Commission Regulation (EU) No 582/2011 of 25 May 2011 implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council (Text with EEA relevance)

ANNEX XI

EC TYPE-APPROVAL OF REPLACEMENT POLLUTION CONTROL DEVICES AS SEPARATE TECHNICAL UNIT

1. INTRODUCTION

1.1. This Annex contains additional requirements for the type-approval of replacement pollution control devices as separate technical units.

2. GENERAL REQUIREMENTS

2.1. Marking

- 2.1.1. Each replacement pollution control device shall bear at least the following identifications:
- (a) the manufacturer's name or trade mark;
- (b) the make and identifying part number of the replacement pollution control device as recorded in the information document issued in accordance with the model set out in Appendix 1.
- 2.1.2. Each original replacement pollution control device shall bear at least the following identifications:
- (a) the vehicle or engine manufacturer's name or trade mark;
- (b) the make and identifying part number of the original replacement pollution control device as recorded in the information referred to in point 2.3.

2.2. **Documentation**

- 2.2.1. Each replacement pollution control device shall be accompanied by the following information:
- (a) the manufacturer's name or trade mark;
- (b) the make and identifying part number of the replacement pollution control device as recorded in the information document issued in accordance with the model set out in Appendix 1;
- (c) the vehicles or engines including year of manufacture for which the replacement pollution control device is approved, including, where applicable, a marking to identify if the replacement pollution control device is suitable for fitting to a vehicle that is equipped with an on-board diagnostic (OBD) system;
- (d) installation instructions.

The information referred to in this point shall be available in the product catalogue distributed to points of sale by the manufacturer of replacement pollution control devices.

- 2.2.2. Each original replacement pollution control device shall be accompanied by the following information:
- (a) the vehicle or engine manufacturer's name or trade mark;
- (b) the make and identifying part number of the original replacement pollution control device as recorded in the information mentioned in Section 2.3;

- (c) the vehicles or engines for which the original replacement pollution control device is of a type covered by point 3.2.12.2.1 of Appendix 4 to Annex I, including, where applicable, a marking to identify if the original replacement pollution control device is suitable for fitting to a vehicle that is equipped with an on-board diagnostic (OBD) system;
- (d) installation instructions.

This information referred to in this point shall be available in the product catalogue distributed to points of sale by the vehicle or engine manufacturer.

2.3. For an original replacement pollution control device, the vehicle or engine manufacturer shall provide to the approval authority the necessary information in electronic format which makes the link between the relevant part numbers and the type-approval documentation.

This information shall contain the following:

- (a) make(s) and type(s) of vehicle or engine;
- (b) make(s) and type(s) of original replacement pollution control device;
- (c) part number(s) of original replacement pollution control device;
- (d) type-approval number of the relevant engine or vehicle type(s).
- 3. EC SEPARATE TECHNICAL UNIT TYPE-APPROVAL MARK
- 3.1. Every replacement pollution control device conforming to the type approved under this Regulation as a separate technical unit shall bear an EC type-approval mark.
- 3.2. This mark shall consist of a rectangle surrounding the lower-case letter 'e' followed by the distinguishing number of the Member State which has granted the EC type-approval:
- 1. for Germany
- 2. for France
- 3. for Italy
- 4. for the Netherlands
- 5. for Sweden
- 6. for Belgium
- 7. for Hungary
- 8. for Czech Republic
- 9. for Spain
- 11. for the United Kingdom
- 12. for Austria
- 13. for Luxembourg
- 17. for Finland

- 18. for Denmark
- 19. for Romania
- 20. for Poland
- 21. for Portugal
- 23. for Greece
- 24. for Ireland
- 25. [^{F1}for Croatia]
- 26. for Slovenia
- 27. for Slovakia
- 29. for Estonia
- 32. for Latvia
- 34. for Bulgaria
- 36. for Lithuania
- 49. for Cyprus
- 50. for Malta

Textual Amendments

F1 Inserted by Commission Regulation (EU) No 519/2013 of 21 February 2013 adapting certain regulations and decisions in the fields of free movement of goods, freedom of movement for persons, right of establishment and freedom to provide services, company law, competition policy, agriculture, food safety, veterinary and phytosanitary policy, fisheries, transport policy, energy, taxation, statistics, social policy and employment, environment, customs union, external relations, and foreign, security and defence policy, by reason of the accession of Croatia.

The EC type-approval mark shall also include in the vicinity of the rectangle the 'base approval number' contained in Section 4 of the type-approval number referred to in Annex VII to Directive 2007/46/EC, preceded by the two figures indicating the sequence number assigned to the latest major technical amendment to Regulation (EC) No 595/2009 or this Regulation on the date EC type-approval for a separate technical unit was granted. For this Regulation, the sequence number is 00.

- 3.3. The EC type-approval mark shall be affixed to the replacement pollution control device in such a way as to be clearly legible and indelible. It shall, wherever possible, be visible when the replacement pollution control device is installed on the vehicle.
- 3.4. An example of the EC type-approval mark for a separate technical unit is given in Appendix 8 to Annex I.
- 4. TECHNICAL REQUIREMENTS
- 4.1. General requirements

- 4.1.1. The replacement pollution control device shall be designed, constructed and capable of being mounted so as to enable the engine and vehicle to comply with the rules with which it was originally in compliance and that pollutant emissions are effectively limited throughout the normal life of the vehicle under normal conditions of use.
- 4.1.2. The installation of the replacement pollution control device shall be at the exact position of the original equipment pollution control device, and the position on the exhaust line of the exhaust gas, temperature and pressure sensors shall not be modified.
- 4.1.3. If the original equipment pollution control device includes thermal protections, the replacement pollution control device shall include equivalent protections.
- 4.1.4. Upon request of the applicant for the type-approval of the replacement component, the approval authority that granted the original type-approval of the engine system shall make available on a non-discriminatory basis, the information referred to in points 3.2.12.2.6.8.1 and 3.2.12.2.6.8.2 in Part 1 of the information document contained in Appendix 4 to Annex I for each engine to be tested.

4.2. General durability requirements

The replacement pollution control device shall be durable, that is designed, constructed and capable of being mounted so that reasonable resistance to the corrosion and oxidation phenomena to which it is exposed is obtained, having regard to the conditions of use of the vehicle.

The design of the replacement pollution control device shall be such that the elements active in controlling emissions are adequately protected from mechanical shock so as to ensure that pollutant emissions are effectively limited throughout the normal life of the vehicle under normal conditions of use.

The applicant for type-approval shall provide to the approval authority details of the test used to establish robustness to mechanical shock and the results of that test.

4.3. **Requirements regarding emissions**

[^{F2}4.3.1. Outline of procedure for evaluation of emissions

The engines indicated in point (a) of Article 16(4) equipped with a complete emissions control system, including the replacement pollution control device of the type for which approval is requested, shall be subjected to tests appropriate for the intended application as described in Annex 4 to UNECE Regulation No 49, in order to compare its performance with the original emissions control system in accordance with the procedure described in points 4.3.1.1 and 4.3.1.2.]

- 4.3.1.1. Where the replacement pollution control device does not comprise the complete emissions control system, only new original equipment or new original replacement pollution control components shall be used to provide a complete system.
- 4.3.1.2. The emissions control system shall be aged according to the procedure described in point 4.3.2.4 and retested to establish the durability of its emissions performance.

The durability of a replacement pollution control device is determined from a comparison of the two successive sets of exhaust gas emissions tests:

(a) the first set is that made with the replacement pollution control device which has been run in with 12 WHSC Cycles;

(b) the second set is that made with the replacement pollution control device which has been aged by the procedures detailed below.

Where approval is applied for different types of engines from the same engine manufacturer, and provided that these different types of engines are fitted with an identical original equipment pollution control system, the testing may be limited to at least two engines selected after agreement with the approval authority.

Textual Amendments

- **F2** Substituted by Commission Regulation (EU) No 133/2014 of 31 January 2014 amending, for the purposes of adapting to technical progress as regards emission limits, Directive 2007/46/EC of the European Parliament and of the Council, Regulation (EC) No 595/2009 of the European Parliament and of the Council and Commission Regulation (EU) No 582/2011 (Text with EEA relevance).
- 4.3.2. *Procedure for evaluation of emissions performance of a replacement pollution control device*
- 4.3.2.1. The engine or engines shall be fitted with a new original equipment pollution control device according to Article 16(4).

[^{F2}The exhaust after-treatment system shall be preconditioned with 12 WHSC cycles. After this preconditioning, the engines shall be tested in accordance with the WHDC test procedures described in Annex 4 to UNECE Regulation No 49. Three exhaust gas tests of each appropriate type shall be performed.]

The test engines with the original exhaust after-treatment system or original replacement exhaust after-treatment system shall comply with the limit values according to the type-approval of the engine or vehicle.

4.3.2.2. Exhaust gas test with replacement pollution control device

The replacement pollution control device to be evaluated shall be fitted to the exhaust aftertreatment system tested according to the requirements of point 4.3.2.1, replacing the relevant original equipment exhaust after-treatment device.

[^{F2}The exhaust after-treatment system incorporating the replacement pollution control device shall then be preconditioned with 12 WHSC cycles. After this preconditioning, the engines shall be tested in accordance with the WHDC procedures described in Annex 4 to UNECE Regulation No 49. Three exhaust gas tests of each appropriate type shall be performed.]

4.3.2.3. Initial evaluation of the emission of pollutants of engines equipped with replacement pollution control devices

The requirements regarding emissions of the engines equipped with the replacement pollution control device shall be deemed to be fulfilled if the results for each regulated pollutant (CO, HC, NMHC, methane, NO_x , NH_3 , particulate mass and particle number as appropriate for the type-approval of the engine) meet the following conditions:

- (1) $M \le 0.85S + 0.4G;$
- (2) $M \leq G$

where:

М	:	mean value of the emissions of one pollutant obtained from the three
		tests with the replacement pollution control device.
S	:	mean value of the emissions of one pollutant obtained from the three
		tests with the original or original replacement pollution control device.
G	:	limit value of the emissions of one pollutant according to the type-
		approval of the vehicle.

[^{F3}4.3.2.4,Durability of emissions performance

The exhaust after-treatment system tested in accordance with point 4.3.2.2 and incorporating the replacement pollution control device shall be subjected to the durability procedures described in Appendix 3.]

Textual Amendments

F3 Substituted by Commission Regulation (EU) 2016/1718 of 20 September 2016 amending Regulation (EU) No 582/2011 with respect to emissions from heavy-duty vehicles as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the procedure for the testing of the durability of replacement pollution control devices (Text with EEA relevance).

4.3.2.5. Exhaust gas test with aged replacement pollution control device

The aged exhaust after-treatment system incorporating the aged replacement control device shall then be fitted to the test engine used in points 4.3.2.1 and 4.3.2.2

[^{F2}The aged exhaust after-treatment systems shall be preconditioned with 12 WHSC cycles and subsequently tested using the WHDC procedures described in Annex 4 to UNECE Regulation No 49. Three exhaust gas tests of each appropriate type shall be performed.]

[^{F2}4.3.2.6.Determination of ageing factor for the replacement pollution control device

The ageing factor for each pollutant shall be the ratio of the applied emission value at the useful life end point and that at the start of the service accumulation (e.g., if the emissions of pollutant A at the start of the service accumulation are 1.50 g/kWh and those at the useful life end point are 1.82 g/kWh, the ageing factor is 1.82/1.50 = 1.21).]

4.3.2.7. Evaluation of the emission of pollutants of engines equipped with replacement pollution control devices

The requirements regarding emissions of the engines equipped with the aged replacement pollution control device (as described in point 4.3.2.5) shall be deemed to be fulfilled if the results for each regulated pollutant (CO, HC, NMHC, methane, NO_x , NH_3 , particulate mass and particle number as appropriate for the type-approval of the engine) meet the following condition:

 $M \times AF \leq G$

where:

М	: mean value of the emissions of one pollutant obtained from the three tests with the preconditioned replacement pollution control device before ageing (i.e. results from Section 4.3.2)
	 the aging factor for one pollutant limit value of the emissions of one pollutant according to the type- approval of the vehicle(s).

4.3.3. Replacement pollution control device technology family

The manufacturer may identify a replacement pollution control device technology family, to be identified by basic characteristics which shall be common to devices within the family.

To belong to the same replacement pollution control device technology family the replacement pollution control devices shall have the following:

- (a) the same emissions control mechanism (oxidation catalyst, three-way catalyst, particulate filter, selective catalytic reduction for NO_x , etc.);
- (b) the same substrate material (same type of ceramic, or same type of metal);
- (c) the same substrate type and cell density;
- (d) the same catalytically active materials and, where more than one, the same ratio of catalytically active materials;
- (e) the same total charge of catalytically active materials;
- (f) the same type of washcoat applied by the same process.
- 4.3.4. Assessment of the durability of emissions performance of a replacement pollution control device by use of a technology family aging factor

Where the manufacturer has identified a replacement pollution control technology family, the procedures described in point 4.3.2 may be used to determine the Aging Factors (AFs) for each pollutant for the parent of that family. The engine on which these tests are conducted shall have a minimum engine displacement of $[0,75 \text{ dm}^3]$ per cylinder.

4.3.4.1. Determination of durability performance of family members

A replacement pollution control device A within a family and intended to be mounted on an engine of displacement C_A may be considered to have the same aging factors as the parent replacement pollution control device P, determined on an engine of displacement C_P , if the following conditions are fulfilled:

$$V_A/C_A \ge V_P/C_P$$

where:

VA	: Substrate volume (in dm ³) of replacement pollution control device A
VP	: Substrate volume (in dm ³) of the parent replacement pollution control
	device P of the same family; and

both engines use the same method for regeneration of any emissions control devices incorporated in the original exhaust after-treatment system. This requirement shall apply only where devices requiring regeneration are incorporated in the original exhaust after-treatment system.

If these conditions are fulfilled, the emissions durability performance of other members of the family may be determined from the emissions results (S) of that family member determined according to the requirements set out in points 4.3.2.1, 4.3.2.2 and 4.3.2.3 and using the Aging Factors determined for the parent of that family.

[^{F4}4.3.5. Fuels

In the case described in point 1.1.2 of Annex I, the test procedure laid down in points 4.3.1 to 4.3.2.7 of this Annex shall be conducted with the fuels declared by the manufacturer of the original engine system. However, in agreement with the type-approval authority, the durability

procedure set out in Appendix 3 and referred to in point 4.3.2.4 may be performed only with the fuel which represents the worst case in terms of ageing.]

Textual Amendments

F4 Inserted by Commission Regulation (EU) 2016/1718 of 20 September 2016 amending Regulation (EU) No 582/2011 with respect to emissions from heavy-duty vehicles as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the procedure for the testing of the durability of replacement pollution control devices (Text with EEA relevance).

4.4. **Requirements regarding exhaust back-pressure**

The back pressure shall not cause the complete exhaust system to exceed the value specified according to point 4.1.2 of Annex I.

- 4.5. Requirements regarding OBD compatibility (applicable only to replacement pollution control devices intended to be fitted to vehicles equipped with an OBD system)
- 4.5.1. OBD compatibility demonstration is required only when the original pollution control device was monitored in the original configuration.
- 4.5.2. The compatibility of the replacement pollution control device with the OBD system shall be demonstrated by using the procedures described in Annex X to this Regulation and Annex 9B to UN/ECE Regulation No 49 for replacement pollution control devices intended to be fitted to engines or vehicles type-approved in accordance with Regulation (EC) No 595/2009 and this Regulation.
- 4.5.3. The provisions in UN/ECE Regulation No 49 applicable to components other than pollution control devices shall not apply.
- 4.5.4. The replacement pollution control device manufacturer may use the same preconditioning and test procedure as used during the original type-approval. In this case, the approval authority which granted original type-approval of an engine of a vehicle shall provide, on request and on a non-discriminatory basis, Appendix on test conditions to Appendix 4 to Annex I which contains the number and type of preconditioning cycles and the type of test cycle used by the original equipment manufacturer for OBD testing of the pollution control device.
- 4.5.5. In order to verify the correct installation and functioning of all other components monitored by the OBD system, the OBD system shall indicate no malfunction and have no stored fault codes prior to the installation of any of the replacement pollution control device. An evaluation of the status of the OBD system at the end of the tests described in points 4.3.2 to 4.3.2.7 may be used for this purpose.
- 4.5.6. The malfunction indicator shall not activate during vehicle operation required by points 4.3.2 to 4.3.2.7.
- [^{F4}4.6. Requirements regarding compatibility with the NO_x control measures (applicable only to replacement pollution control devices to be fitted to vehicles equipped with sensors directly measuring NO_x concentration in the exhaust)
- 4.6.1. NO_x control measures compatibility demonstration is required only when the original pollution control device was monitored in the original configuration.

- 4.6.2. The compatibility of the replacement pollution control device with the NO_x control measures shall be demonstrated by using the procedures described in Annex XIII to this Regulation, for replacement pollution control devices intended to be fitted to engines or vehicles type-approved in accordance with Regulation (EC) No 595/2009 and this Regulation.
- 4.6.3. The provisions in UN/ECE Regulation No 49 applicable to components other than pollution control devices shall not apply.
- 4.6.4. The replacement pollution control device manufacturer may use the same preconditioning and test procedure as used during the original type-approval. In that case, the approval authority which granted original type-approval of an engine of a vehicle shall provide, on request and on a non-discriminatory basis, an information document presented as an appendix to the Information Document provided for in Appendix 4 to Annex I, which contains the number and type of preconditioning cycles and the type of test cycle used by the original equipment manufacturer for NO_x control measures testing of the pollution control device.
- 4.6.5. Point 4.5.5 shall apply to NO_x control measures monitored by the OBD system.]
- 5. CONFORMITY OF PRODUCTION
- 5.1. Measures to ensure the conformity of production shall be taken in accordance with Article 12 of Directive 2007/46/EC.

5.2. **Special provisions**

- 5.2.1. The checks referred to in Section 2.2 of Annex X to Directive 2007/46/EC shall include compliance with the characteristics as defined under 'type of pollution control device' in Article 2(8) of Regulation (EC) No 692/2008.
- 5.2.2. For the application of Article 12(2) of Directive 2007/46/EC, the tests described in Section 4.3 of this Annex (requirements regarding emissions) may be carried out. In this case, the holder of the approval may request, as an alternative, to use as a basis for comparison not the original equipment pollution control device, but the replacement pollution control device which was used during the type-approval tests (or another sample that has been proven to conform to the approved type). Emissions values measured with the sample under verification shall then on average not exceed by more than 15 % the mean values measured with the sample used for reference.

Appendix 1

MODELInformation document No ...

relating to the EC type-approval of replacement pollution control devices

The following information shall be supplied in triplicate and include a list of contents. Any drawings shall be supplied in appropriate scale and sufficient detail on size A4 or on a folder of A4 format. Photographs, if any, shall show sufficient detail.

If the systems, components or separate technical units have electronic controls, information concerning their performance shall be supplied.

- 0. GENERAL
- 0.1. Make (trade name of manufacturer): ...
- 0.2. Type ...
- 0.2.1. Commercial name(s) (if available): ...
- 0.3. Means of identification of type: ...
- 0.5. Name and address of manufacturer: ...
- 0.7. In the case of components and separate technical units, location and method of affixing of the EC approval mark: ...
- 0.8. Name(s) and address(es) of assembly plant(s): ...
- 0.9 Name and address of the manufacturer's authorised representative (if any): ...
- 1. DESCRIPTION OF THE DEVICE
- 1.1. Type of the replacement pollution control device: (oxidation catalyst, three-way catalyst, SCR catalyst, particulate filter, etc.) ...
- 1.2. Drawings of the replacement pollution control device, identifying in particular all the characteristics referred to under 'type of pollution control device' of Article 2 of Regulation (EU) No 582/2011: ...
- 1.3. Description of the engine and vehicle type or types for which the replacement pollution control device is intended: ...
- 1.3.1. Number(s) and/or symbol(s) characterising the engine and vehicle type(s): ...
- 1.3.2 Number(s) and/or symbol(s) characterising the original pollution control device(s) which the replacement pollution control device is intended to replace: ...
- 1.3.3. Is the replacement pollution control device intended to be compatible with OBD requirements (Yes/No)⁽¹⁾
- 1.3.4. Is the replacement pollution control device compatible with existing vehicle/engine control systems (yes/no)⁽¹⁾
- 1.4. Description and drawings showing the position of the replacement pollution control device relative to the engine exhaust manifold(s): ...
- [^{F5}2. ACCESS TO VEHICLE REPAIR AND MAINTENANCE INFORMATION
- 2.1. Address of principal website for access to vehicle repair and maintenance information

- 2.1.1. Date from which it is available (no later than six months from the date of type-approval)
- 2.2. Terms and conditions of access to website
- 2.3. Format of the vehicle repair and maintenance information accessible through website]

Textual Amendments

F5 Substituted by Commission Regulation (EU) No 64/2012 of 23 January 2012 amending Regulation (EU) No 582/2011 implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) (Text with EEA relevance).

Appendix 2

MODEL (Maximum format: A4 (210 mm × 297 mm)) EC TYPE-APPROVAL CERTIFICATE EC TYPE-APPROVAL CERTIFICATE

Stamp of administration

Communication concerning the:

- EC type-approval (¹) ...,
- extension of EC type-approval (¹) ...,
- refusal of EC type-approval (¹) ...,
- withdrawal of EC type-approval $(^1)$...

of a type of component/separate technical unit⁽²⁾

with regard to Regulation (EC) No 595/2009, as implemented by Regulation (EU) No 582/2011.

Regulation (EC) No 595/2009 or Regulation (EU) No 582/2011, as last amended by ...

EC type-approval number: ...

Reason for extension: ...

SECTION0.1.

Ι

Make (trade name of manufacturer): ...

- 0.2. Type: ...
- 0.3. Means of identification of type marked on the component/separate technical unit⁽³⁾ (Identifying Part Number): ...
- 0.3.1. Location of that marking: ...
- 0.5. Name and address of manufacturer: ...
- 0.7. In the case of components and separate technical units, location and method of affixing of the EC approval mark: ...
- 0.8. Name and address(es) of assembly plant(s): ...
- 0.9. Name and address of manufacturer's representative: ...

SECTIOM.

II Additional information

- 1.1. Make and type of the replacement pollution control device: (oxidation catalyst, threeway catalyst, SCR catalyst, particulate filter, etc.) ...
- 1.2. Engine and vehicle type(s) for which the pollution control device type qualifies as replacement part: ...

- 1.3. Type(s) of engine on which the replacement pollution control device has been tested:
- 1.3.1. Has the replacement pollution control device demonstrated compatibility with OBD requirements $(yes/no)^{(2)}$: ...
- 2. Technical service responsible for carrying out the tests: ...
- 3. Date of test report: ...
- 4. Number of test report: ...
- 5. Remarks: ...
- 6. Place: ...
- 7. Date: ...
- 8. Signature: ...

Attachments : Information package.

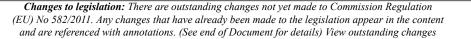
Test report.

Document Generated: 2023-09-21

Changes to legislation: There are outstanding changes not yet made to Commission Regulation (EU) No 582/2011. Any changes that have already been made to the legislation appear in the content and are referenced with annotations. (See end of Document for details) View outstanding changes

[^{F3}Appendix 3

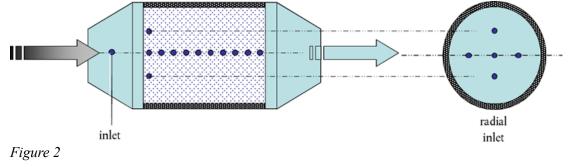
Durability procedure for evaluation of emissions performance of a replacement pollution control device


1. This Appendix sets out the durability procedure referred to in point 4.3.2.4 of Annex XI, for the purpose of evaluating the emissions performance of a replacement pollution control device.

2. DESCRIPTION OF THE DURABILITY PROCEDURE

2.1. The durability procedure shall consist of a data collection phase and a service accumulation schedule.

2.2. **Data collection phase**


- 2.2.1. The selected engine, equipped with the complete exhaust after-treatment system incorporating the replacement pollution control device, shall be cooled down to ambient temperature and run one cold start WHTC test-cycle in accordance with paragraphs 7.6.1 and 7.6.2 of Annex 4 to UN/ECE Regulation No 49.
- 2.2.2. Immediately after the cold start WHTC test-cycle, the engine shall be run for nine consecutive hot start WHTC test-cycles in accordance with paragraph 7.6.4 of Annex 4 to UN/ECE Regulation No 49.
- 2.2.3. The test sequence set out in points 2.2.1 and 2.2.2 shall be carried out in accordance with the instructions laid down in paragraph 7.6.5 of Annex 4 to UN/ECE Regulation No 49.
- 2.2.4. Alternatively, the relevant data can be collected by driving a fully loaded vehicle equipped with the selected exhaust after-treatment system incorporating the replacement pollution control device. The test can be carried out either on the road following the trip requirements of points 4.5 to 4.5.5 of Annex II to this Regulation with comprehensive recording of the driving data, or on a suitable chassis dynamometer. If an on-road test is chosen, the vehicle shall be driven over a cold test-cycle, as set out in Appendix 5 to this Annex, followed by nine hot test-cycles, identical to the cold one, in a way that the work developed by the engine is the same as the one achieved under points 2.2.1 and 2.2.2. If a chassis dynamometer is chosen, the work developed by the engine over the WHTC.
- 2.2.5. The type-approval authority shall refuse the temperature data obtained under point 2.2.4 if it deems those data to be unrealistic and shall request either the repetition of the test, or the carrying out of a test pursuant to points 2.2.1, 2.2.2 and 2.2.3.
- 2.2.6. Temperatures in the replacement pollution control device shall be recorded during the whole test sequence, at the location with the highest temperature.
- 2.2.7. In cases where the location with the highest temperature varies over time, or where that location is difficult to define, multiple bed temperatures should be recorded at suitable locations.
- 2.2.8. The number and locations of the temperature measurements shall be selected by the manufacturer, in agreement with the type-approval authority, based on best engineering judgement.

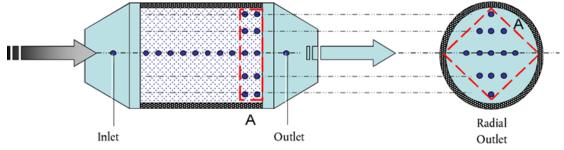

2.2.9. With the agreement of the type-approval authority, a single catalyst bed temperature or the catalyst inlet temperature may be used if measuring multiple bed temperatures is proven to be unfeasible or too difficult.

Figure 1

Example of temperature sensors location in a generic after-treatment device

Example of temperature sensors location for DPF

- 2.2.10. The temperatures shall be measured and recorded at a minimum rate of once every second (1 Hz) during the test sequence.
- 2.2.11. The measured temperatures shall be tabulated into a histogram with temperature bins no larger than 10 °C. In the case mentioned in point 2.2.7, the highest temperature each second shall be the one recorded in the histogram. Each bar of the histogram shall represent the cumulated frequency in seconds of the measured temperatures falling in the specific bin.
- 2.2.12. The time in hours corresponding to each temperature bin must be determined and then extrapolated to the useful life of the replacement pollution control device, in accordance with the values specified in Table 1. The extrapolation shall be based on the assumption that one WHTC cycle corresponds to 20 km driving.

TABLE 1

Useful life of the replacement pollution control device for each vehicle category, and equivalent WHTC test-cycles and hours of operation

Vehicle category	Mileage (km)	Equivalent number of WHTC test-cycles	Equivalent number of hours
Engine systems fitted to vehicles of	114 286	5 714	2 857

category M_1 , N_1 and N_2			
Engine systems fitted to vehicles of category N_2 , N_3 with a maximum technically permissible mass not exceeding 16 tonnes and M_3 Class I, Class II and Class A, and Class B with a maximum technically permissible mass exceeding 7,5 tonnes	214 286	10 714	5 357
Engine systems fitted to vehicles of category N_3 with a maximum technically permissible mass exceeding 16 tonnes, and M_3 , Class III and Class B with a maximum technically permissible mass exceeding 7,5 tonnes	500 000	25 000	12 500

- 2.2.13. It is allowed to perform the data collection phase for different devices at the same time.
- 2.2.14. In the case of systems operating in the presence of active regeneration, the number, length and temperatures of the regenerations occurring during the test sequence defined in points 2.2.1 and 2.2.2 shall be recorded. If no active regeneration has occurred, the hot sequence defined in point 2.2.2 shall be extended in order to include at least two active regenerations.
- 2.2.15. The total lubricant consumed during the data collection period, in g/h, shall be recorded, using any suitable method, as for example the drain and weigh procedure described in Appendix 6. For this purpose, the engine shall be run during 24 hours, performing consecutive WHTC test-cycles. In cases where an accurate measurement of oil consumption cannot be obtained, the manufacturer, in agreement with the type-approval authority, may use the following options for the determination of the lubricant consumption:
- (a) a default value of 30 g/h;
- (b) a value requested by the manufacturer, based on sound data and information, and agreed with the type-approval authority.
- 2.3. Calculation of the equivalent ageing time corresponding to a reference temperature

- 2.3.1. The temperatures recorded pursuant to points 2.2 to 2.2.15 shall be reduced to a reference temperature T_r , requested by the manufacturer in agreement with the type-approval authority, within the range of the temperatures recorded during the data collection phase.
- 2.3.2. In the case specified in point 2.2.13, the value of T_r for each one of the devices may vary.
- 2.3.3. The equivalent ageing time corresponding to the reference temperature shall be calculated, for each bin referred to in 2.2.11, in accordance with the following equation:

Equation 1:

$$t^e_i = t^{bin}_i imes e^{\left(\left(rac{R}{T_r}
ight) - \left(rac{R}{T_i^{bin}}
ight)
ight)}$$

Where:

where.		
R	=	thermal reactivity of the replacement pollution control device.
		 The following values shall be used: Diesel oxidation catalyst (DOC): 18 050 Catalysed DPF: 18 050
		 SCR or ammonia oxidation catalyst (AMOX) based on iron- zeolite (Fe-Z): 5 175
		— SCR copper-zeolite (Cu-Z): 11 550
		— SCR Vanadium (V): 5 175
		- LNT (lean-NO _x trap): $18\ 050$
T_r		reference temperature, in <i>K</i> .
T_i^{bin}	=	mid-point temperature, in K , of the temperature bin i to which the replacement pollution control device is exposed during the data collection phase, registered in the temperature histogram.
t_i^{bin}	=	the time, in notice, conceptionand to the temperature
		T_i^{bin} , adjusted to a full useful life basis e.g. if the histogram represented 5 hours, and useful life is 4 000 hours according to Table 1, all histogram time entries would be multiplied by $\frac{4000}{5} = 800$
t,	=	the equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_i^{bin} during the time t_i^{bin}
i	=	bin number, where 1 is number for the bin with the lowest temperature and n the value for the bin with the highest temperature.

18

2.3.4. The total equivalent ageing time shall be calculated in accordance with the following equation:

Equation 2:

$$AT = \sum_{i=1}^{n} t_{i}^{e}$$

Where:

AT	 total equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r, the same amount of ageing as the one that would result from exposure of the replacement pollution control device, over its useful life, to the temperature T_i^{kin} during the time t_i^{kin} of each one of the <i>i</i> bins registered in the histogram. the equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r, the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_r, the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_i^{kin} during the time time the time time time time time time time tim					
	· · · · · · · · · · · · · · · · · · ·					
i	= bin number, where 1 is number for the bin with the lowest temperature and <i>n</i> the value for the bin with the highest temperature.					
п	= Total number of temperature bins.					
2.3.5.	In the case referred to in point 2.2.13, AT shall be calculated for each device.					
2.4.	Service accumulation schedule					
2.4.1.	General requirements					
2.4.1.1.	The service accumulation schedule shall allow acceleration of the ageing of the					

- 2.4.1.1. The service accumulation schedule shall allow acceleration of the ageing of the replacement pollution control device, using the information gathered during the data collection phase set out in point 2.2.
- 2.4.1.2. The service accumulation schedule shall consist of a thermal accumulation schedule and a lubricant consumption accumulation schedule in accordance with point 2.4.4.6. The manufacturer, in agreement with the type-approval authority, may not have to carry out a lubricant consumption accumulation schedule in case the replacement pollution control devices are placed downstream of an after-treatment filter component (e.g. diesel particulate filter). Both the thermal accumulation schedule and the lubricant consumption accumulation schedule shall consist of a repetition of, respectively, a series of thermal and lubricant consumption sequences.
- 2.4.1.3. In the case of replacement pollution control devices operating in the presence of active regeneration, the thermal sequence shall be complemented with an active regeneration mode.
- 2.4.1.4. For service accumulation schedules consisting of both thermal and lubricant consumption accumulation schedules, their respective sequences shall be alternated,

so that for each thermal sequence that has to be performed, the following sequence corresponds to lubricant consumption.

- 2.4.1.5. It is allowed to perform the service accumulation schedule at the same time for different devices. In that case, a single service accumulation schedule shall be set for all the devices.
- 2.4.2. Thermal accumulation schedule
- 2.4.2.1. The thermal accumulation schedule shall simulate the effect of thermal ageing on the performance of a replacement pollution control device until the end of its lifetime.
- 2.4.2.2. The engine used for the performance of the service accumulation schedule, fitted with the exhaust after-treatment system incorporating the replacement pollution control device, is operated for a minimum of three consecutive thermal sequences, as set out in Appendix 4.
- 2.4.2.3. The temperatures shall be recorded over a minimum of two thermal sequences. The first sequence, conducted for warming up, shall not be taken into account for the purpose of temperature gathering.
- 2.4.2.4. The temperatures shall be recorded at suitable locations, chosen in accordance with points 2.2.6 to 2.2.9, at a minimum rate of once every second (1 Hz).
- 2.4.2.5. The effective ageing time corresponding to the thermal sequences referred to in point 2.4.2.3, shall be calculated in accordance with the following equations: Equation 3:

$$t_i^e = \frac{\sum_{n=1}^{C} e^{\left(\left(\frac{R}{T_r}\right) - \left(\frac{R}{T_i}\right)\right)}}{C}$$

Equation 4:

$$AE = \sum_{i=1}^{p} t_{i}^{e}$$

Where:

 t_i^e

 T_i

R

- = the effective ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device at the temperature T_i during the second *i*.
- = the temperature, in K, measured in the second i, in each one of the thermal sequences.
- = thermal reactivity of the replacement pollution control device. The manufacturer shall agree with the type-approval authority on the *R* value to be used. It will also be possible, as alternative, to use the following default values:
 - Diesel oxidation catalyst (DOC): 18 050.
 - Catalysed DPF: 18 050
 - SCR or ammonia oxidation catalyst (AMOX) based on ironzeolite (Fe-Z): 5 175
 - SCR copper-zeolite (Cu-Z): 11 550
 - SCR Vanadium (V): 5 175

LNT (lean-NO_x trap): 18050

T _r AE	= reference temperature, in <i>K</i> , being the same value as in equation 1. = Effective ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device during the duration of the thermal sequence.
AT	= total equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device, over its useful life, to the temperature T_i^{bin} during the time t_i^{bin}
	of each one of the <i>i</i> bins registered in the histogram.
i p	number of temperature measurement.total number of temperature measurements.
n_c	= thermal sequence number, of those conducted for the purpose of
С	temperature gathering, in accordance with point 2.4.2.3.= total number of thermal sequences conducted for the purpose of temperature gathering.
	al number of thermal sequences to be included in the service accumulation e shall be determined by applying the following equation:
Equation 5:	
$N_{TS} = AT/AE$	
Where:	
N _{TS}	= total number of thermal sequences to be carried out during the service accumulation schedule
AT	= total equivalent ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device, over its useful life, to the temperature T_i^{bin} during the time
AE	of each one of the <i>i</i> bins registered in the histogram. = Effective ageing time, in hours, needed to achieve, by exposing the replacement pollution control device at the temperature T_r , the same amount of ageing as the one that would result from exposure of the replacement pollution control device during the duration of the thermal sequence.

- 2.4.2.7. It is allowed to reduce N_{TS} and, consequently the service accumulation schedule, by increasing the temperatures at which each device is exposed at each mode of the ageing cycle through the application of one or several of the following measures:
- (a) insulating the exhaust pipe;

- (b) moving the replacement pollution control device closer to the exhaust manifold;
- (c) artificially heating up the temperature of the exhaust;
- (d) optimising the engine settings without substantially changing the emission behaviour of the engine.
- 2.4.2.8. When applying the measures referred to in points 2.4.4.6 and 2.4.4.7, the total ageing time calculated from N_{TS} shall not be less than 10 % of the useful life listed in Table 1, e.g. the vehicle category N_I shall not have an N_{TS} of less than 286 thermal sequences, assuming that each sequence is 1 hour long.
- 2.4.2.9. It is allowed to increase N_{TS} and, consequently, the duration of the service accumulation schedule, by lowering the temperatures at each mode of the ageing cycle through the application of one or several of the following measures:
- (a) moving the replacement pollution control device further away from the exhaust manifold;
- (b) artificially cooling down the temperature of the exhaust;
- (c) optimising the engine settings.
- 2.4.2.10. In the case referred to in point 2.4.1.5, the following shall apply:
- 2.4.2.10. IN_{TS} shall be the same for each device, so that a single service accumulation schedule can be set up.
- 2.4.2.10.2 In order to achieve the same N_{TS} for each device, a first N_{TS} value shall be calculated for each device, with its own AT and AE values.
- 2.4.2.10.3If the calculated N_{TS} values are different, one or more of the measures set out in points 2.4.2.7 to 2.4.2.10 may be applied on the device or devices for which N_{TS} needs to be modified, over the thermal sequences referred to in point 2.4.2.3, in order to influence the measured T_i and therefore conveniently speed up or slow down the artificial ageing of the targeted device or devices.
- 2.4.2.10.4The new N_{TS} values corresponding to the new temperatures T_i obtained in point 2.4.2.10.3 shall be calculated.
- 2.4.2.10.5The steps set out in points 2.4.2.10.3 and 2.4.2.10.4 shall be repeated until the N_{TS} values obtained for each device in the system match.
- 2.4.2.10.6The T_r values used for obtaining the different N_{TS} in points 2.4.2.10.4 and 2.4.2.10.5 shall be the same ones as those used in points 2.3.2 and 2.3.5 for calculating *AT* for each device.
- 2.4.2.11. In the case of an assembly of replacement pollution control devices constituting a system within the meaning of Article 3(25) of Directive 2007/46/EC, one of the following two options may be considered for the thermal ageing of the devices:
- 2.4.2.11.1The devices within the assembly may be either separately or jointly aged, in accordance with point 2.4.2.10.
- 2.4.2.11.2If the assembly is built in such a way that it is not possible to decouple the devices (e.g. DOC + SCR in a can), the thermal ageing of the assembly shall be carried out with the highest N_{TS} .

- 2.4.3. Modified thermal accumulation schedule for devices operating in the presence of active regeneration
- 2.4.3.1. The modified thermal accumulation schedule for devices operating in the presence of active regeneration shall simulate the effect of ageing due to both thermal load and active regeneration on a replacement pollution control device at the end of its lifetime.
- 2.4.3.2. The engine used for the service accumulation schedule, fitted with the exhaust aftertreatment system incorporating the replacement pollution control device, is operated for a minimum of three modified thermal sequences, consisting each sequence of a thermal sequence as set out in Appendix 4, followed by a complete active regeneration, during which the peak temperature reached in the after-treatment system should be not lower than the peak temperature recorded in the data collection phase.
- 2.4.3.3. The temperatures shall be recorded over a minimum of two modified thermal sequences. The first sequence, conducted for warming up, shall not be taken into account for the purpose of temperature gathering.
- 2.4.3.4. In order to minimise the time elapsed between the thermal sequence as set out in Appendix 4 and the subsequent active regeneration, the manufacturer may artificially trigger the active regeneration by running, after each thermal sequence as set out in Appendix 4, the engine at a steady mode that enables a high production of soot by the engine. In that case, the steady mode shall also be considered as part of the modified thermal sequence set out in point 2.4.3.2.
- 2.4.3.5. The effective ageing time corresponding to each modified thermal sequence shall be calculated using equations 3 and 4.
- 2.4.3.6. The total number of modified thermal sequences to be conducted during the service accumulation schedule shall be calculated using equation 5.
- 2.4.3.7. It is allowed to reduce N_{TS} , and consequently the duration of the service accumulation schedule, by increasing the temperatures at each mode of the modified thermal sequence, applying one or several of the measures set out in point 2.4.2.7.
- 2.4.3.8. In addition to the measures referred to in point 2.4.3.7, N_{TS} can also be reduced by increasing the peak temperature of the active regeneration within the modified thermal sequence, without exceeding a bed temperature of 800 °C under any circumstances.
- 2.4.3.9. N_{TS} shall never be less than 50 % of the number of active regenerations to which the replacement pollution control device is subjected during its useful life, calculated in accordance with the following equation:

Equation 5:

$$N_{AR} = \frac{t_{WHTC}}{t_{AR} + t_{BAR}}$$

Where:

N _{AR}	= number of active regeneration sequences over the useful life of the replacement pollution control device.
t _{WHTC}	= equivalent number of hours corresponding to the vehicle category for which the replacement pollution control device is intended, obtained from Table 1.
t_{AR}	= duration, in hours, of an active regeneration.
t _{BAR}	= time, in hours, between two consecutive active regenerations.

- 2.4.3.10. If, as consequence of the application of the minimum number of modified thermal sequences as set out in point 2.4.3.9, $AE \times N_{TS}$ calculated using equation 4 exceeds the *AT* calculated using equation 2, the time of each mode of the thermal sequence set out in Appendix 4, and embedded in the modified thermal sequence as set out in point 2.4.3.2, may be reduced in the same proportion, in order to make $AE \times N_{TS} = AT$.
- 2.4.3.11. It is allowed to increase N_{TS} and consequently the duration of the service accumulation schedule, by lowering the temperatures at each mode of the thermal-active regeneration sequence by applying one or several of the measures set out in point 2.4.2.9.
- 2.4.3.12. In the case referred to in point 2.4.1.5, points 2.4.2.10 and 2.4.2.11 shall apply
- 2.4.4. Lubricant consumption accumulation schedule
- 2.4.4.1. The lubricant consumption accumulation schedule shall simulate the effect of ageing due to chemical poisoning or deposit formation as a result of lubricant consumption, on the performance of a replacement pollution control device at the end of its lifetime.
- 2.4.4.2. The lubricant consumed, in g/h, shall be determined over a minimum of 24 thermal sequences or a corresponding number of modified thermal sequences, using any suitable method, as for example the drain and weigh procedure described in Appendix 6. Fresh lubricant shall be used.
- 2.4.4.3. The engine shall be equipped with a constant volume oil sump in order to avoid the need of 'top-offs', since oil level influences the oil consumption rate. Any suitable method, as for example the one described in the ASTM standard D7156-09, may be used.
- 2.4.4.4. The theoretical time, in hours, that the thermal accumulation schedule or modified thermal accumulation schedule, as it corresponds, would have to be conducted, in order to obtain the same lubricant consumption as the one corresponding to the useful life of the replacement control device, shall be calculated by applying the following equation:

Equation 6:

$$t_{TAS} = \frac{LCR_{WHIC} \times t_{WHIC}}{LCR_{TAS}}$$

Where:

t _{TAS}	= theoretical duration, in hours, of the service accumulation schedule required to obtain the same lubricant consumption as the one corresponding to the useful life of the replacement pollution control device, provided that the service accumulation schedule is only made up of a series of consecutive thermal sequences or consecutive modified thermal sequences.
LCR _{WHTC}	= lubricant consumption rate, in g/h determined as set out in point 2.2.15.
t _{WHTC}	= equivalent number of hours corresponding to the vehicle category for which the replacement pollution control device is intended, obtained from Table 1.
LCR _{TAS}	= lubricant consumption rate, in g/h, determined as set out in point 2.4.4.2.
2.4.4.5. The num	ber of thermal sequences or modified thermal sequences corresponding to

 t_{TAS} shall be calculated by applying the following ratio:

Equation 7:

 $N = \frac{t_{TAS}}{T_{TTC}}$

Where:

 t_{TS}

N	=	number	of	thermal	sequences	or	modified	thermal	sequences
		correspo	ndin	ng to t_{TAS} .					

 t_{TAS} = theoretical duration, in hours, of the service accumulation schedule required to obtain the same lubricant consumption as the one corresponding to the useful life of the replacement pollution control device, provided that the service accumulation schedule was only made up of a series of consecutive thermal sequences or consecutive modified thermal sequences.

= duration, in hours, of a single thermal sequence or modified thermal sequence.

- 2.4.4.6. The value of N shall be compared to the value of N_{TS} calculated in accordance with point 2.4.2.6 or, for devices operating in the presence of active regeneration, in accordance with point 2.4.3.5. If $N \le N_{TS}$, it is not necessary to add a lubricant consumption accumulation schedule to the thermal accumulation schedule. If $N > N_{TS}$, a lubricant consumption accumulation schedule shall be added to the thermal accumulation schedule.
- 2.4.4.7. A lubricant consumption accumulation schedule may not have to be added if, by increasing the lubricant consumption as described in point 2.4.4.8.4, the needed lubricant consumption is already achieved with the conduction of the corresponding thermal accumulation schedule consisting of the performance of N_{TS} thermal sequences or modified thermal sequences.
- 2.4.4.8. Development of the lubricant consumption accumulation schedule
- 2.4.4.8.1. The lubricant consumption accumulation schedule shall consist of a number of lubricant consumption sequences repeated several times, each lubricant consumption sequence being alternated with each thermal sequence or each modified thermal sequence.
- 2.4.4.8.2. Each lubricant consumption sequence shall consist of a steady mode at constant load and speed, the load and the speed being selected in such a way that the lubricant consumption is maximised and effective thermal aging is minimised. The mode shall be determined by the manufacturer in agreement with the type-approval authority, based on best engineering judgement.
- 2.4.4.8.3. The duration of each lubricant consumption sequence shall be determined as follows:
- 2.4.4.8.3. The engine shall be run for an appropriate period of time at the load and speed determined by the manufacturer in accordance with point 2.4.4.8.2 and the lubricant consumed, in g/h, shall be determined using any suitable method, as for example the drain and weigh procedure described in Appendix 6. Lubricant changes are to be completed at the recommended intervals.
- 2.4.4.8.3. The duration of each lubricant consumption sequence shall be calculated by applying the following equation:

Equation 8:

 $t_{LS} = \frac{LCR_{WHTC} \times t_{WHTC} - LCR_{TAS} \times N_{TS} \times t_{TS}}{LCR_{LAS} \times N_{TS}}$

Where:

t_{LS}	=	the duration, in hours, of a single lubricant consumption sequence
LCR _{WHTC}	=	lubricant consumption rate, in g/h determined as set out in point 2.2.15.
t _{WHTC}	=	equivalent number of hours corresponding to the vehicle category for which the replacement pollution control device is intended, obtained from Table 1.
LCR _{TAS}	=	lubricant consumption rate, in g/h, determined as set out in point 2.4.4.2.
LCR _{LAS}	=	lubricant consumption rate, in g/h, determined as set out in point 2.4.4.8.3.1.
t_{TS}	=	duration, in hours, of a single thermal sequence, as set out in Appendix 4, or modified thermal sequence, as set out in point 2.4.3.2.
N_{TS}	=	total number of thermal sequences or modified thermal sequences to be carried out during the service accumulation schedule.

- 2.4.4.8.4. The lubricant consumption rate shall always remain below 0,5 % of the engine fuel consumption rate in order to avoid excessive ash accumulation on the front face of the replacement pollution control device.
- 2.4.4.8.5. It is allowed to add the thermal ageing due to the conduction of the lubricant consumption sequence to the *AE* calculated in equation 4.
- 2.4.5. Development of the complete service accumulation schedule
- 2.4.5.1. The service accumulation schedule shall be built up alternating a thermal or a modified thermal sequence, as appropriate, with a lubricant consumption sequence. The aforementioned pattern shall be repeated N_{TS} times, being the N_{TS} value the one calculated either in accordance with Section 2.4.2 or with Section 2.4.3, as appropriate. An example of a complete service accumulation schedule is given in Appendix 7. A flowchart describing the development of a complete service accumulation schedule is given in Appendix 8.
- 2.4.6. Operation of the service accumulation schedule
- 2.4.6.1. The engine, fitted with the exhaust after-treatment system incorporating the replacement pollution control device, shall run the service accumulation schedule set out in point 2.4.5.1.
- 2.4.6.2. The engine used for the performance of the service accumulation schedule may be different to the engine used in the data collection phase, being the latter always the one for which the replacement pollution control device to be type-approved has been designed, and the one to be tested for emissions under point 2.4.3.2.
- 2.4.6.3. If the engine used for the performance of the service accumulation schedule features a larger displacement by 20 % or more than the engine used in the data collection phase, the exhaust system of the former should be equipped with a by-pass in order

to replicate as closely as possible the exhaust flow rate of the latter at the ageing conditions selected.

- 2.4.6.4. In the case referred to in point 2.4.6.2, the engine used for the performance of the service accumulation schedule shall be type-approved under Regulation (EC) No 595/2009. In addition, if the device or devices under test are intended for being fitted in an engine system with exhaust gas recirculation (EGR), the engine system used for the service accumulation schedule shall also be fitted with an EGR. If the device or devices under test are intended for not being fitted in an engine system with EGR, the engine system used for the service accumulation schedule shall also be fitted with an EGR. If the device or devices under test are intended for not being fitted in an engine system with EGR, the engine system used for the service accumulation schedule shall also not be fitted with an EGR.
- 2.4.6.5. The lubricant and the fuel used in the service accumulation schedule shall be as similar as possible to those used during the data collection phase set out in point 2.2. The lubricant must be in line with the recommendation of the engine manufacturer for which the pollution control device is designed. The fuels used should be market fuels fulfilling the corresponding requirements of Directive 98/70/EC. On the request of the manufacturer also reference fuels in accordance with this Regulation can be used.
- 2.4.6.6. The lubricant shall be changed for maintenance, at the intervals scheduled by the manufacturer of the engine used in the data collection phase.
- 2.4.6.7. In the case of an SCR, the urea injection shall be performed in accordance with the strategy defined by the manufacturer of the replacement pollution control device.]

[^{F4}Appendix 4

Sequence	for	thermal	ageing
··· · · · · · · · · · · · · · · · · ·			

Mode	Speed (% of high idle)	Load (% for a given speed)	Time (s)
1	2,92	0,58	626
2	45,72	1,58	418
3	38,87	3,37	300
4	20,23	11,36	102
5	11,37	14,90	62
6	32,78	18,52	370
7	53,12	20,19	410
8	59,53	34,73	780
9	78,24	54,38	132
10	39,07	62,85	212
11	47,82	62,94	188
Regeneration mode (if applicable)	To be defined (see point 2.4.3.4)	To be defined (see point 2.4.3.4)	To be defined (see point 2.4.3.4)
Lubricant consumption mode (if applicable)	To be defined according to point 2.4.4.8.2	To be defined according to point 2.4.4.8.2	To be defined according to point 2.4.4.8.3

Note: The sequence of the modes 1 to 11 has been arranged by ascending load in order to maximise the temperature of the exhaust gas in the high load modes. With the agreement of the type-approval authority, this order can be modified in order to optimise the temperature of the exhaust gas if this can help in reducing the actual aging time.

Time	Spee	d Time	Spee	d Time	Spee	d Time	Spee	d Time	Spee	d Time	Spee	d Time	Speed
S	km/	S	km/	S	km/	S	km/ h	S	km/ h	S	km/	S	km/
1	0	261	22,38	521	35,46	781	18,33	1 041	39,88	1 301	66,39	1 561	86,88
2	0	262	24,75	522	36,81	782	18,31	1 042	41,25	1 302	66,74	1 562	86,7
3	0	263	25,55	523	37,98	783	18,05	1 043	42,07	1 303	67,43	1 563	86,81
4	0	264	25,18	524	38,84	784	17,39	1 044	43,03	1 304	68,44	1 564	86,81
5	0	265	23,94	525	39,43	785	16,35	1 045	44,4	1 305	69,52	1 565	86,81
6	0	266	22,35	526	39,73	786	14,71	1 046	45,14	1 306	70,53	1 566	86,81
7	2,35	267	21,28	527	39,8	787	11,71	1 047	45,44	1 307	71,47	1 567	86,99
8	5,57	268	20,86	528	39,69	788	7,81	1 048	46,13	1 308	72,32	1 568	87,03
9	8,18	269	20,65	529	39,29	789	5,25	1 049	46,79	1 309	72,89	1 569	86,92
10	9,37	270	20,18	530	38,59	790	4,62	1 050	47,45	1 310	73,07	1 570	87,1
11	9,86	271	19,33	531	37,63	791	5,62	1 051	48,68	1 311	73,03	1 571	86,85
12	10,18	272	18,23	532	36,22	792	8,24	1 052	50,13	1 312	72,94	1 572	87,14
13	10,38	273	16,99	533	34,11	793	10,98	1 053	51,16	1 313	73,01	1 573	86,96
14	10,57	274	15,56	534	31,16	794	13,15	1 054	51,37	1 314	73,44	1 574	86,85
15	10,95	275	13,76	535	27,49	795	15,47	1 055	51,3	1 315	74,19	1 575	86,77
16	11,56	276	11,5	536	23,63	796	18,19	1 056	51,15	1 316	74,81	1 576	86,81
17	12,22	277	8,68	537	20,16	797	20,79	1 057	50,88	1 317	75,01	1 577	86,85
18	12,97	278	5,2	538	17,27	798	22,5	1 058	50,63	1 318	74,99	1 578	86,74

Appendix 5 Test-cycle for chassis dynamometer or on-road data gathering

19	14,33	279	1,99	539	14,81	799	23,19	1 059	50,2	1 319	74,79	1 579	86,81
20	16,38	280	0	540	12,59	800	23,54	1 060	49,12	1 320	74,41	1 580	86,7
21	18,4	281	0	541	10,47	801	24,2	1 061	48,02	1 321	74,07	1 581	86,52
22	19,86	282	0	542	8,85	802	25,17	1 062	47,7	1 322	73,77	1 582	86,7
23	20,85	283	0,5	543	8,16	803	26,28	1 063	47,93	1 323	73,38	1 583	86,74
24	21,52	284	0,57	544	8,95	804	27,69	1 064	48,57	1 324	72,79	1 584	86,81
25	21,89	285	0,6	545	11,3	805	29,72	1 065	48,88	1 325	71,95	1 585	86,85
26	21,98	286	0,58	546	14,11	806	32,17	1 066	49,03	1 326	71,06	1 586	86,92
27	21,91	287	0	547	15,91	807	34,22	1 067	48,94	1 327	70,45	1 587	86,88
28	21,68	288	0	548	16,57	808	35,31	1 068	48,32	1 328	70,23	1 588	86,85
29	21,21	289	0	549	16,73	809	35,74	1 069	47,97	1 329	70,24	1 589	87,1
30	20,44	290	0	550	17,24	810	36,23	1 070	47,92	1 330	70,32	1 590	86,81
31	19,24	291	0	551	18,45	811	37,34	1 071	47,54	1 331	70,3	1 591	86,99
32	17,57	292	0	552	20,09	812	39,05	1 072	46,79	1 332	70,05	1 592	86,81
33	15,53	293	0	553	21,63	813	40,76	1 073	46,13	1 333	69,66	1 593	87,14
34	13,77	294	0	554	22,78	814	41,82	1 074	45,73	1 334	69,26	1 594	86,81
35	12,95	295	0	555	23,59	815	42,12	1 075	45,17	1 335	68,73	1 595	86,85
36	12,95	296	0	556	24,23	816	42,08	1 076	44,43	1 336	67,88	1 596	87,03
37	13,35	297	0	557	24,9	817	42,27	1 077	43,59	1 337	66,68	1 597	86,92
38	13,75	298	0	558	25,72	818	43,03	1 078	42,68	1 338	65,29	1 598	87,14

Document Generated: 2023-09-21

39	13,82	299	0	559	26,77	819	44,14	1 079	41,89	1 339	63,95	1 599	86,92
40	13,41	300	0	560	28,01	820	45,13	1 080	41,09	1 340	62,84	1 600	87,03
41	12,26	301	0	561	29,23	821	45,84	1 081	40,38	1 341	62,21	1 601	86,99
42	9,82	302	0	562	30,06	822	46,4	1 082	39,99	1 342	62,04	1 602	86,96
43	5,96	303	0	563	30,31	823	46,89	1 083	39,84	1 343	62,26	1 603	87,03
44	2,2	304	0	564	30,29	824	47,34	1 084	39,46	1 344	62,87	1 604	86,85
45	0	305	0	565	30,05	825	47,66	1 085	39,15	1 345	63,55	1 605	87,1
46	0	306	0	566	29,44	826	47,77	1 086	38,9	1 346	64,12	1 606	86,81
47	0	307	0	567	28,6	827	47,78	1 087	38,67	1 347	64,73	1 607	87,03
48	0	308	0	568	27,63	828	47,64	1 088	39,03	1 348	65,45	1 608	86,77
49	0	309	0	569	26,66	829	47,23	1 089	40,37	1 349	66,18	1 609	86,99
50	1,87	310	0	570	26,03	830	46,66	1 090	41,03	1 350	66,97	1 610	86,96
51	4,97	311	0	571	25,85	831	46,08	1 091	40,76	1 351	67,85	1 611	86,96
52	8,4	312	0	572	26,14	832	45,45	1 092	40,02	1 352	68,74	1 612	87,07
53	9,9	313	0	573	27,08	833	44,69	1 093	39,6	1 353	69,45	1 613	86,96
54	11,42	314	0	574	28,42	834	43,73	1 094	39,37	1 354	69,92	1 614	86,92
55	15,11	315	0	575	29,61	835	42,55	1 095	38,84	1 355	70,24	1 615	87,07
56	18,46	316	0	576	30,46	836	41,14	1 096	37,93	1 356	70,49	1 616	86,92
57	20,21	317	0	577	30,99	837	39,56	1 097	37,19	1 357	70,63	1 617	87,14
58	22,13	318	0	578	31,33	838	37,93	1 098	36,21	1 358	70,68	1 618	86,96

59	24,17	319	0	579	31,65	839	36,69	1 099	35,32	1 359	70,65	1 619	87,03
60	25,56	320	0	580	32,02	840	36,27	1 100	35,56	1 360	70,49	1 620	86,85
61	26,97	321	0	581	32,39	841	36,42	1 101	36,96	1 361	70,09	1 621	86,77
62	28,83	322	0	582	32,68	842	37,14	1 102	38,12	1 362	69,35	1 622	87,1
63	31,05	323	0	583	32,84	843	38,13	1 103	38,71	1 363	68,27	1 623	86,92
64	33,72	324	3,01	584	32,93	844	38,55	1 104	39,26	1 364	67,09	1 624	87,07
65	36	325	8,14	585	33,22	845	38,42	1 105	40,64	1 365	65,96	1 625	86,85
66	37,91	326	13,88	586	33,89	846	37,89	1 106	43,09	1 366	64,87	1 626	86,81
67	39,65	327	18,08	587	34,96	847	36,89	1 107	44,83	1 367	63,79	1 627	87,14
68	41,23	328	20,01	588	36,28	848	35,53	1 108	45,33	1 368	62,82	1 628	86,77
69	42,85	329	20,3	589	37,58	849	34,01	1 109	45,24	1 369	63,03	1 629	87,03
70	44,1	330	19,53	590	38,58	850	32,88	1 110	45,14	1 370	63,62	1 630	86,96
71	44,37	331	17,92	591	39,1	851	32,52	1 111	45,06	1 371	64,8	1 631	87,1
72	44,3	332	16,17	592	39,22	852	32,7	1 112	44,82	1 372	65,5	1 632	86,99
73	44,17	333	14,55	593	39,11	853	33,48	1 113	44,53	1 373	65,33	1 633	86,92
74	44,13	334	12,92	594	38,8	854	34,97	1 114	44,77	1 374	63,83	1 634	87,1
75	44,17	335	11,07	595	38,31	855	36,78	1 115	45,6	1 375	62,44	1 635	86,85
76	44,51	336	8,54	596	37,73	856	38,64	1 116	46,28	1 376	61,2	1 636	86,92
77	45,16	337	5,15	597	37,24	857	40,48	1 117	47,18	1 377	59,58	1 637	86,77
78	45,64	338	1,96	598	37,06	858	42,34	1 118	48,49	1 378	57,68	1 638	86,88

Document Generated: 2023-09-21

79	46,16	339	0	599	37,1	859	44,16	1 119	49,42	1 379	56,4	1 639	86,63
80	46,99	340	0	600	37,42	860	45,9	1 120	49,56	1 380	54,82	1 640	86,85
81	48,19	341	0	601	38,17	861	47,55	1 121	49,47	1 381	52,77	1 641	86,63
82	49,32	342	0	602	39,19	862	49,09	1 122	49,28	1 382	52,22	1 642	86,77
83	49,7	343	0	603	40,31	863	50,42	1 123	48,58	1 383	52,48	1 643	86,77
84	49,5	344	0	604	41,46	864	51,49	1 124	48,03	1 384	52,74	1 644	86,55
85	48,98	345	0	605	42,44	865	52,23	1 125	48,2	1 385	53,14	1 645	86,59
86	48,65	346	0	606	42,95	866	52,58	1 126	48,72	1 386	53,03	1 646	86,55
87	48,65	347	0	607	42,9	867	52,63	1 127	48,91	1 387	52,55	1 647	86,7
88	48,87	348	0	608	42,43	868	52,49	1 128	48,93	1 388	52,19	1 648	86,44
89	48,97	349	0	609	41,74	869	52,19	1 129	49,05	1 389	51,09	1 649	86,7
90	48,96	350	0	610	41,04	870	51,82	1 130	49,23	1 390	49,88	1 650	86,55
91	49,15	351	0	611	40,49	871	51,43	1 131	49,28	1 391	49,37	1 651	86,33
92	49,51	352	0	612	40,8	872	51,02	1 132	48,84	1 392	49,26	1 652	86,48
93	49,74	353	0	613	41,66	873	50,61	1 133	48,12	1 393	49,37	1 653	86,19
94	50,31	354	0,9	614	42,48	874	50,26	1 134	47,8	1 394	49,88	1 654	86,37
95	50,78	355	2	615	42,78	875	50,06	1 135	47,42	1 395	50,25	1 655	86,59
96	50,75	356	4,08	616	42,39	876	49,97	1 136	45,98	1 396	50,17	1 656	86,55
97	50,78	357	7,07	617	40,78	877	49,67	1 137	42,96	1 397	50,5	1 657	86,7
98	51,21	358	10,25	618	37,72	878	48,86	1 138	39,38	1 398	50,83	1 658	86,63

99	51,6	359	12,77	619	33,29	879	47,53	1 139	35,82	1 399	51,23	1 659	86,55
100	51,89	360	14,44	620	27,66	880	45,82	1 140	31,85	1 400	51,67	1 660	86,59
101	52,04	361	15,73	621	21,43	881	43,66	1 141	26,87	1 401	51,53	1 661	86,55
102	51,99	362	17,23	622	15,62	882	40,91	1 142	21,41	1 402	50,17	1 662	86,7
103	51,99	363	19,04	623	11,51	883	37,78	1 143	16,41	1 403	49,99	1 663	86,55
104	52,36	364	20,96	624	9,69	884	34,89	1 144	12,56	1 404	50,32	1 664	86,7
105	52,58	365	22,94	625	9,46	885	32,69	1 145	10,41	1 405	51,05	1 665	86,52
106	52,47	366	25,05	626	10,21	886	30,99	1 146	9,07	1 406	51,45	1 666	86,85
107	52,03	367	27,31	627	11,78	887	29,31	1 147	7,69	1 407	52	1 667	86,55
108	51,46	368	29,54	628	13,6	888	27,29	1 148	6,28	1 408	52,3	1 668	86,81
109	51,31	369	31,52	629	15,33	889	24,79	1 149	5,08	1 409	52,22	1 669	86,74
110	51,45	370	33,19	630	17,12	890	21,78	1 150	4,32	1 410	52,66	1 670	86,63
111	51,48	371	34,67	631	18,98	891	18,51	1 151	3,32	1 411	53,18	1 671	86,77
112	51,29	372	36,13	632	20,73	892	15,1	1 152	1,92	1 412	53,8	1 672	87,03
113	51,12	373	37,63	633	22,17	893	11,06	1 153	1,07	1 413	54,53	1 673	87,07
114	50,96	374	39,07	634	23,29	894	6,28	1 154	0,66	1 414	55,37	1 674	86,92
115	50,81	375	40,08	635	24,19	895	2,24	1 155	0	1 415	56,29	1 675	87,07
116	50,86	376	40,44	636	24,97	896	0	1 156	0	1 416	57,31	1 676	87,18
117	51,34	377	40,26	637	25,6	897	0	1 157	0	1 417	57,94	1 677	87,32
118	51,68	378	39,29	638	25,96	898	0	1 158	0	1 418	57,86	1 678	87,36

Document Generated: 2023-09-21

119	51,58	379	37,23	639	25,86	899	0	1 159	0	1 419	57,75	1 679	87,29
120	51,36	380	34,14	640	24,69	900	0	139 1 160	0	1 419 1 420	58,67	1 680	87,58
121	51,39	381	30,18	641	21,85	901	0	1 161	0	1 421	59,4	1 681	87,61
122	50,98	382	25,71	642	17,45	902	2,56	1 162	0	1 422	59,69	1 682	87,76
123	48,63	383	21,58	643	12,34	903	4,81	1 163	0	1 423	60,02	1 683	87,65
124	44,83	384	18,5	644	7,59	904	6,38	1 164	0	1 424	60,21	1 684	87,61
125	40,3	385	16,56	645	4	905	8,62	1 165	0	1 425	60,83	1 685	87,65
126	35,65	386	15,39	646	1,76	906	10,37	1 166	0	1 426	61,16	1 686	87,65
127	30,23	387	14,77	647	0	907	11,17	1 167	0	1 427	61,6	1 687	87,76
128	24,08	388	14,58	648	0	908	13,32	1 168	0	1 428	62,15	1 688	87,76
129	18,96	389	14,72	649	0	909	15,94	1 169	0	1 429	62,7	1 689	87,8
130	14,19	390	15,44	650	0	910	16,89	1 170	0	1 430	63,65	1 690	87,72
131	8,72	391	16,92	651	0	911	17,13	1 171	0	1 431	64,27	1 691	87,69
132	3,41	392	18,69	652	0	912	18,04	1 172	0	1 432	64,31	1 692	87,54
133	0,64	393	20,26	653	0	913	19,96	1 173	0	1 433	64,13	1 693	87,76
134	0	394	21,63	654	0	914	22,05	1 174	0	1 434	64,27	1 694	87,5
135	0	395	22,91	655	0	915	23,65	1 175	0	1 435	65,22	1 695	87,43
136	0	396	24,13	656	0	916	25,72	1 176	0	1 436	66,25	1 696	87,47
137	0	397	25,18	657	0	917	28,62	1 177	0	1 437	67,09	1 697	87,5
138	0	398	26,16	658	2,96	918	31,99	1 178	0	1 438	68,37	1 698	87,5

		·			-1					·	-r		
139	0	399	27,41	659	7,9	919	35,07	1 179	0	1 439	69,36	1 699	87,18
140	0	400	29,18	660	13,49	920	37,42	1 180	0	1 440	70,57	1 700	87,36
141	0	401	31,36	661	18,36	921	39,65	1 181	0	1 441	71,89	1 701	87,29
142	0,63	402	33,51	662	22,59	922	41,78	1 182	0	1 442	73,35	1 702	87,18
143	1,56	403	35,33	663	26,26	923	43,04	1 183	0	1 443	74,64	1 703	86,92
144	2,99	404	36,94	664	29,4	924	43,55	1 184	0	1 444	75,81	1 704	87,36
145	4,5	405	38,6	665	32,23	925	42,97	1 185	0	1 445	77,24	1 705	87,03
146	5,39	406	40,44	666	34,91	926	41,08	1 186	0	1 446	78,63	1 706	87,07
147	5,59	407	42,29	667	37,39	927	40,38	1 187	0	1 447	79,32	1 707	87,29
148	5,45	408	43,73	668	39,61	928	40,43	1 188	0	1 448	80,2	1 708	86,99
149	5,2	409	44,47	669	41,61	929	40,4	1 189	0	1 449	81,67	1 709	87,25
150	4,98	410	44,62	670	43,51	930	40,25	1 190	0	1 450	82,11	1 710	87,14
151	4,61	411	44,41	671	45,36	931	40,32	1 191	0	1 451	82,91	1 711	86,96
152	3,89	412	43,96	672	47,17	932	40,8	1 192	0	1 452	83,43	1 712	87,14
153	3,21	413	43,41	673	48,95	933	41,71	1 193	0	1 453	83,79	1 713	87,07
154	2,98	414	42,83	674	50,73	934	43,16	1 194	0	1 454	83,5	1 714	86,92
155	3,31	415	42,15	675	52,36	935	44,84	1 195	0	1 455	84,01	1 715	86,88
156	4,18	416	41,28	676	53,74	936	46,42	1 196	1,54	1 456	83,43	1 716	86,85
157	5,07	417	40,17	677	55,02	937	47,91	1 197	4,85	1 457	82,99	1 717	86,92
158	5,52	418	38,9	678	56,24	938	49,08	1 198	9,06	1 458	82,77	1 718	86,81

Document Generated: 2023-09-21

159	5,73	419	37,59	679	57,29	939	49,66	1 199	11,8	1 459	82,33	1 719	86,88
160	6,06	420	36,39	680	58,18	940	50,15	1 200	12,42	1 460	81,78	1 720	86,66
161	6,76	421	35,33	681	58,95	941	50,94	1 201	12,07	1 461	81,81	1 721	86,92
162	7,7	422	34,3	682	59,49	942	51,69	1 202	11,64	1 462	81,05	1 722	86,48
163	8,34	423	33,07	683	59,86	943	53,5	1 203	11,69	1 463	80,72	1 723	86,66
164	8,51	424	31,41	684	60,3	944	55,9	1 204	12,91	1 464	80,61	1 724	86,74
165	8,22	425	29,18	685	61,01	945	57,11	1 205	15,58	1 465	80,46	1 725	86,37
166	7,22	426	26,41	686	61,96	946	57,88	1 206	18,69	1 466	80,42	1 726	86,48
167	5,82	427	23,4	687	63,05	947	58,63	1 207	21,04	1 467	80,42	1 727	86,33
168	4,75	428	20,9	688	64,16	948	58,75	1 208	22,62	1 468	80,24	1 728	86,3
169	4,24	429	19,59	689	65,14	949	58,26	1 209	24,34	1 469	80,13	1 729	86,44
170	4,05	430	19,36	690	65,85	950	58,03	1 210	26,74	1 470	80,39	1 730	86,33
171	3,98	431	19,79	691	66,22	951	58,28	1 211	29,62	1 471	80,72	1 731	86
172	3,91	432	20,43	692	66,12	952	58,67	1 212	32,65	1 472	81,01	1 732	86,33
173	3,86	433	20,71	693	65,01	953	58,76	1 213	35,57	1 473	81,52	1 733	86,22
174	4,17	434	20,56	694	62,22	954	58,82	1 214	38,07	1 474	82,4	1 734	86,08
175	5,32	435	19,96	695	57,44	955	59,09	1 215	39,71	1 475	83,21	1 735	86,22
176	7,53	436	20,22	696	51,47	956	59,38	1 216	40,36	1 476	84,05	1 736	86,33
177	10,89	437	21,48	697	45,98	957	59,72	1 217	40,6	1 477	84,85	1 737	86,33
178	14,81	438	23,67	698	41,72	958	60,04	1 218	41,15	1 478	85,42	1 738	86,26

179	17,56	120	26,09	600	38,22	959	60,13	1	42,23	1	86,18	1	86,48
1/9	17,30	439	20,09	099	38,22	939	00,13	1 219	42,23	479	80,18	1 739	80,48
180	18,38	440	28,16	700	34,65	960	59,33	1 220	43,61	1 480	86,45	1 740	86,48
181	17,49	441	29,75	701	30,65	961	58,52	1 221	45,08	1 481	86,64	1 741	86,55
182	15,18	442	30,97	702	26,46	962	57,82	1 222	46,58	1 482	86,57	1 742	86,66
183	13,08	443	31,99	703	22,32	963	56,68	1 223	48,13	1 483	86,43	1 743	86,66
184	12,23	444	32,84	704	18,15	964	55,36	1 224	49,7	1 484	86,58	1 744	86,59
185	12,03	445	33,33	705	13,79	965	54,63	1 225	51,27	1 485	86,8	1 745	86,55
186	11,72	446	33,45	706	9,29	966	54,04	1 226	52,8	1 486	86,65	1 746	86,74
187	10,69	447	33,27	707	4,98	967	53,15	1 227	54,3	1 487	86,14	1 747	86,21
188	8,68	448	32,66	708	1,71	968	52,02	1 228	55,8	1 488	86,36	1 748	85,96
189	6,2	449	31,73	709	0	969	51,37	1 229	57,29	1 489	86,32	1 749	85,5
190	4,07	450	30,58	710	0	970	51,41	1 230	58,73	1 490	86,25	1 750	84,77
191	2,65	451	29,2	711	0	971	52,2	1 231	60,12	1 491	85,92	1 751	84,65
192	1,92	452	27,56	712	0	972	53,52	1 232	61,5	1 492	86,14	1 752	84,1
193	1,69	453	25,71	713	0	973	54,34	1 233	62,94	1 493	86,36	1 753	83,46
194	1,68	454	23,76	714	0	974	54,59	1 234	64,39	1 494	86,25	1 754	82,77
195	1,66	455	21,87	715	0	975	54,92	1 235	65,52	1 495	86,5	1 755	81,78
196	1,53	456	20,15	716	0	976	55,69	1 236	66,07	1 496	86,14	1 756	81,16
197	1,3	457	18,38	717	0	977	56,51	1 237	66,19	1 497	86,29	1 757	80,42
198	1	458	15,93	718	0	978	56,73	1 238	66,19	1 498	86,4	1 758	79,21

Document Generated: 2023-09-21

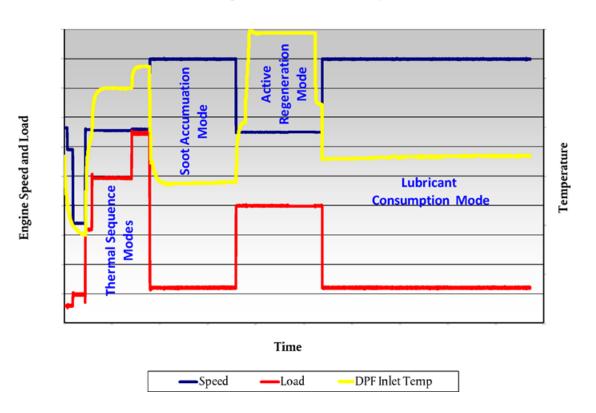
199	0,77	459	12,33	719	0	979	56,33	1 239	66,43	1 499	86,36	1 759	78,48
200	0,63	460	7,99	720	0	980	55,38	1 240	67,07	1 500	85,63	1 760	77,49
201	0,59	461	4,19	721	0	981	54,99	1 241	68,04	1 501	86,03	1 761	76,69
202	0,59	462	1,77	722	0	982	54,75	1 242	69,12	1 502	85,92	1 762	75,92
203	0,57	463	0,69	723	0	983	54,11	1 243	70,08	1 503	86,14	1 763	75,08
204	0,53	464	1,13	724	0	984	53,32	1 244	70,91	1 504	86,32	1 764	73,87
205	0,5	465	2,2	725	0	985	52,41	1 245	71,73	1 505	85,92	1 765	72,15
206	0	466	3,59	726	0	986	51,45	1 246	72,66	1 506	86,11	1 766	69,69
207	0	467	4,88	727	0	987	50,86	1 247	73,67	1 507	85,91	1 767	67,17
208	0	468	5,85	728	0	988	50,48	1 248	74,55	1 508	85,83	1 768	64,75
209	0	469	6,72	729	0	989	49,6	1 249	75,18	1 509	85,86	1 769	62,55
210	0	470	8,02	730	0	990	48,55	1 250	75,59	1 510	85,5	1 770	60,32
211	0	471	10,02	731	0	991	47,87	1 251	75,82	1 511	84,97	1 771	58,45
212	0	472	12,59	732	0	992	47,42	1 252	75,9	1 512	84,8	1 772	56,43
213	0	473	15,43	733	0	993	46,86	1 253	75,92	1 513	84,2	1 773	54,35
214	0	474	18,32	734	0	994	46,08	1 254	75,87	1 514	83,26	1 774	52,22
215	0	475	21,19	735	0	995	45,07	1 255	75,68	1 515	82,77	1 775	50,25
216	0	476	24	736	0	996	43,58	1 256	75,37	1 516	81,78	1 776	48,23
217	0	477	26,75	737	0	997	41,04	1 257	75,01	1 517	81,16	1 777	46,51
218	0	478	29,53	738	0	998	38,39	1 258	74,55	1 518	80,42	1 778	44,35

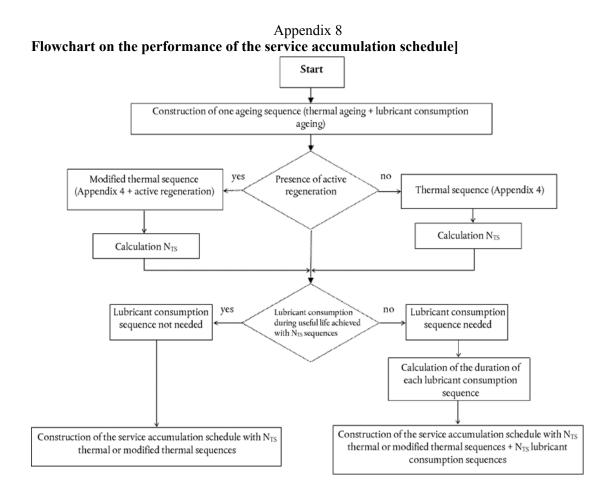
219	0	479	32,31	739	0	999	35,69	1 259	73,8	1 519	79,21	1 779	41,97
220	0	480	34,8	740	0	1 000	32,68	1 260	72,71	1 520	78,83	1 780	39,33
221	0	481	36,73	741	0	1 001	29,82	1 261	71,39	1 521	78,52	1 781	36,48
222	0	482	38,08	742	0	1 002	26,97	1 262	70,02	1 522	78,52	1 782	33,8
223	0	483	39,11	743	0	1 003	24,03	1 263	68,71	1 523	78,81	1 783	31,09
224	0	484	40,16	744	0	1 004	21,67	1 264	67,52	1 524	79,26	1 784	28,24
225	0	485	41,18	745	0	1 005	20,34	1 265	66,44	1 525	79,61	1 785	26,81
226	0,73	486	41,75	746	0	1 006	18,9	1 266	65,45	1 526	80,15	1 786	23,33
227	0,73	487	41,87	747	0	1 007	16,21	1 267	64,49	1 527	80,39	1 787	19,01
228	0	488	41,43	748	0	1 008	13,84	1 268	63,54	1 528	80,72	1 788	15,05
229	0	489	39,99	749	0	1 009	12,25	1 269	62,6	1 529	81,01	1 789	12,09
230	0	490	37,71	750	0	1 010	10,4	1 270	61,67	1 530	81,52	1 790	9,49
231	0	491	34,93	751	0	1 011	7,94	1 271	60,69	1 531	82,4	1 791	6,81
232	0	492	31,79	752	0	1 012	6,05	1 272	59,64	1 532	83,21	1 792	4,28
233	0	493	28,65	753	0	1 013	5,67	1 273	58,6	1 533	84,05	1 793	2,09
234	0	494	25,92	754	0	1 014	6,03	1 274	57,64	1 534	85,15	1 794	0,88
235	0	495	23,91	755	0	1 015	7,68	1 275	56,79	1 535	85,92	1 795	0,88
236	0	496	22,81	756	0	1 016	10,97	1 276	55,95	1 536	86,98	1 796	0
237	0	497	22,53	757	0	1 017	14,72	1 277	55,09	1 537	87,45	1 797	0
238	0	498	22,62	758	0	1 018	17,32	1 278	54,2	1 538	87,54	1 798	0

Document Generated: 2023-09-21

239	0	499	22,95	759	0	1 019	18,59	1 279	53,33	1 539	87,25	1 799	0
240	0	500	23,51	760	0	1 020	19,35	1 280	52,52	1 540	87,04	1 800	0
241	0	501	24,04	761	0	1 021	20,54	1 281	51,75	1 541	86,98		
242	0	502	24,45	762	0	1 022	21,33	1 282	50,92	1 542	87,05		
243	0	503	24,81	763	0	1 023	22,06	1 283	49,9	1 543	87,1		
244	0	504	25,29	764	0	1 024	23,39	1 284	48,68	1 544	87,25		
245	0	505	25,99	765	0	1 025	25,52	1 285	47,41	1 545	87,25		
246	0	506	26,83	766	0	1 026	28,28	1 286	46,5	1 546	87,07		
247	0	507	27,6	767	0	1 027	30,38	1 287	46,22	1 547	87,29		
248	0	508	28,17	768	0	1 028	31,22	1 288	46,44	1 548	87,14		
249	0	509	28,63	769	0	1 029	32,22	1 289	47,35	1 549	87,03		
250	0	510	29,04	770	0	1 030	33,78	1 290	49,01	1 550	87,25		
251	0	511	29,43	771	0	1 031	35,08	1 291	50,93	1 551	87,03		
252	0	512	29,78	772	1,6	1 032	35,91	1 292	52,79	1 552	87,03		
253	1,51	513	30,13	773	5,03	1 033	36,06	1 293	54,66	1 553	87,07		
254	4,12	514	30,57	774	9,49	1 034	35,5	1 294	56,6	1 554	86,81		
255	7,02	515	31,1	775	13	1 035	34,76	1 295	58,55	1 555	86,92		
256	9,45	516	31,65	776	14,65	1 036	34,7	1 296	60,47	1 556	86,66		
257	11,86	517	32,14	777	15,15	1 037	35,41	1 297	62,28	1 557	86,92		
258	14,52	518	32,62	778	15,67	1 038	36,65	1 298	63,9	1 558	86,59		

259	17,01	519	33,25	779	16,76	1 039	37,57	1 299	65,2	1 559	86,92	
260	19,48	520	34,2	780	17,88	1 040	38,51	1 300	66,02	1 560	86,59	


Appendix 6


Drain and weigh procedure

- 1. The engine shall be filled with new oil. If a constant volume oil sump system (as described in ASTM standard D7156-09) is used, the oil pump shall be turned on while filling the engine. Enough oil charge shall be added to fill up both the engine and external sump.
- 2. The engine shall be started and operated over the desired test cycle (see points 2.2.15 and 2.4.4.8.3.1) for a minimum of 1 hour.
- 3. Once the cycle is complete, oil temperature shall be allowed to stabilise at a steadystate engine condition before shutting the engine down.
- 4. A clean, empty oil drain pan shall be weighed.
- 5. Any clean supplies that are to be used during the oil drain (e.g. rags) shall be weighed.
- 6. The oil shall be drained for 10 minutes with the external oil pump (if equipped) powered on followed by an additional ten minutes with the pump powered off. If a constant volume sump system is not used, the oil shall be drained from the engine for a total of 20 minutes.
- 7. The drained oil shall be weighed.
- 8. The weight determined in accordance with step 7 shall be subtracted from the weight determined in accordance with step 4. The difference corresponds to the total weight of the oil removed from the engine and collected in the drain pan.
- 9. The oil shall be carefully returned to the engine.
- 10. The empty drain pan shall be weighted.
- 11. The weight determined in accordance with step 10 shall be subtracted from the weight determined in accordance with step 4. The result corresponds to the weight of the residual oil in the drain pan that was not returned to the engine.
- 12. Any dirty supplies which have previously been weighed pursuant to step 5 shall be weighed.
- 13. The weight determined in accordance with step 12 shall be subtracted from the weight determined in accordance with step 5. The result corresponds to the weight of the residual oil which remained on the dirty supplies that was not returned to the engine.
- 14. The residual oil weights calculated in accordance with steps 11 and 13 shall be subtracted from the total weight of the oil removed, calculated in accordance with step 8. The difference between those weights corresponds to the total weight of the oil returned to the engine.
- 15. The engine shall be operated under the desired test cycle(s) (see points 2.2.15 and 2.4.4.8.3.1).
- 16. Steps 3-8 shall be repeated.
- 17. The weight of the oil drained pursuant to step 16 shall be subtracted from the weight obtained in accordance with step 14. The difference between those weights corresponds to the total weight of the oil consumed.

18. The total weight of the oil consumed calculated pursuant to step 14 shall be divided by the duration, in hours, of the test cycles carried out in accordance with step 15. The result is the lubricant consumption rate.

Example Service Accumulation Cycle

- (1) Delete where not applicable.
- (2) Delete where not applicable.
- (3) If the means of identification of type contains characters not relevant to describe the vehicle, component or separate technical unit types covered by this type-approval certificate such characters shall be represented in the document by the symbol: "?" (e.g. ABC??123??).

Changes to legislation:

There are outstanding changes not yet made to Commission Regulation (EU) No 582/2011. Any changes that have already been made to the legislation appear in the content and are referenced with annotations.

View outstanding changes

Changes and effects yet to be applied to :

- Annex 11 Appendix 1 Text repeal by EUR 2019/1939 Regulation (This amendment by the EU not applied to legislation.gov.uk because it is brought into force after IP completion day.)
- Annex 11 heading word substituted by S.I. 2022/1273 reg. 66(13)(a)
- Annex 11 point 4.1.4 words omitted by S.I. 2022/1273 reg. 66(13)(e)
- Annex 11 point 4.5.4 words omitted by S.I. 2022/1273 reg. 66(13)(f)(i)
- Annex 11 point 4.5.4 words omitted by S.I. 2022/1273 reg. 66(13)(f)(ii)
- Annex 11 point 4.6.4 words omitted by S.I. 2022/1273 reg. 66(13)(g)
- Annex 11 words substituted by S.I. 2022/1273 reg. 66(13)(b)(i)
- Annex 11 words substituted by S.I. 2022/1273 reg. 66(13)(b)(ii)
- Annex 11 point 3 words substituted by S.I. 2022/1273 reg. 66(13)(c)
- Annex 11 point 3.2 words substituted by S.I. 2022/1273 reg. 66(13)(d)(i)
- Annex 11 point 3.2 words substituted by S.I. 2022/1273 reg. 66(13)(d)(ii)
- Annex 11 point 5.1 words substituted by S.I. 2022/1273 reg. 66(13)(h)
- Annex 11 point 5.2.1 words substituted by S.I. 2022/1273 reg. 66(13)(i)
- Annex 11 point 5.2.2 words substituted by S.I. 2022/1273 reg. 66(13)(j)

Changes and effects yet to be applied to the whole legislation item and associated provisions

- Signature words omitted by S.I. 2022/1273 reg. 65(19)
- Annex list words substituted by S.I. 2022/1273 reg. 65(20)
- Annex 1 Appendix 4Pt. 3 omitted by S.I. 2022/1273 reg. 66(3)(g)
- Annex 1 Appendix 8 image substituted by S.I. 2022/1273 reg. 66(7)(b)
- Annex 1 Appendix 4Pt. 1 table words inserted by S.I. 2022/1273 reg. 66(3)(e)(i)
- Annex 1 Appendix 4Pt. 2 table words inserted by S.I. 2022/1273 reg. 66(3)(f)(i)
- Annex 1 Appendix 4 words omitted by S.I. 2022/1273 reg. 66(3)(b)
- Annex 1 Appendix 4 words omitted by S.I. 2022/1273 reg. 66(3)(c)(ii)(bb)
- Annex 1 Appendix 4 words omitted by S.I. 2022/1273 reg. 66(3)(c)(iii)(aa)
- Annex 1 Appendix 4 table words omitted by S.I. 2022/1273 reg. 66(3)(d)(i)
- Annex 1 Appendix 4 words omitted by S.I. 2022/1273 reg. 66(3)(d)(iii)
- Annex 1 Appendix 8 words omitted by S.I. 2022/1273 reg. 66(7)(c)
 Annex 1 Appendix 8 words omitted by S.I. 2022/1273 reg. 66(7)(c)
- Annex 1 Appendix 1 point 2.2 words omitted by S.I. 2022/1273 reg. 66(10)(e)
- Annex 1 Appendix 4 words substituted by S.I. 2022/1273 reg. 66(3)(a)
- Annex 1 Appendix 4 words substituted by S.I. 2022/1273 reg. 66(3)(c)(i)
- Annex 1 Appendix 4 words substituted by S.I. 2022/1273 reg. 66(3)(c)(ii)(aa)
- Annex 1 Appendix 4 words substituted by S.I. 2022/1273 reg. 66(3)(c)(iii)(bb)
- Annex 1 Appendix 4 table words substituted by S.I. 2022/12/3 reg. 66(3)(d)(ii)
- Annex 1 Appendix 4Pt. 1 table words substituted by S.I. 2022/1273 reg. 66(3)(e)(ii)
- Annex 1 Appendix 4Pt. 2 table words substituted by S.I. 2022/1273 reg. 66(3)(f)(ii)
- Annex 1 Appendix 5 heading words substituted by S.I. 2022/1273 reg. 66(4)(a)
- Annex 1 Appendix 5 words substituted by S.I. 2022/1273 reg. 66(4)(a)
- Annex 1 Appendix 5s. 2 point 000.5 words substituted by S.I. 2022/1273 reg. 66(4)
 (b)
- Annex 1 Appendix 6 heading words substituted by S.I. 2022/1273 reg. 66(5)(a)
- Annex 1 Appendix 6 heading words substituted by S.I. 2022/1273 reg. 66(5)(b)
- Annex 1 Appendix 6 heading words substituted by S.I. 2022/1273 reg. 66(5)(c)
- Annex 1 Appendix 7 heading words substituted by S.I. 2022/1273 reg. 66(6)
- Annex 1 Appendix 7 words substituted by S.I. 2022/1273 reg. 66(6)

-	Annex 1 Appendix 7 Addendum words substituted by S.I. 2022/1273 reg. 66(6)
_	Annex 1 Appendix 8 heading words substituted by S.I. 2022/1273 reg. 66(7)(a)
_	Annex 1 Appendix 9 heading words substituted by S.I. 2022/1273 reg. 66(8)
_	Annex 1 Appendix 9 words substituted by S.I. 2022/1273 reg. 66(8)
_	Annex 1 Appendix 10 words substituted by S.I. 2022/1273 reg. 66(9)
_	Annex 10 Appendix 5 point 2.4.1 words omitted by S.I. 2022/1273 reg. 66(12)(f)(i)
_	Annex 10 Appendix 5 point 6 heading words omitted by S.I. 2022/1273 reg. 66(12)
	(f)(iii)
-	Annex 10 Appendix 5 point 6 words omitted by S.I. 2022/1273 reg. 66(12)(f)(iii)
_	Annex 10 Appendix 5 point 5.2.4 words substituted by S.I. 2022/1273 reg. 66(12)(f)
	(ii)
_	Annex 11 Appendix 1 point 2-2.3 omitted by S.I. 2022/1273 reg. 66(13)(k)(ii)
_	Annex 11 Appendix 2 words inserted by S.I. 2022/1273 reg. 66(13)(l)(ii)
-	Annex 11 Appendix 1 point 000.7 words substituted by S.I. 2022/1273 reg. 66(13)
	(k)(i)
_	Annex 11 Appendix 2 words substituted by S.I. 2022/1273 reg. 66(13)(l)(i)
-	Annex 11 Appendix 2 words substituted by S.I. 2022/1273 reg. 66(13)(l)(iii)
_	Annex 11 Appendix 3 point 2.4.2.11 words substituted by S.I. 2022/1273 reg. 66(13)
	(m)(i)
-	Annex 11 Appendix 3 point 2.4.6.5 words substituted by S.I. 2022/1273 reg. 66(13)
	(m)(ii)
-	Art. 2(44) omitted by S.I. 2022/1273 reg. 65(2)
-	Art. 5(4)(d) omitted by S.I. 2022/1273 reg. 65(6)(c)
-	Art. 5(4)(g) omitted by S.I. 2022/1273 reg. 65(6)(c)
-	Art. 6(1a)(a) words substituted by S.I. 2022/1273 reg. 65(7)(c)(ii)
-	Art. 6(1a)(b) omitted by S.I. 2022/1273 reg. 65(7)(c)(iii)
-	Art. 7(4)(c) omitted by S.I. 2022/1273 reg. 65(8)(c)
-	Art. 7(4)(d) omitted by S.I. 2022/1273 reg. 65(8)(c)
-	Art. $8(1a)(a)$ word substituted by S.I. 2022/1273 reg. $65(9)(d)(i)$
-	Art. 8(1a)(b) omitted by S.I. 2022/1273 reg. 65(9)(d)(ii)
_	Art. $8(1a)(e)$ words substituted by S.I. $2022/1273$ reg. $65(9)(d)(iii)$
-	Art. $10(1a)(a)$ word substituted by S.I. $2022/1273$ reg. $65(11)(a)$
-	Art. $10(1a)(b)$ omitted by S.I. $2022/1273$ reg. $65(11)(d)(ii)$
_	Art. 10(1a)(e) words substituted by S.I. 2022/1273 reg. 65(11)(d)(iii)