Status: This is the original version (as it was originally adopted).

ANNEX VI

Reference values for calculation factors (Article 31(1)(a))

2. Emission factors related to process emissions

Table 2:

STOICHIOMETRIC EMISSION FACTOR FOR PROCESS EMISSIONS FROM CARBONATE DECOMPOSITION (METHOD A)

Carbonate	Emission factor [t CO ₂ /t Carbonate]	
CaCO ₃	0,44	
MgCO ₃	0,522	
Na ₂ CO ₃	0,415	
BaCO ₃	0,223	
Li ₂ CO ₃	0,596	
K ₂ CO ₃	0,318	
SrCO ₃	0,298	
NaHCO ₃	0,524	
FeCO ₃	0,38	
General	Emission factor = $[M(CO_2)]/{Y * [M(x)] + Z}$ * $[M(CO_3^{2-})]}$	
	$X = metal$ $M(x) = molecular weight of X in [g/mol]$ $M(CO_2) = molecular weight of CO_2 in [g/mol]$ $M(CO_3^{2-}) = molecular weight of CO_3^{2-} in [g/mol]$ $Y = stoichiometric number of X$ $Z = stoichiometric number of CO_3^{2-}$	

Table 3:

STOICHIOMETRIC EMISSION FACTOR FOR PROCESS EMISSIONS FROM CARBONATE DECOMPOSITION BASED ON ALKALI EARTH OXIDES (METHOD B)

Oxide	Emission factor [t CO ₂ /t Oxide]
CaO	0,785
MgO	1,092
BaO	0,287
general: X _Y O _Z	Emission factor = $[M(CO_2)]/{Y * [M(x)] + Z}$ * $[M(O)]$ }

Status: This is the original version (as it was originally adopted).

X = alkali earth or alkali metal
M(x) = molecular weight of X in [g/mol]
M(CO₂) = molecular weight of CO₂ [g/mol]
M(O) = molecular weight of O [g/mol]
Y = stoichiometric number of X
= 1 (for alkali earth metals)
= 2 (for alkali metals)
Z = stoichiometric number of O = 1

Table 4:

STOICHIOMETRIC EMISSION FACTORS FOR PROCESS EMISSIONS FROM OTHER PROCESS MATERIALS (PRODUCTION OF IRON AND STEEL, AND PROCESSING OF FERROUS METALS)⁰

Input or output material	Carbon content(t C/t)	Emission factor(t CO ₂ /t)
Direct reduced iron (DRI)	0,0191	0,07
EAF carbon electrodes	0,8188	3,0
EAF charge carbon	0,8297	3,04
Hot briquetted iron	0,0191	0,07
Oxygen steel furnace gas	0,3493	1,28
Petroleum coke	0,8706	3,19
Purchased pig iron	0,0409	0,15
Scrap iron	0,0409	0,15
Steel	0,0109	0,04

a IPCC 2006 Guidelines for National Greenhouse Gas Inventories.

Table 5: STOICHIOMETRIC EMISSION FACTORS FOR PROCESS EMISSIONS FROM OTHER PROCESS MATERIALS (BULK ORGANIC CHEMICALS)⁰

Substance	Carbon content(t C/t)	Emission factor(t CO ₂ /t)
Acetonitril	0,5852	2,144
Acrylonitrile	0,6664	2,442
Butadiene	0,888	3,254
Carbon black	0,97	3,554
Ethylene	0,856	3,136
Ethylene dichloride	0,245	0,898
Ethylene glycol	0,387	1,418
Ethylene oxide	0,545	1,997
a IDCC 2006 Cuidalinas for No	ational Croombourge Cog Inventories	1

a IPCC 2006 Guidelines for National Greenhouse Gas Inventories.

Document Generated: 2024-02-10

Status: This is the original version (as it was originally adopted).

Hydrogen cyanide	0,4444	1,628
Methanol	0,375	1,374
Methane	0,749	2,744
Propane	0,817	2,993
Propylene	0,8563	3,137
Vinyl chloride monomer	0,384	1,407

a IPCC 2006 Guidelines for National Greenhouse Gas Inventories.