SCHEDULE 4

Regulation 3(1) and (3)

Specified Quantities for the Transport of Radionuclides

Part I
Table of Radionuclides

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Actinium		
Ac-225	(see note 1)	6 10 ⁹
Ac-227	(see note 1)	9 10 ⁷
Ac-228		5 10 ¹¹
Aluminium		
Al-26		1 10 ¹¹
Americium		
Am-241		1 109
Am-242m	(see note 1)	1 109
Am-243	(see note 1)	1 109
Antimony		
Sb-122		4 10 ¹¹
Sb-124		6 10 ¹¹
Sb-125		1 10 ¹²
Sb-126		4 10 ¹¹
Argon		
Ar-37		$4\ 10^{13}$
Ar-39		2 10 ¹³
Ar-41		3 10 ¹¹
Arsenic		
As-72		3 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
As-73		4 10 ¹³
As-74		9 10 ¹¹
As-76		3 10 ¹¹
As-77		$7\ 10^{11}$
Astatine		
At-211	(see note 1)	5 10 ¹¹
Barium		
Ba-131	(see note 1)	2 10 ¹²
Ba-133		3 10 ¹²
Ba-133m		6 10 ¹¹
Ba-140	(see note 1)	3 10 ¹¹
Berkelium		
Bk-247		8 108
Bk-249	(see note 1)	3 10 ¹¹
Beryllium		
Be-7		$2\ 10^{13}$
Be-10		6 10 ¹¹
Bismuth		
Bi-205		7 10 ¹¹
Bi-206		3 10 ¹¹
Bi-207		7 10 ¹¹
Bi-210		6 10 ¹¹
Bi-210m	(see note 1)	$2\ 10^{10}$
Bi-212	(see note 1)	6 10 ¹¹
Bromine		
Br-76		4 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Br-77		3 10 ¹²
Br-82		4 10 ¹¹
Cadmium		
Cd-109		$2\ 10^{12}$
Cd-113m		5 10 ¹¹
Cd-115	(see note 1)	4 10 ¹¹
Cd-115m		5 10 ¹¹
Caesium		
Cs-129		4 10 ¹²
Cs-131		$3\ 10^{13}$
Cs-132		1 10 ¹²
Cs-134		7 10 ¹¹
Cs-134m		6 10 ¹¹
Cs-135		1 10 ¹²
Cs-136		5 10 ¹¹
Cs-137	(see note 1)	6 10 ¹¹
Calcium		
Ca-41		unlimited
Ca-45		1 10 ¹²
Ca-47	(see note 1)	3 10 ¹¹
Californium		
Cf-248		6 10 ⁹
Cf-249		8 10 ⁸
Cf-250		2 109
Cf-251		7 108
Cf-252		3 109

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Cf-253	(see note 1)	$4\ 10^{10}$
Cf-254		1 109
Carbon		
C-11		6 10 ¹¹
C-14		3 10 ¹²
Cerium		
Ce-139		$2\ 10^{12}$
Ce-141		6 10 ¹¹
Ce-143		6 10 ¹¹
Ce-144	(see note 1)	$2\ 10^{11}$
Chlorine		
Cl-36		6 10 ¹¹
C1-38		$2\ 10^{11}$
Chromium		12
Cr-51		3 10 ¹³
Cobalt Co-55		5 10 ¹¹
Co-56		3 10 ¹¹
Co-57		1 10 ¹³
Co-58		1 10 ¹²
Co-58m		4 10 ¹³
Co-60		4 10 ¹¹
Copper		
Cu-64		1 10 ¹²
Cu-67		7 10 ¹¹
Curium		
Cm-240		2 10 ¹⁰

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Cm-241		1 10 ¹²
Cm-242		$1\ 10^{10}$
Cm-243		1 109
Cm-244		2 10 ⁹
Cm-245		9 10 ⁸
Cm-246		9 108
Cm-247	(see note 1)	1 10 ⁹
Cm-248		3 10 ⁸
Dysprosium		
Dy-159		$2\ 10^{13}$
Dy-165		$6\ 10^{11}$
Dy-166	(see note 1)	3 10 ¹¹
Erbium		
Er-169		1 10 ¹²
Er-171		5 10 ¹¹
Europium		
Eu-147		$2\ 10^{12}$
Eu-148		5 10 ¹¹
Eu-149		$2\ 10^{13}$
Eu-150	(long lived isotope)	$7\ 10^{11}$
Eu-150	(short lived isotope)	$7\ 10^{11}$
Eu-152		1 10 ¹²
Eu-152m		8 10 ¹¹
Eu-154		$6\ 10^{11}$
Eu-155		3 10 ¹²

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Eu-156		7 10 ¹¹
Fluorine		
F-18		$6\ 10^{11}$
Gadolinium Gd-146	(see note 1)	5 10 ¹¹
Gd-148	(see note 1)	2 10 ⁹
Gd-153		
		9 10 ¹²
Gd-159		$6\ 10^{11}$
Gallium Ga-67		3 10 ¹²
Ga-68		5 10 ¹¹
Ga-72		4 10 ¹¹
Germanium		4 10
Ge-68	(see note 1)	5 10 ¹¹
Ge-71		4 10 ¹³
Ge-77		3 10 ¹¹
Gold		
Au-193		2 10 ¹²
Au-194		1 10 ¹²
Au-195		6 10 ¹²
Au-198		6 10 ¹¹
Au-199		610^{11}
Hafnium		
Hf-172	(see note 1)	$6\ 10^{11}$
Hf-175		3 10 ¹²
Hf-181		5 10 ¹¹
Hf-182		unlimited

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Holmium		
Но-166		4 10 ¹¹
Ho-166m		5 10 ¹¹
Hydrogen		
H-3		4 10 ¹³
Indium In-111		2 1012
		3 10 ¹²
In-113m		2 10 ¹²
In-114m	(see note 1)	5 10 ¹¹
In-115m		1 10 ¹²
Iodine		
I-123		3 10 ¹²
I-124		1 10 ¹²
I-125		3 10 ¹²
I-126		1 10 ¹²
I-129		unlimited
I-131		$7\ 10^{11}$
I-132		4 10 ¹¹
I-133		6 10 ¹¹
I-134		3 10 ¹¹
I-135	(see note 1)	6 10 ¹¹
Iridium		
Ir-189	(see note 1)	1 10 ¹³
Ir-190		$7\ 10^{11}$
Ir-192		$6\ 10^{11}$
Ir-194		3 10 ¹¹
Iron		

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Fe-52	(see note 1)	3 10 ¹¹
Fe-55		$4\ 10^{13}$
Fe-59		9 10 ¹¹
Fe-60	(see note 1)	2 1011
Krypton		
Kr-81		4 10 ¹³
Kr-85		$1\ 10^{13}$
Kr-85m		$3\ 10^{12}$
Kr-87		2 10 ¹¹
Lanthanum		
La-137		610^{12}
La-140		4 10 ¹¹
Lead		
Pb-201		1 10 ¹²
Pb-202		$2\ 10^{13}$
Pb-203		3 10 ¹²
Pb-205		unlimited
Pb-210	(see note 1)	$5\ 10^{10}$
Pb-212	(see note 1)	$2\ 10^{11}$
Lutetium		
Lu-172		6 10 ¹¹
Lu-173		8 10 ¹²
Lu-174		9 10 ¹²
Lu-174m		1 10 ¹³
Lu-177		7 10 ¹¹
Magnesium		

- Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.
- Note 2: These values apply only to compounds of uranium that take the chemical form of UF₆, UO₂F₂ and UO₂(NO₃)₂ in both normal and accident conditions of transport
- Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.
- Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.
- Note 5: These values apply to unirradiated uranium only.
- Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Mg-28	(see note 1)	3 10 ¹¹
Manganese		
Mn-52		3 10 ¹¹
Mn-53		unlimited
Mn-54		1 10 ¹²
Mn-56		3 10 ¹¹
Mercury		
Hg-194	(see note 1)	1 10 ¹²
Hg-195m	(see note 1)	7 10 ¹¹
Hg-197		1 10 ¹³
Hg-197m		4 10 ¹¹
Hg-203		1 10 ¹²
Molybdenum		
Mo-93		$2\ 10^{13}$
Mo-99	(see note 1)	$6\ 10^{11}$
Neodymium		
Nd-147		6 10 ¹¹
Nd-149		5 10 ¹¹
Neptunium		
Np-235		4 10 ¹³
Np-236	(long lived isotope)	$2\ 10^{10}$
Np-236	(short lived isotope)	$2\ 10^{12}$
Np-237		2 10 ⁹
Np-239		4 10 ¹¹
Nickel		
Ni-59		unlimited
Ni-63		3 10 ¹³

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF₆, UO₂F₂ and UO₂(NO₃)₂ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Ni-65		4 10 ¹¹
Niobium		
Nb-93m		3 10 ¹³
Nb-94		7 10 ¹¹
Nb-95		1 10 ¹²
Nb-97		6 10 ¹¹
Nitrogen		
N-13		6 10 ¹¹
Osmium		10
Os-185		1 10 ¹²
Os-191		2 10 ¹²
Os-191m		3 10 ¹³
Os-193		6 10 ¹¹
Os-194	(see note 1)	3 10 ¹¹
Palladium		
Pd-103	(see note 1)	4 10 ¹³
Pd-107		unlimited
Pd-109		5 10 ¹¹
Phosphorus		
P-32		5 10 ¹¹
P-33		1 10 ¹²
Platinum		
Pt-188	(see note 1)	8 10 ¹¹
Pt-191		3 10 ¹²
Pt-193		$4\ 10^{13}$
Pt-193m		5 10 ¹¹
Pt195m		5 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Pt-197		6 10 ¹¹
Pt-197m		6 10 ¹¹
Plutonium		
Pu-236		3 10 ⁹
Pu-237		$2\ 10^{13}$
Pu-238		1 109
Pu-239		1 109
Pu-240		1 10 ⁹
Pu-241	(see note 1)	610^{10}
Pu-242		1 10 ⁹
Pu-244	(see note 1)	1 10 ⁹
Polonium		
Po-210		$2\ 10^{10}$
Potassium		
K-40		9 10 ¹¹
K-42		$2\ 10^{11}$
K-43		6 10 ¹¹
Praseodymium		
Pr-142		4 10 ¹¹
Pr-143		6 10 ¹¹
Promethium		
Pm-143		3 10 ¹²
Pm-144		$7\ 10^{11}$
Pm-145		$1\ 10^{13}$
Pm-147		2 10 ¹²
Pm-148m	(see note 1)	7 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than $10~\mathrm{days}$.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Pm-149		6 10 ¹¹
Pm-151		6 10 ¹¹
Protactinium		
Pa-230	(see note 1)	$7\ 10^{10}$
Pa-231		4 10 ⁸
Pa-233		$7\ 10^{11}$
Radium		
Ra-223	(see note 1)	7 10 ⁹
Ra-224	(see note 1)	$2\ 10^{10}$
Ra-225	(see note 1)	4 10 ⁹
Ra-226	(see note 1)	3 10 ⁹
Ra-228	(see note 1)	$2\ 10^{10}$
Radon		
Rn-222	(see note 1)	4 10 ⁹
Rhenium		12
Re-184		$1\ 10^{12}$
Re-184m		1 10 ¹²
Re-186		6 10 ¹¹
Re-187		unlimited
Re-188		4 10 ¹¹
Re-189	(see note 1)	6 10 ¹¹
Re-natural		unlimited
Rhodium		
Rh-99		$2\ 10^{12}$
Rh-101		$3\ 10^{12}$
Rh-102		5 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Rh-102m		$2\ 10^{12}$
Rh-103m		4 10 ¹³
Rh-105		8 10 ¹¹
Rubidium		
Rb-81		8 10 ¹¹
Rb-83	(see note 1)	$2\ 10^{12}$
Rb-84		$1\ 10^{12}$
Rb-86		5 10 ¹¹
Rb-87		unlimited
Rb-natural		unlimited
Ruthenium		
Ru-97		5 10 ¹²
Ru-103	(see note 1)	$2\ 10^{12}$
Ru-105		6 10 ¹¹
Ru-106	(see note 1)	2 10 ¹¹
Samarium		
Sm-145		1 10 ¹³
Sm-147		unlimited
Sm-151		1 10 ¹³
Sm-153		6 10 ¹¹
Scandium		
Sc-44		5 10 ¹¹
Sc-46		5 10 ¹¹
Sc-47		7 10 ¹¹
Sc-48		3 10 ¹¹
Selenium		

- Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.
- Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport
- Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.
- Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.
- Note 5: These values apply to $unirradiated\ uranium\ only.$
- Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Se-75		3 10 ¹²
Se-79		2 10 ¹²
Silicon		
Si-31		6 10 ¹¹
Si-32		5 10 ¹¹
Silver		
Ag-105		$2\ 10^{12}$
Ag-108m	(see note 1)	7 10 ¹¹
Ag-110m	(see note 1)	4 10 ¹¹
Ag-111		610^{11}
Sodium		
Na-22		5 10 ¹¹
Na-24		$2\ 10^{11}$
Strontium	()	
Sr-82	(see note 1)	2 10 ¹¹
Sr-85		$2\ 10^{12}$
Sr-85m		5 10 ¹²
Sr-87m		3 10 ¹²
Sr-89		6 10 ¹¹
Sr-90	(see note 1)	3 10 ¹¹
Sr-91	(see note 1)	3 10 ¹¹
Sr-92	(see note 1)	3 10 ¹¹
Sulphur		
S-35		3 10 ¹²
Tantalum Ta-178	(long lived isotope)	8 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Ta-179		3 10 ¹³
Ta-182		5 10 ¹¹
Technetium		
Tc-95m	(see note 1)	2 10 ¹²
Tc-96		4 10 ¹¹
Tc-96m	(see note 1)	4 10 ¹¹
Tc-97		unlimited
Tc-97m		1 10 ¹²
Tc-98		7 10 ¹¹
Tc-99		9 10 ¹¹
Tc-99m		4 10 ¹²
Tellurium		
Te-121		2 10 ¹²
Te-121m		3 10 ¹²
Te-123m		1 10 ¹²
Te-125m		9 10 ¹¹
Te-127		$7\ 10^{11}$
Te-127m	(see note 1)	5 10 ¹¹
Te-129		$6\ 10^{11}$
Te-129m	(see note 1)	4 10 ¹¹
Te-131m	(see note 1)	5 10 ¹¹
Te-132	(see note 1)	4 10 ¹¹
Terbium		
Tb-157		4 10 ¹³
Tb-158		1 10 ¹²

Note 1: Values include contributions from daughter nuclides with half-lives less than $10\ days$.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Tb-160		$6\ 10^{11}$
Thallium		
T1-200		$9\ 10^{11}$
Tl-201		4 10 ¹²
T1-202		2 10 ¹²
Tl-204		$7\ 10^{11}$
Thorium		
Th-227		5 10 ⁹
Th-228	(see note 1)	1 109
Th-229		5 10 ⁸
Th-230		1 109
Th-231		$2\ 10^{10}$
Th-232		unlimited
Th-234	(see note 1)	3 10 ¹¹
Th-natural		unlimited
Thulium		
Tm-167		$8\ 10^{11}$
Tm-170		$6\ 10^{11}$
Tm-171		4 10 ¹³
Tin	()	10
Sn-113	(see note 1)	2 10 ¹²
Sn-117m		$4\ 10^{11}$
Sn-119m		$3\ 10^{13}$
Sn-121m	(see note 1)	9 10 ¹¹
Sn-123		6 10 ¹¹
Sn-125		4 10 ¹¹

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Sn-126	(see note 1)	4 10 ¹¹
Titanium		
Ti-44	(see note 1)	4 10 ¹¹
Tungsten		
W-178	(see note 1)	5 10 ¹²
W-181		3 10 ¹³
W-185		8 10 ¹¹
W-187		6 10 ¹¹
W-188	(see note 1)	3 10 ¹¹
Uranium		
U-230	(fast lung absorption, see notes 1 and 2)	1 10 ¹¹
U-230	(medium lung absorption, see notes 1 and 3)	4 10 ⁹
U-230	(slow lung absorption, see notes 1 and 4)	3 10 ⁹
U-232	(fast lung absorption, see note 2)	1 10 ¹⁰
U-232	(medium lung absorption, see note 3)	7 109
U-232	(slow lung absorption, see note 4)	1 109
U-233	(fast lung absorption, see note 2)	9 10 ¹⁰
U-233	(medium lung absorption, see note 3)	2 10 ¹⁰
U-233	(slow lung absorption, see note 4)	6 10 ⁹
U-234	(fast lung absorption, see note 2)	9 10 ¹⁰
U-234		$2\ 10^{10}$

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
U-234	(medium lung absorption, see note 3)	6 10 ⁹
U-235	(slow lung absorption, see note 4)	unlimited
U-236	(all lung absorption types, see notes 1, 2, 3 and 4)	unlimited
U-236	(fast lung absorption, see note 2)	2 10 ¹⁰
U-236	(medium lung absorption, see note 3)	6 10 ⁹
U-238	(slow lung absorption, see note 4)	unlimited
U-natural	(all lung absorption types, see notes 2, 3 and 4)	unlimited
U (enriched to 20% or less)		unlimited
U-depleted	(see note 5)	unlimited
Vanadium		
V-48		4 10 ¹¹
V-49		4 10 ¹³
Xenon		
Xe-122	(see note 1)	4 10 ¹¹
Xe-123		7 10 ¹¹
Xe-127		2 10 ¹²
Xe-131m		4 10 ¹³
Xe-133		1 10 ¹³
Xe-135		2 10 ¹²
Ytterbium		
Yb-169		1 10 ¹²
Yb-175		9 10 ¹¹
Yttrium		

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O_3 , UF_4 , UCL_4 and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Radionuclide name, symbol	Radionuclide form	Quantity (Bq)
Y-87	(see note 1)	1 10 ¹²
Y-88		4 10 ¹¹
Y-90		3 10 ¹¹
Y-91		6 10 ¹¹
Y-91m		2 10 ¹²
Y-92		2 10 ¹¹
Y-93		3 10 ¹¹
Zinc		
Zn-65		$2\ 10^{12}$
Zn-69		6 10 ¹¹
Zn-69m	(see note 1)	6 10 ¹¹
Zirconium		
Zr-88		3 10 ¹²
Zr-93		unlimited
Zr-95	(see note 1)	8 10 ¹¹
Zr-97	(see note 1)	4 10 ¹¹
Other radionuclides not listed above where only beta or gamma emitting nuclides are known to be present	(see note 6)	2 10 ¹⁰
Other radionuclides not listed above where alpha emitting nuclides are known to be present or no relevant data are available	(see note 6)	9 10 ⁷

Note 1: Values include contributions from daughter nuclides with half-lives less than 10 days.

Note 2: These values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

Note 3: These values apply only to compounds of uranium that take the chemical form of O₃, UF₄, UCL₄ and hexavalent compounds other than those specified in both normal and accident conditions of transport.

Note 4: These values apply to all compounds of uranium other than those specified in 2 and 3 above.

Note 5: These values apply to unirradiated uranium only.

Note 6: In the case of radionuclides not specified elsewhere in this Part, the quantity specified in this entry is to be used unless the Executive has approved some other quantity for that radionuclide.

Part II

Quantity ratios for more than one radionuclide

1. For the purpose of regulation 3(3), the quantity ratio for more than one radionuclide is the sum of the quotients of the quantity of a radionuclide present Q_p divided by the quantity of that radionuclide specified in the appropriate column of Part I Q_{lim} , namely—

$$\sum \frac{Q_{\rm p}}{Q_{\rm fine}}$$

2. In any case where the isotopic composition of a radioactive substance is not known or is only partially known, the quantity ratio for that substance shall be calculated by using the values specified in the appropriate column in Part I for 'other radionuclides not listed above' for any radionuclide that has not been identified or where the quantity of a radionuclide is uncertain, unless the employer can show that the use of some other value is appropriate in the circumstances of a particular case, when he may use that value.