time) control systems, instrumentation (including sensors) or automated data acquisition and processing equipment, specially designed for the development of gas turbine engines, assemblies or components incorporating technologies specified in head a. of entry 9E003.

9B003 Equipment specially designed for the production or test of gas turbine brush seals designed to operate at tip speeds exceeding 335 m/s, and specially designed parts or accessories therefor.

9B004 Tools, dies or fixtures for the solid state joining of gas turbine superalloy or titanium components.

9B005 On-line (real time) control systems, instrumentation (including sensors) or automated data acquisition and processing equipment, specially designed for use with the following wind tunnels or devices(74):

a.Wind tunnels designed for speeds of Mach 1.2 or more;

those specially designed for educational purposes and having a test section size (measured laterally) of less than 250 mm;

In this head, “Test section size” means the diameter of the circle, or the side of a square, or the longest side of a rectangle, at the largest test section location.

b.Devices for simulating flow-environments at speeds exceeding Mach 5, including hot-shot tunnels, plasma arc tunnels, shock tubes, shock tunnels, gas tunnels and light gas guns;

c.Wind tunnels or devices, other than two-dimensional sections, capable of simulating Reynolds number flows exceeding 25 × 106.

9B006 Specially designed acoustic vibration test equipment capable of producing sound pressure levels of 160 dB or more (referenced to 20 micropascals) with a rated output of 4 kW or more at a test cell temperature exceeding 1,273 K (1,000°C), and specially designed transducers, strain gauges, accelerometers, thermocouples or quartz heaters therefor.

9B007 Equipment specially designed for inspecting the integrity of rocket motors using non-destructive test (NDT) techniques other than planar X-ray or basic physical or chemical analysis(75).

9B008 Transducers specially designed for the direct measurement of the wall skin friction of the test flow with a stagnation temperature exceeding 833 K (560°C).

9B009 Tooling specially designed for producing turbine engine powder metallurgy rotor components capable of operating at stress levels of 60% of ultimate tensile strength (UTS) or more and metal temperatures of 873 K (600°C) or more.

9B105 Wind tunnels for speeds of Mach 0.9 or more, usable for missiles and their subsystems.

9B106 Environmental chambers and anechoic chambers, as follows:

a.Environmental chambers capable of simulating the following flight conditions:

1.Vibration environments of 10 g rms or greater between 20 Hz and 2,000 Hz and imparting forces of 5 kN or greater; and

2.Altitudes of 15,000 m or greater; or

3.Temperature of at least 223 K (-50°C) to 398 K (+ 125°C);

b.Anechoic chambers capable of simulating the following flight conditions:

1.Acoustic environments at an overall sound pressure level of 140 dB or greater (referenced to 20 micropascals) or with a rated power output of 4 kW or greater; and

2.Altitudes of 15,000 m or greater; or

3.Temperature of at least 223 K (-50°C) to 398 K (+ 125°C).

9B115 Specially designed production equipment for the systems, sub-systems and components specified in entries 9A005 to 9A009, 9A011, 9A101, 9A105 to 9A109, 9A111, 9A116 to 9A119.

9B116 Specially designed production facilities for the systems, sub-systems, and components specified in entries 9A004 to 9A009, 9A011, 9A101, 9A104 to 9A109, 9A111, 9A116 to 9A119.

9B117 Test benches and test stands for solid or liquid propellant rockets or rocket motors, having either of the following characteristics:

a.The capacity to handle more than 90 kN of thrust; or

b.Capable of simultaneously measuring the three axial thrust components.

9C  Materials

9D  Software

9D001 Software required for the development of goods or technology specified in sub-categories 9A, 9B or entry 9E003.

9D002 Software required for the production of goods specified in sub-categories 9A or 9B.

9D003 Software required for the use of full authority digital electronic engine controls (FADEC) for propulsion systems specified in sub-category 9A or equipment specified in sub-category 9B, as follows:

a.Software in digital electronic controls for propulsion systems, aerospace test facilities or air breathing aero-engine test facilities;

b.Fault-tolerant software used in FADEC systems for propulsion systems and associated test facilities.

9D004 Other software, as follows:

a.Software specially designed for vibration test equipment, other than that specified in entry 2D101, using real time digital controls with individual exciters (thrusters) with a maximum thrust exceeding 100 kN;

b.2D or 3D viscous software validated with wind tunnel or flight test data required for detailed engine flow modelling;

c.Software required for the development or production of real time full authority electronic test facilities for engines or components specified in sub-category 9A;

d.Software for testing aero gas turbine engines, assemblies or components, specially designed to collect, reduce and analyse data in real time, and capable of feedback control, including the dynamic adjustment of test articles or test conditions, as the test is in progress;

e.Software specially designed to control directional solidification or single crystal casting;

f.Software in source code, object code or machine code required for the use of active compensating systems for rotor blade tip clearance control.

9D101 Software specially designed for the use of goods specified in entries 9B105, 9B106, 9B116 or 9B117.

9D103 Software specially designed for modelling, simulation or design integration of the systems specified in entries 9A004 or 9A104 or the sub-systems specified in entries 9A005, 9A007, 9A105 to 9A108, 9A116 or 9A119.

9D993 The export of goods specified in this entry is prohibited to any destination in Libya.

9E  Technology

9E001 Technology required for the development of goods specified in head c. of entry 9A001, or entries 9A004 to 9A011, or sub-Categories 9B or 9D.

9E002 Technology required for the production of goods(76) specified in head c. of entry 9A001, or entries 9A004 to 9A011 or sub-Category 9B.

9E003 Other technology, as follows:

a.Technology required for the development or production of the following gas turbine engine components or systems:

1.Directionally solidified gas turbine blades, vanes or tip shrouds rated to operate at gas path temperatures exceeding 1,593 K (1,320°C);

2.Single crystal blades, vanes or tip shrouds;

3.Multiple domed combustors operating at average burner outlet temperatures exceeding 1,643 K (1,370°C), or combustors incorporating thermally de-coupled combustion liners, non-metallic liners or non-metallic shells;

4.Components manufactured from organic composite materials designed to operate above 588 K (315°C), or from metal matrix composite, ceramic matrix, intermetallic or intermetallic reinforced materials specified in entries 1A002 or 1C007;

5.Uncooled turbine blades, vanes, tip-shrouds or other components designed to operate at gas path temperatures of 1,323 K (1,050°C) or more;

6.Cooled turbine blades, vanes or tip-shrouds, other than those described in sub-heads a.1. and a.2. of this entry, exposed to gas path temperatures of 1,643 K (1,370°C) or more;

7.Airfoil-to-disk blade combinations using solid state joining;

8.Gas turbine engine components using diffusion bonding technology specified in head b. of entry 2E003;

9.Damage tolerant gas turbine engine rotating components using powder metallurgy materials specified in head b. of entry 1C002;

10.FADEC for gas turbine and combined cycle engines and their related diagnostic components, sensors and specially designed components;

11.Adjustable flow path geometry and associated control systems for:

a.Gas generator turbines;

b.Fan or power turbines;

c.Propelling nozzles;

1.Adjustable flow path geometry and associated control systems do not include inlet guide vanes, variable pitch fans, variable stators or bleed valves for compressors.

2.Sub-head a.11. of this entry does not specify development or production technology for adjustable flow path geometry for reverse thrust.

12.Rotor blade tip clearance control systems employing active compensating casing technology limited to a design and development data base;

13.Gas bearings for gas turbine engine rotor assemblies;

14.Wide chord hollow fan blades without part-span support;

b.Technology required for the development or production of:

1.Wind tunnel aero-models equipped with non-intrusive sensors capable of transmitting data from the sensors to the data acquisition system;

2.Composite propeller blades or propfans capable of absorbing more than 2,000 kW at flight speeds exceeding Mach 0.55;

c.Technology required for the development or production of gas turbine engine components using laser, water jet or ECM/EDM hole drilling processes to produce holes with:

1.a.Depths more than four times their diameter;

b.Diameters less than 0.76 mm; and

c.Incidence angles equal to or less than 25°; or

2.a.Depths more than five times their diameter;

b.Diameters less than 0.4 mm; and

c.Incidence angles of more than 25°;

d.Technology required for the development or production of helicopter power transfer systems or tilt rotor or tilt wing aircraft power transfer systems:

1.Capable of loss-of-lubrication operation for 30 minutes or more; or

2.Having an input power-to-weight ratio equal to or more than 8.87 kW/kg;

e.1.Technology for the development or production of reciprocating diesel engine ground vehicle propulsion systems having all of the following:

a.A box volume of 1.2 m3 or less;

b.An overall power output of more than 750 kW based on Council Directive 80/1269/EEC(77) or ISO 2534; and

c.A power density of more than 700 kW/m3 of box volume;

a.The outside dimension from valve cover to valve cover;

b.The dimensions of the outside edges of the cylinder heads; or

c.The diameter of the flywheel housing;

a.The dimension of the crankshaft centre-line to the top plane of the valve cover (or cylinder head) plus twice the stroke; or

b.The diameter of the flywheel housing.

2.Technology required for the production of specially designed components, as follows, for high output diesel engines:

a.Technology required for the production of engine systems having all of the following components employing ceramics materials specified in entry 1C007:

1.Cylinder liners;

2.Pistons;

3.Cylinder heads; and

4.One or more other components (including exhaust ports, turbo-chargers, valve guides, valve assemblies or insulated fuel injectors);

b.Technology required for the production of turbocharger systems, with single-stage compressors having all of the following:

1.Operating at pressure ratios of 4:1 or higher;

2.A mass flow in the range from 30 to 130 kg per minute; and

3.Variable flow area capability within the compressor or turbine sections;

c.Technology required for the production of fuel injection systems with a specially designed multifuel (e.g., diesel or jet fuel) capability covering a viscosity range from diesel fuel (2.5 cSt at 310.8 K (37.8°C)) down to gasoline fuel (0.5 cSt at 310.8 K (37.8°C)), having both of the following:

1.Injection amount in excess of 230 mm3 per injection per cylinder; and

2.Specially designed electronic control features for switching governor characteristics automatically depending on fuel property to provide the same torque characteristics by using the appropriate sensors;

3.Technology required for the development or production of high output diesel engines for solid, gas phase or liquid film (or combinations thereof) cylinder wall lubrication, permitting operation to temperatures exceeding 723 K (450°C), measured on the cylinder wall at the top limit of travel of the top ring of the piston.

9El01 Technology required for the development or production of goods specified in entries 9A101, 9A104 to 9A111 or 9A115 to 9A119.

9E102 Technology required for the use of goods specified in entries 9A004 to 9A011, 9A101, 9A104 to 9A111, 9A115 to 9A119, 9B105, 9B106, 9B115 to 9B117, 9D101 or 9D103.

9E990 The export of goods specified in this entry is prohibited to any destination in Libya, Iran, Iraq, Syria or South Africa.

9E991 Technology required for the development, production or use of goods specified in entry 9A991.

9E993 The export of goods specified in this entry is prohibited to any destination in Libya.

(1)

Annex 1 to Council Regulation (EC) No. 2658/87 O.J. No. L256, 7.9.87, p.1. replaced by Commission Regulation 2551/93 O.J. No. L241, 27.9.93, to which there are amendments not relevant to this Order.

(2)

See article 9. The Export of Goods (Control) Order 1992 S.I. 1992/3092, remains in force in relation to the export of antiques.

(3)

See also ML6 and PL5031 of Group 1 of Part III of this Schedule.

(5)

See also article 3(e).

(6)

See also PL5029.

(7)

See also entries 1A202, 9A010 and 9A110.

(8)

See also entry 9A110.

(9)

See also entries 1B101 and 1B201.

(10)

See also entry 1B201.

(11)

See also entry 1C101.

(12)

See also entry 1C202.

(13)

See also entry 1C107.

(14)

See also entry 1C210.

(15)

See also entry 1C216.

(16)

See also entry 1C991.

(17)

See also ML7 of Group 1 of Part III of this Schedule.

(18)

See also ML7 of Group 1 of Part III of this Schedule.

(19)

See also entry 1C992.

(20)

See also ML7 of Group 1 of Part III of this Schedule.

(21)

O.J. No. L167, 22.6.92 p.1.

(22)

See also ML7 of Group 1 of Part III of this Schedule.

(23)

See also entries 1C115, 1C239 and ML8 of Group 1 of Part III of this Schedule.

(24)

See also Entries 2B104 and 2B204.

(25)

See also entry 2B207.

(26)

See also entry 2B215.

(27)

See also sub-category 3B.

(28)

See also entry 9D004.a.

(29)

See also entry 3A201.a.

(30)

See also entry 3A201.b.

(31)

See also entry 3A101.b. and 3A201.c.

(32)

See also entry 3A202.

(33)

See also Group 1 of Part III of this Schedule.

(34)

See also Group 1 of Part III of this Schedule.

(35)

See also entry 4A101.

(36)

See also entry 4A102.

(37)

For fibre-optic hull penetrators or connectors, see head c.of entry 8A002.

(38)

See also sub-Categories 4D and 6D for software for signal processing.

(39)

See also entry 6A102.

(40)

See also entry 6A203.

(41)

See heads d. and e. of entry 8A002 for cameras specially modified for underwater use.

(42)

See also entry 6A205.

(43)

See also sub-head c.2.d. of this entry.

(44)

See head d. of entry ML23 of Group 1 of Part III of this Schedule for shared aperture optical elements capable of operating in Super-High Power Laser applications.

(45)

See also entry 6A107.

(46)

See also entry 6A108.

(47)

See also head d. of entry 2E003.

(48)

See also entry 7A101

(49)

See also entry 7A102.

(50)

See also entry 7A102.

(51)

See also entry 7A104.

(52)

See also entry 7A105.

(53)

See Category 6 for radar and Category 8 for automatic pilots for underwater vehicles.

(54)

See also entry 7A106.

(55)

See also entry 7B102.

(56)

See Note to entry 7B001.

(57)

For technology for Full Authority Digital Engine Control (FADEC) see sub-head a.10. of entry 9E003.

(58)

See also Category 5 for encrypted communication equipment; Category 6 for sensors; Categories 7 and 8 for navigation equipment; entry 8A002 for underwater systems or equipment.

(59)

See Category 5 Telecommunications for underwater communications systems and underwater optical fibre cable.

(60)

See also entry 9A101.

(61)

See also entry 9A104. See the appropriate categories for products contained in spacecraft payloads.

(62)

See also entries 9A105 and 9A119.

(63)

See also entry 9A106.

(64)

See also entry 9A119.

(65)

See also entry 9A108.

(66)

See also entries 9A109 and 9A119.

(67)

See also entries IA002 and 9A110.

(68)

See also entries 9A111 and 9A118.

(69)

See also entry 9A119.

(70)

See also entry 9A119.

(71)

See also entry 9A119.

(72)

See also entry 1A002.

(73)

See also entries 9A011 and 9A118.

(74)

See also 9B105

(75)

For Radiographic equipment, see sub-head e.5. of entry 3A001.

(76)

See head f. of entry 1E002 for technology for the repair of specified structures, laminates or materials.

(77)

O.J. No. L.375, Vol 23 31.12.80, p.46 as amended by Commission Directive 88/195/EEC, O.J. No. L.92, 9.4.88, p.50 and Commission Directive 89/491/EEC, O.J. No. L.238, 15.8.89 p.43.