ANNEX II

Tier definitions for calculation-based methodologies related to installations (Article 12(1))

1. DEFINITION OF TIERS FOR ACTIVITY DATA

The uncertainty thresholds in Table 1 shall apply to tiers relevant to activity data requirements in accordance with point (a) of Article 28(1) and the first subparagraph of Article 29(2), and Annex IV, of this Regulation. The uncertainty thresholds shall be interpreted as maximum permissible uncertainties for the determination of source streams over a reporting period.

Where Table 1 does not include activities listed in Annex I to Directive 2003/87/EC and the mass balance is not applied, the operator shall use the tiers listed in Table 1 under 'Combustion of fuels and fuels used as process input' for those activities.

TABLE 1

Tiers for activity data (maximum permissible uncertainty for each tier)

Activity/ source stream type	Parameter to which the uncertainty is applied	Tier 1	Tier 2	Tier 3	Tier 4
Combustion o	f fuels and fuel	ls used as pro	ocess input		
Commercial standard fuels	Amount of fuel [t] or [Nm ³]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Other gaseous and liquid fuels	Amount of fuel [t] or [Nm ³]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Solid fuels	Amount of fuel [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Flaring	Amount of flare gas [Nm ³]	± 17,5 %	± 12,5 %	± 7,5 %	
Scrubbing: carbonate (Method A)	Amount carbonate consumed [t]	± 7,5 %			
Scrubbing: gypsum (Method B)	Amount gypsum produced [t]	± 7,5 %			
Scrubbing: urea	Amount urea consumed	± 7,5 %			

refineries, the required uncertainty is related to the total uncertainty of all emissions from that source.

b Amount [t] of CKD or bypass dust (where relevant) leaving the kiln system over a reporting period estimated using industry best practice guidelines.

Refining of m	ineral oil				·
Catalytic cracker regeneration ^a	Uncertainty requirements apply separately for each emission source	± 10 %	± 7,5 %	± 5 %	± 2,5 %
Production of	coke	1			
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Metal ore roa	sting and sinter	ing	1	I	I
Carbonate input and process residues	Carbonate input material and process residues [t]	± 5 %	± 2,5 %		
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Production of	iron and steel				
Fuel as process input	Each mass flow into and from the installation [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Production of	cement clinker	•			
Kiln input based (Method A)	Each relevant kiln input [t]	± 7,5 %	± 5 %	± 2,5 %	
Clinker output (Method B)	Clinker produced [t]	± 5 %	± 2,5 %		
CKD	CKD or bypass dust [t]	n.a. ^b	± 7,5 %		
Non- carbonate carbon	Each raw material [t]	± 15 %	± 7,5 %		

a For monitoring emissions from catalytic cracker regeneration (other catalyst regeneration and flexi-cokers) in mineral oil refineries, the required uncertainty is related to the total uncertainty of all emissions from that source.

b Amount [t] of CKD or bypass dust (where relevant) leaving the kiln system over a reporting period estimated using industry best practice guidelines.

Carbonates and other process materials (Method A)	Each relevant kiln input [t]	± 7,5 %	± 5 %	± 2,5 %	
Alkali earth oxide (Method B)	Lime produced [t]	± 5 %	± 2,5 %		
Kiln dust (Method B)	Kiln dust [t]	n.a. ^b	± 7,5 %		
Manufacture	of glass and mi	neral wool			
Carbonates and other process materials (input)	Each carbonate raw material or additives associated with CO ₂ emissions [t]	± 2,5 %	± 1,5 %		
Manufacture	of ceramic pro	ducts			
Carbon inputs (Method A)	Each carbonate raw material or additive associated with CO ₂ emissions [t]	± 7,5 %	± 5 %	± 2,5 %	
Alkali oxide (Method B)	Gross production including rejected products and cullet from the kilns and shipment [t]	± 7,5 %	± 5 %	± 2,5 %	
Scrubbing	Dry CaCO ₃ consumed [t]	± 7,5 %			
Production of	pulp and pape	r		I	
Make up chemicals	Amount of CaCO ₃ and Na ₂ CO ₃ [t]	± 2,5 %	± 1,5 %		
				t regeneration and flexi-co missions from that source.	kers) in mineral

Production of	carbon black				
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Production of	ammonia				I
Fuel as process input	Amount fuel used as process input [t] or [Nm ³]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Production of	hydrogen and	synthesis gas			I
Fuel as process input	Amount fuel used as process input for hydrogen production [t] or [Nm ³]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Production of	bulk organic c	hemicals			1
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Production or aluminium	· processing of	ferrous and no	on-ferrous me	etals, including	secondary
Process emissions	Each input material or process residue used as input material in the process [t]	± 5 %	± 2,5 %		
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
Primary alum	inium product	ion		1	I
Mass balance methodology	Each input and output material [t]	± 7,5 %	± 5 %	± 2,5 %	± 1,5 %
	g emissions from catal required uncertainty is				xi-cokers) in mineral oi irce.
	CKD or bypass dust (practice guidelines.	where relevant) leav	ring the kiln system	over a reporting period	od estimated using
	J,				

PFC	primary	± 2,5 %	± 1,5 %	
emissions	aluminium			
(slope	production			
method)	in [t], anode			
	effect minutes			
	in [number			
	anode effects/			
	cell day] and			
	[anode effect			
	minutes/			
	occurrence]			
PFC	primary	± 2,5 %	± 1,5 %	
emissions	aluminium			
(overvoltage	production			
method)	in [t], anode			
	effect			
	overvoltage			
	[mV] and			
	current			
	efficiency [-]			
	g emissions from catal required uncertainty is			kers) in mineral oil

b Amount [t] of CKD or bypass dust (where relevant) leaving the kiln system over a reporting period estimated using industry best practice guidelines.

2. DEFINITION OF TIERS FOR CALCULATION FACTORS FOR COMBUSTION EMISSIONS

Operators shall monitor CO_2 emissions from all types of combustion processes taking place under all activities as listed in Annex I to Directive 2003/87/EC or included in the Union system under Article 24 of that Directive using the tier definitions laid down in this section. Where fuels or combustible materials which give rise to CO_2 emissions are used as a process input, section 5 of this Annex shall apply. Where fuels form part of a mass balance in accordance with Article 25(1) of this Regulation, the tier definitions for mass balances in section 3 of this Annex apply.

For process emissions from related exhaust gas scrubbing tier definitions according to sections 4 and 5 of this Annex shall be used, as applicable.

2.1 Tiers for emission factors

Where a biomass fraction is determined for a mixed fuel or material, the tiers defined shall relate to the preliminary emission factor. For fossil fuels and materials the tiers shall relate to the emission factor.

Tier 1: The operator shall apply one of the following:

- (a) the standard factors listed in section 1 of Annex VI;
- (b) other constant values in accordance with point (e) of Article 31(1), where no applicable value is contained in section 1 of Annex VI.

Tier 2a: The operator shall apply country specific emission factors for the respective fuel or material in accordance with points (b) and (c) of Article 31(1) or values in accordance with point (d) of Article 31(1).

Tier 2b: The operator shall derive emission factors for the fuel based on one of the following established proxies, in combination with an empirical correlation as determined at least once per year in accordance with Articles 32 to 35 and 39:

- (a) density measurement of specific oils or gases, including those common to the refinery or steel industry;
- (b) net calorific value for specific coal types.

The operator shall ensure that the correlation satisfies the requirements of good engineering practice and that it is applied only to values of the proxy which fall into the range for which it was established.

Tier 3: The operator shall apply one of the following:

- (a) determination of the emission factor in accordance with the relevant provisions of Articles 32 to 35;
- (b) the empirical correlation as specified for Tier 2b, where the operator demonstrates to the satisfaction of the competent authority that the uncertainty of the empirical correlation does not exceed 1/3 of the uncertainty value to which the operator has to adhere with regard to the activity data determination of the relevant fuel or material.

2.2 Tiers for net calorific value (NCV)

Tier 1: The operator shall apply one of the following:

- (a) the standard factors listed in section 1 of Annex VI;
- (b) other constant values in accordance with point (e) of Article 31(1), where no applicable value is contained in section 1 of Annex VI.

Tier 2a: The operator shall apply country specific factors for the respective fuel in accordance with point (b) or (c) of Article 31(1) or values in accordance with point (d) of Article 31(1).

Tier 2b: For commercially traded fuels the net calorific value as derived from the purchasing records for the respective fuel provided by the fuel supplier shall be used provided it has been derived based on accepted national or international standards.

Tier 3: The operator shall determine the net calorific value in accordance with Article 32 to 35.

2.3 **Tiers for oxidation factors**

Tier 1: The operator shall apply an oxidation factor of 1.

Tier 2: The operator shall apply oxidation factors for the respective fuel in accordance with point (b) or (c) of Article 31(1).

Tier 3: For fuels, the operator shall derive activity-specific factors based on the relevant carbon contents of ashes, effluents and other wastes and by-products, and other relevant incompletely oxidised gaseous forms of carbon emitted except CO. Composition data shall be determined in accordance with Article 32 to 35.

2.4 Tiers for biomass fraction

Tier 1: The operator shall apply an applicable value published by the competent authority or the Commission, or values in accordance with Article 31(1).

Tier 2: The operator shall apply an estimation method approved in accordance with the second subparagraph of Article 39(2).

Tier 3: The operator shall apply analyses in accordance with the first sub-paragraph of Article 39 (2), and in accordance with Articles 32 to 35.

Where an operator assumes a fossil fraction of 100 % in accordance with Article 39(1), no tier shall be assigned for the biomass fraction.

3. DEFINITION OF TIERS FOR CALCULATION FACTORS FOR MASS BALANCES

Where an operator uses a mass balance in accordance with Article 25, it shall use the tier definitions of this section.

3.1 Tiers for carbon content

The operator shall apply one of the tiers listed in this point. For deriving the carbon content from an emission factor, the operator shall use the following equations:

(a) for emission : C = (EF × NCV) / f factors expressed as t CO₂/TJ
(b) for emission : C = EF / f factors expressed as t CO₂/t

In those formulae, C is the carbon content expressed as fraction (tonne carbon per tonne product), EF is the emission factor, NCV is the net calorific value, and f is the factor laid down in Article 36(3).

Where a biomass fraction is determined for a mixed fuel or material, the tiers defined shall relate to the total carbon content. The biomass fraction of the carbon shall be determined using the tiers defined in section 2.4 of this Annex.

Tier 1: The operator shall apply one of the following:

- (a) the carbon content derived from standard factors listed in Annex VI sections 1 and 2;
- (b) other constant values in accordance with point (e) of Article 31(1), where no applicable value is contained in Annex VI sections 1 and 2.

Tier 2a: The operator shall derive the carbon content from country specific emission factors for the respective fuel or material in accordance with point (b) or (c) of Article 31(1) or values in accordance with point (d) of Article 31(1).

Tier 2b: The operator shall derive the carbon content from emission factors for the fuel based on one of the following established proxies in combination with an empirical correlation as determined at least once per year in accordance with Articles 32 to 35:

- (a) density measurement of specific oils or gases common, for example, to the refinery or steel industry;
- (b) net calorific value for specific coals types.

8

Changes to legislation: There are outstanding changes not yet made to Commission Implementing Regulation (EU) 2018/2066. Any changes that have already been made to the legislation appear in the content and are referenced with annotations. (See end of Document for details) View outstanding changes

The operator shall ensure that the correlation satisfies the requirements of good engineering practice and that it is applied only to values of the proxy which fall into the range for which it was established.

Tier 3: The operator shall apply one of the following:

- (a) determination of the carbon content in accordance with the relevant provisions of Articles 32 to 35;
- (b) the empirical correlation as specified for Tier 2b, where the operator demonstrates to the satisfaction of the competent authority that the uncertainty of the empirical correlation does not exceed 1/3 of the uncertainty value to which the operator has to adhere with regard to the activity data determination of the relevant fuel or material.

3.2 Tiers for net calorific values

The tiers defined in section 2.2 of this Annex shall be used.

3.3 **Tiers for biomass fraction**

The tiers defined in section 2.4 of this Annex shall be used.

4. DEFINITION OF TIERS FOR THE CALCULATION FACTORS FOR PROCESS EMISSIONS FROM CARBONATE DECOMPOSITION

For all process emissions, where they are monitored using the standard methodology in accordance with Article 24(2), the following tier definitions for the emission factor and the conversion factor shall be applied in the case of:

- (a) **Method A:** Input based, the emission factor and activity data related to the amount of material input into the process.
- (b) **Method B:** Output based, the emission factor and activity data related to the amount of output from the process.

4.1 Tiers for the emission factor using Method A:

Tier 1: The operator shall apply one of the following:

- (a) the standard factors listed in Annex VI section 2 Table 2;
- (b) other constant values in accordance with point (e) of Article 31(1), where no applicable value is contained in Annex VI.

Tier 2: The operator shall apply a country specific emission factor in accordance with point (b) or (c) of Art. 31(1), or values in accordance with point (d) of Article 31(1).

Tier 3: The operator shall determine the emission factor in accordance with Articles 32 to 35. Stoichiometric ratios as listed in section 2 of Annex VI shall be used to convert composition data into emission factors, where relevant.

4.2 Tiers for the conversion factor using Method A:

Tier 1: A conversion factor of 1 shall be used.

Tier 2: Carbonates and other carbon leaving the process shall be considered by means of a conversion factor with a value between 0 and 1. The operator may assume complete conversion for one or several inputs and attribute unconverted materials or other carbon to the remaining

inputs. The additional determination of relevant chemical parameters of the products shall be carried out in accordance with Articles 32 to 35.

4.3 Tiers for the emission factor using Method B:

Tier 1: The operator shall apply one of the following:

- (a) the standard factors listed in Annex VI section 2 Table 3.
- (b) other constant values in accordance with point (e) of Article 31(1), where no applicable value is contained in Annex VI.

Tier 2: The operator shall apply a country specific emission factor in accordance with point (b) or (c) of Article 31(1), or values in accordance with point (d) of Article 31(1).

Tier 3: The operator shall determine the emission factor in accordance with Articles 32 to 35. Stoichiometric ratios referred to in Annex VI section 2 Table 3 shall be used to convert composition data into emission factors assuming that all of the relevant metal oxides have been derived from respective carbonates. For this purpose the operator shall take into account at least CaO and MgO, and shall provide evidence to the competent authority as to which further metal oxides relate to carbonates in the raw materials.

4.4 Tiers for the conversion factor using Method B:

Tier 1: A conversion factor of 1 shall be used.

Tier 2: The amount of non-carbonate compounds of the relevant metals in the raw materials, including return dust or fly ash or other already calcined materials, shall be reflected by means of conversion factors with a value between 0 and 1 with a value of 1 corresponding to a full conversion of raw material carbonates into oxides. The additional determination of relevant chemical parameters of the process inputs shall be carried out in accordance with Articles 32 to 35.

5. DEFINITION OF TIERS FOR CALCULATION FACTORS FOR CO2 PROCESS EMISSIONS FROM OTHER MATERIALS THAN CARBONATES

Process materials giving raise to CO_2 emissions, including urea, coke, graphite and other non-carbonate carbon containing materials, shall be monitored using an input-based approach according to this section, unless included in a mass balance.

5.1 **Tiers for emission factors**

The tiers defined in section 2.1 of this Annex shall be used.

5.2 Tiers for net calorific value (NCV)

If the process material contains combustible carbon, the operator shall report the NCV value. The tiers defined in section 2.2 of this Annex shall be used.

5.3 Tiers for conversion / oxidation factors

If the process material contains combustible carbon, the operator shall apply an oxidation factor. For this purpose the tiers defined in section 2.3 of this Annex shall be used.

In all other cases the operator shall apply a conversion factor. For this purpose the following tier definitions shall apply:

Tier 1: A conversion factor of 1 shall be used.

Tier 2: Carbon leaving the process shall be considered by means of a conversion factor with a value between 0 and 1. The operator may assume complete conversion for one or several inputs and attribute unconverted materials or other carbon to the remaining inputs. The additional determination of relevant chemical parameters of the products shall be carried out in accordance with Articles 32 to 35.

5.4 **Tiers for biomass fraction**

The tiers defined in section 2.4 of this Annex shall be used.

Tl 20 ar	here a 18/20 re refe	es to legislation: re outstanding changes not yet made to Commission Implementing Regulation (EU) 066. Any changes that have already been made to the legislation appear in the content and renced with annotations.
	Cha	nges and effects yet to be applied to :
	-	Regulation amendment to earlier affecting provision S.I. 2020/1265, Sch. 4 by S.I. 2020/1557 art. 35(3)-(8)
	-	Regulation amendment to earlier affecting provision S.I. 2020/1265, Sch. 4 by S.I. 2021/1455 art. 22(2)-(9)
	-	Regulation amendment to earlier affecting provision S.I. 2020/1265, Sch. 4 by S.I. 2022/1173 art. 13
	-	Regulation amendment to earlier affecting provision S.I. 2020/1265, Sch. 4 by S.I. 2023/850 art. 8(2)
	-	Regulation amendment to earlier affecting provision S.I. 2020/1265, Sch. 7 para. 13 by S.I. 2022/1173 art. 17(3)
	_	Regulation modified by S.I. 2020/1265 art. 24Sch. 4
	_	Regulation modified by S.I. 2020/1265 Sch. 7 para. 13
	-	Regulation modified by 2019 c. 1, s. 77(4) (as substituted) by 2020 c. 14 Sch. 12 para. 7(3)
	-	Regulation power to amend conferred by 2019 c. 1, ss. 76, 77 (as amended) by 2020 c. 14 Sch. 12 para. $4(4)(b)(i)7(2)(b)$
	-	Regulation power to amend conferred by 2019 c. 1, ss. 76, 77 (as amended) by 2020 c. 14 Sch. 12 para. 5(b)7(2)(b)
	_	Regulation restricted by S.I. 2020/1265 Sch. 8 para. 5(3)
		Regulation resultered by 5.1. 2020/1205 Sell. 8 para. 5(5)