xmlns:atom="http://www.w3.org/2005/Atom" xmlns:atom="http://www.w3.org/2005/Atom"

ANNEX VIIIU.K.TEST METHODS AND ANALYTICAL METHODS

4.Preliminary treatment of anionic surfactants to be testedU.K.

4.4.Preparation of extract and separation of anionic active agentsU.K.

4.4.1.Preparation of extractU.K.

The quantity of surfactants necessary for the biodegradation test is about 50 g MBAS.

Normally, the quantity of product to be extracted will not exceed 1 000 g, but it may be necessary to extract further quantities of sample. For practical reasons, the quantity of product used should in most cases be limited to 5 000 g in preparing extracts for the biodegradation test.

Experience has shown that there are advantages in using a number of small extractions rather than one large extraction. The exchanger quantities specified are designed for a working capacity of 600-700 mmoles of surfactants and soap.

4.4.2.Isolation of alcohol-soluble constituentsU.K.

Add 250 g of the synthetic detergent to be analysed to 1 250 ml ethanol, heat the mixture to boiling point and reflux for one hour with stirring. Pass the hot alcoholic solution through a coarse-pored suction filter heated to 50 ° C and filter rapidly. Wash the flask and suction filter with approximately 200 ml hot ethanol. Collect the filtrate and filter washings in a filter flask.

In the case of pastes or liquid products to be analysed, make sure that not more than 55 g anionic surfactants and 35 g soap are contained in the sample. Evaporate this weighed sample to dryness. Dissolve the residue in 2 000 ml ethanol and proceed as described above. In the case of powders of low apparent density (< 300 g/l) it is recommended to increase the ethanol ratio in the relation 20:1. Evaporate the ethanolic filtrate to dryness, preferably by means of a rotary evaporator. Repeat the operation if a greater quantity of extract is required. Dissolve the residue in 5 000 ml isopropanol/water mixture.

Preparation of ion-exchange columns

4.4.3.CATION-EXCHANGE COLUMNU.K.

Place 600 ml cation-exchange resin (4.3.6) in a 3 000 ml beaker and cover by adding 2 000 ml hydrochloric acid (4.3.8). Allow to stand for at least two hours, with occasional stirring.

Decant the acid and transfer the resin into the column (4.3.12) by means of deionised water. The column should contain a glass-wool plug.

Wash the column with deionised water at a rate of 10-30 ml/min until the eluate is free of chloride.

Displace the water with 2 000 ml isopropanol/water mixture (4.3.3) at a rate of 10-30 ml/min. The exchange column is now ready for operation.

ANION-EXCHANGE COLUMNU.K.

Place 600 ml anion-exchange resin (4.3.7) in a 3 000 ml beaker and cover by adding 2 000 ml deionised water.

Allow the resin to swell for at least two hours.

Transfer the resin into the column by means of deionised water. The column should contain a glass-wool plug.

Wash the column with 0,3 M ammonium bicarbonate solution (4.3.5) until free of chloride. This requires about 5 000 ml solution. Wash again with 2 000 ml deionised water. Displace the water with 2 000 ml isopropanol/water mixture (4.3.3) at a rate of 10-30 ml/min. The exchange column is now in the OH-form and ready for operation.

Ion-exchange procedure

4.4.4.Connect the exchange columns so that the cation-exchange column is placed on top of the anion-exchange column.U.K.

Heat the exchange columns to 50 ° C using thermostatic control.

Heat 5 000 ml of the solution obtained in item 4.4.2 to 60 ° C and pass the solution through the exchanger combination at a rate of 20 ml/min. Wash the columns with 1 000 ml hot isopropanol/water mixture (4.3.3).

To obtain the anionic surface active agents (MBAS), disconnect the KAT column. Using 5 000 ml ethanol/CO2 solution at 50 ° C (4.3.4), elute the soap fatty acids out of the KAT column. Reject the eluate.

Then elute the MBAS out of the AAT column with 5 000 ml ammonium bicarbonate solution (4.3.5). Evaporate the eluate to dryness using a steam bath or in a rotary evaporator.

The residue contains the MBAS (as ammonium salt) and possible non-surfactant anionics that have no detrimental effect on the biodegradation test. Add deionised water to the residue until a definite volume is obtained and determine the MBAS content in an aliquot. The solution is used as a standard solution of the anionic synthetic detergents for the biodegradation test. The solution should be kept at a temperature below 5 ° C.

Regeneration of ion exchange resins

4.4.5.The cation exchanger is rejected after use.U.K.

Passing an additional quantity of ammonium bicarbonate solution (4.3.5) down the column at a flow rate of approximately 10 ml/min until the eluate is free from anionic surfactants (methylene blue test) regenerates the anion-exchange resin.

Then pass 2 000 ml isopropanol/water mixture (4.3.3) down the anion exchanger to wash. The anion exchanger is again ready for operation.

Preliminary treatment of non-ionic surfactants to be tested