Directive 2006/25/EC of the European Parliament and of the Council of 5 April 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC)

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

ANNEX II

Laser optical radiation

The biophysically relevant exposure values to optical radiation can be determined with the formulae below. The formulae to be used depend on the wavelength and duration of radiation emitted by the source and the results should be compared with the corresponding exposure limit values indicated in the Tables 2.2 to 2.4. More than one exposure value and corresponding exposure limit can be relevant for a given source of laser optical radiation.

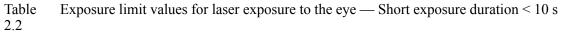
Coefficients used as calculation tools within the Tables 2.2 to 2.4 are listed in Table 2.5 and corrections for repetitive exposure are listed in Table 2.6.

$$E = \frac{dP}{dA} [W m^{-2}]$$

 $H = \int\limits_{0}^{t} E(t) imes \mathrm{dt} ig[\mathrm{J} \ \mathrm{m}^{-2} ig]$

Notes:

dP	power expressed in watt [W];
dA	<i>surface</i> expressed in square metres [m ²];
E (t), E	irradiance or power density: the radiant power incident per unit area
	upon a surface, generally expressed in watts per square metre $[W m^{-2}]$. Values of E(t), E come from measurements or may be provided by the manufacturer of the equipment;
Н	<i>radiant exposure</i> : the time integral of the irradiance, expressed in joules
	per square metre [J m ⁻²];
t	time, duration of the exposure, expressed in seconds [s];
λ	<i>wavelength</i> , expressed in nanometres [nm];
γ	<i>limiting cone angle of</i> measurement <i>field-of-view</i> expressed in milliradians [mrad];
$\gamma_{\rm m}$	measurement field of view expressed in milliradians [mrad];
ά	angular subtense of a source expressed in milliradians [mrad];
	<i>limiting aperture</i> : the circular area over which irradiance and radiant exposure are <i>averaged</i> ;
G	<i>integrated radiance</i> : the integral of the radiance over a given exposure time expressed as radiant energy per unit area of a radiating surface per unit solid angle of emission, in joules per square metre per steradian [J m ⁻² sr ⁻¹].


TableRadiation hazards

2.1

Wavelength [nm]λ	Radiation range	Affected organ	Hazard	Exposure limit value table
180 to 400	UV	eye	photochemical damage and thermal damage	2.2, 2.3
180 to 400	UV	skin	erythema	2.4
400 to 700	visible	eye	retinal damage	2.2
400 to 600	visible	eye	photochemical damage	2.3

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

400 to 700	visible	skin	thermal damage	2.4
700 to 1 400	IRA	eye	thermal damage	2.2, 2.3
700 to 1 400	IRA	skin	thermal damage	2.4
1 400 to 2 600	IRB	eye	thermal damage	2.2
2 600 to 10 ⁶	IRC	eye	thermal damage	2.2
1 400 to 10 ⁶	IRB, IRC	eye	thermal damage	2.3
1 400 to 10 ⁶	IRB, IRC	skin	thermal damage	2.4

Wav	elength ^a [nm]	Aperture	Duration [s]						
		Ape	10 ⁻¹³ - 10 ⁻¹¹	10 ⁻¹¹ - 10 ⁻⁹	10'9 - 10'7	$10^{-7} - 1.8 \cdot 10^{-5}$	$1,8 \cdot 10^{-5} - 5 \cdot 10^{-5}$	5 · 10 ⁻⁵ - 10 ⁻³	$10^{-3} - 10^{1}$
UVC	180 - 280 280 - 302 303 304 305 306 307 308 309 310 311 312 313	1 mm for t<0,3 s; 1,5 $\cdot t^{0.375}$ for 0,3 <t<10 s<="" td=""><td>E = 3 + Si</td><td>10¹⁰• [W m⁻²] ee note ⁵</td><td>$\begin{array}{c} H=30\;[J\;m^2]\\ H=40\;[J\;m^2];\\ H=60\;[J\;m^2];\\ H=100\;[J\;m^2];\\ H=100\;[J\;m^2];\\ H=100\;[J\;m^2];\\ H=400\;[J\;m^2];\\ H=60\;[J\;m^2];\\ H=60\;[J\;m^2];\\ H=1.6\cdot10^4\;[J];\\ H=1.6\cdot10^4\;[J]$</td><td>$\begin{array}{c} & \mbox{if \$t < 1\$,} \\ & \mbox{if \$t < 1\$,} \\ & \mbox{if \$t < 1\$,} \\ & \mbox{if \$t < 2\$,} \\ & \mbox{if \$t < 2\$,} \\ & \mbox{if \$t < 1\$,} \\ & \mbox{if \$t < 4\$,} \\ & \mbox{m}^2]; & \mbox{if \$t < 4\$,} \\ & \mbo$</td><td>$6 \cdot 10^{-9}$ then H = 5,6 \cdot 10^{-3} $3 \cdot 10^{-8}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-7}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-5}$ then H = 5,6 \cdot 10^{-3} then H = 5,6 \cdot 10^{-3} then H = 5,6 \cdot 10^{-3} then H = 5,6 \cdot 10^{-3} $6 \cdot 10^{-4}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-2}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-2}$ then H = 5,6 \cdot 10^{-3} $6 \cdot 10^{-6}$ then H = 5,6 \cdot 10^{-3}</td><td>$\begin{array}{c} \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \end{array}$</td><td>4 4 4 4 4 4 4 4 4 4 4</td></t<10>	E = 3 + Si	10 ¹⁰ • [W m ⁻²] ee note ⁵	$\begin{array}{c} H=30\;[J\;m^2]\\ H=40\;[J\;m^2];\\ H=60\;[J\;m^2];\\ H=100\;[J\;m^2];\\ H=100\;[J\;m^2];\\ H=100\;[J\;m^2];\\ H=400\;[J\;m^2];\\ H=60\;[J\;m^2];\\ H=60\;[J\;m^2];\\ H=1.6\cdot10^4\;[J];\\ H=1.6\cdot10^4\;[J]$	$\begin{array}{c} & \mbox{if $t < 1$,} \\ & \mbox{if $t < 1$,} \\ & \mbox{if $t < 1$,} \\ & \mbox{if $t < 2$,} \\ & \mbox{if $t < 2$,} \\ & \mbox{if $t < 1$,} \\ & \mbox{if $t < 4$,} \\ & \mbox{m}^2]; & \mbox{if $t < 4$,} \\ & \mbo$	$6 \cdot 10^{-9}$ then H = 5,6 \cdot 10^{-3} $3 \cdot 10^{-8}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-7}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-5}$ then H = 5,6 \cdot 10^{-3} then H = 5,6 \cdot 10^{-3} then H = 5,6 \cdot 10^{-3} then H = 5,6 \cdot 10^{-3} $6 \cdot 10^{-4}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-2}$ then H = 5,6 \cdot 10^{-3} $0 \cdot 10^{-2}$ then H = 5,6 \cdot 10^{-3} $6 \cdot 10^{-6}$ then H = 5,6 \cdot 10^{-3}	$\begin{array}{c} \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \frac{1}{4} t \frac{0.3^3}{10} \left[m^{-2} \right] \text{ see note} \\ \end{array}$	4 4 4 4 4 4 4 4 4 4 4
UVA	315-400				11 0,5 10 01	ат j, ат ч,		10 ³ t ^{0,25} [] m ⁻²]	
	400 - 700		$H = 1.5 \cdot 10^{-4} C_E [J m^{-2}]$	$H = 2.7 \cdot 10^4 t^{0.75} C_E [I m^{-2}]$	H = 5 · 10	-3 C _E [J m ⁻²]		$I = 18 t^{0.75} C_E [J m^{-2}]$	
Visible&	700 - 1 050	mm	$H = 1,5 \cdot 10^{-4} C_A C_E [J m^{-2}]$					$H = 18 \cdot t^{0.75} C_A C_E [J r$	
IRA	1 050- 1 400	71	$H = 1.5 \cdot 10^{-3} C_C C_E [J m^{-2}]$			$0.t^{0.75} C_C C_E [J m^{-2}]$			
	1 400 - 1 500	0	12 - 2				$D^{3}[Jm^{-2}]$		$H=5.6 \cdot 10^3 t^{0.25} [m^{-2}]$
IRB	1 500 - 1 800	See note ^b		W m ² See note ^c			$H = 10^4 [J m^{-2}]$	1	
& IRC	1 800 - 2 600	e n	E = 10 ¹² [V		H = 10	0 ³ [J m ⁻²]		H=5,6 ·10 ³ ·t ^{0,25} [J m ⁻²]	
IRC	2 600 - 10 ⁶	Sé	E = 10 ¹¹ [V	W m ⁻²] See note ^c	H=100 [J m ⁻²]	H = 5,6 ·	10 ³ · t ^{0,25} [J m ⁻²]	

a b

If the wavelength of the laser is covered by two limits, then the more restrictive applies. When 1 400-8x-10⁶ nm : aperture diameter = 1 mm. Due to lack of data at these puble lengths. ICNIRP recommends the use of the 1 is instadance limits. The tuble states values for single laser publes. In case of multiple laser publes, then the laser puble durations of publes falling within an interval T_{am} (listed in table 2.6) must be added up and the resulting time value must be filled in for t in the formula: 5.6 10⁶ t⁴³³. c d

Table Exposure limit values for laser exposure to the eye — Long exposure duration ≥ 10 s 2.3

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

		ar			Duration [s]		
Way	velength ^a [nm]	Aperture	10 ¹ - 10 ²	10 ¹ - 10 ² 10 ² - 10 ⁴			
UVC	180 - 280 280 - 302				H = 30 [J m ⁻²]		
	303	1			$H = 40 [J m^{-2}]$		
	304	1			$H = 60 [J m^{-2}]$		
	305	1			$H = 100 [J m^{-2}]$		
	306	1			H = 160 [J m ⁻²]		
	307	1 =		$H = 250 [1 m^{-2}]$			
UVB	308	3,5 mm		$H = 400 [m^{-2}]$			
UVB	309	6		$H = 630 [1 m^2]$			
	310	1	$H = 1,0 \cdot 10^3 [J m^2]$				
	311]	$H = 1.6 \cdot 10^{3} [J m^{2}]$ $H = 2.5 \cdot 10^{3} [J m^{2}]$				
	312]					
	313]		$H = 4,0 \cdot 10^3 [J m^{-2}]$			
	314				$H = 6.3 \cdot 10^3 [J m^{-2}]$		
UVA	315 - 400				$H = 10^4 [J m^{-2}]$		
Vis ible 400 – 700	400 - 600 Photochemical ^b Retinal damage	7 mm	H = 100 C _B [J m ⁻²] (y = 11 mrad) ^d		$E = 1 \ C_{8} \left[W \ m^{-2} \right] : \left(\gamma = 1, 1 \ t^{0.5} \ mrad \right)^{-d}$	$\begin{split} E &= 1 \ C_8 \ [W \ m^{-2}] \\ (\gamma &= 110 \ mrad)^d \end{split}$	
V 40	400 - 700 Thermal ^b Retinal damage		if o	$ \begin{array}{ll} {\rm if a < 1,5 \mbox{ mrad}} & {\rm then } \mathbb{B} = 10 [Wm^2] \\ {\rm if a > 1,5 \mbox{ mrad}} {\rm and t \le T}_2 & {\rm then } \mathbb{H} = 18 {\rm cg}_1 {\rm cm}^{2/3} [M^{-2}] \\ {\rm if a > 1,5 \mbox{ mrad}} {\rm and t > T}_2 & {\rm then } \mathbb{H} = 18 {\rm cg}_1 {\rm cm}^{2/3} [Wm^2] \\ \end{array} $			
IRA	700 - 1 400	7 mm	if $\alpha < 1, 5 \text{ mrad}$ then $E = 10 C_A C_C [W m^2]$ if $\alpha > 1, 5 \text{ mrad}$ and $t \le T_2$ then $H = 18 C_A C_C C_C T_A^{(3)} [J m^2]$ if $\alpha > 1, 5, \text{ mrad}$ and $t > T_2$ then $E = 18 C_A C_C C_C T_A^{(3)} [W m^2]$ (not to exceed 1 000 W m ²)				
IRB & IRC	1 400 - 10 ⁶	See	$E = 1000 [Wm^{-2}]$				

If the wavelength or another condition of the laser is covered by two limits, then the more restrictive applies. For small sources subtending an angle of 1.5 mrad or less, the visible dual limits E from 400 mm to 600 mm reduce to the thermal limits for 10 s st t-T₁ and to photochemical limits for longer times. For T₁ and T₂ see Table 2.5. The photochemical retinal hazard limit may also be expressed as a time integrated radiance G = 10⁶ C₄ [] m² at²] for (r > 10 sup to t = 10000 s and L = 100 c₄ [] m² at²] for (r > 10 sup to t = 10000 s. For the measurement of G and L × must be used as averaging field of view. The official border between visible and integrated in Radiance between visible and integrated is Radiane by the CE: The column with wavelength than Annuals is only ment to provide better overvise for the user. (The notation G is used by CE): the notation L is used by CE: the notation d is used by CE: the notation L is used by CE: the notation d is used by a h

c d

Table Exposure limit values for laser exposure of skin 2.4

	velength * [nm]	Aperture	Duration [s]					
wav	velengtri [nm]	Aper	< 10 ^{.9}	10 ^{.9} - 10 ^{.7}	10 ⁻⁷ - 10 ⁻³	$10^{-3} - 10^{1}$	10 ¹ - 10 ³	$10^{3} - 3 \cdot 10^{4}$
UV (A, B, C)	180-400	3. 5mm	$E = 3 \cdot 10^{10} [W m^{-3}]$	Same as eye exposure limits				
Visible and	400-700		$E = 2 \cdot 10^{11} [W m^{-2}]$	H=200 C _A	$H = 1.1 \cdot 10^4 C_A t^{0.25} [J m^{-2}]$		$1,1 \cdot 10^4 C_A t^{0.25} [J m^{-2}] \qquad E = 2 \cdot 10^3 C_A [W m^{-2}]$	
IRA	700 -1 400		$E = 2 \cdot 10^{11} C_A [W m^{-2}]$	[J m ⁻²]			E = 2 ·	IO CALW M J
	1 400-1 500	5mm	$E = 10^{12} [W m^{-2}]$					
IRB	1 500-1 800	3.51	$E = 10^{13} [W m^{-2}]$	- Same as eye exposure limits				
and IRC	1 800-2 600		$E = 10^{12} [W m^{-2}]$					
	2 600-10 ⁶	1	$E = 10^{11} [W m^{-2}]$					

ed by two limits, then the more restrictive appli If the wa

Table Applied correction factors and other calculation parameters 2.5

Parameter as listed in ICNIRP	Valid spectral range (nm)	Value
C _A	$\lambda < 700$	$C_{\rm A} = 1,0$
	700 — 1 050	$C_{\rm A} = 10^{0,002(\lambda - 700)}$
	1 050 — 1 400	$C_{\rm A} = 5,0$
C _B	400 - 450	$C_{\rm B} = 1,0$
	450 - 700	$C_{\rm B} = 10^{0,02(\lambda - 450)}$

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

CC	700 — 1 150	$C_{\rm C} = 1,0$
	1 150 — 1 200	$C_{\rm C} = 10^{0,018(\lambda - 1\ 150)}$
	1 200 — 1 400	C _C = 8,0
T ₁	$\lambda < 450$	$T_1 = 10 \text{ s}$
	450 — 500	$T_1 = 10 \cdot [10^{0,02 (\lambda - 450)}] s$
	$\lambda > 500$	$T_1 = 100 \text{ s}$

Parameter as listed in ICNIRP	Valid for biological effect	Value
α_{min}	all thermal effects	$\alpha_{\min} = 1,5 \text{ mrad}$

Parameter as listed in ICNIRP	Valid angular range (mrad)	Value
C _E	$\alpha < \alpha_{\min}$	$C_{\rm E} = 1,0$
	$\alpha_{\min} < \alpha < 100$	$C_{\rm E} = \alpha / \alpha_{\rm min}$
	α > 100	$C_{\rm E} = \alpha^2 / (\alpha_{\rm min} \cdot \alpha_{\rm max}) \text{ mrad}$ with $\alpha_{\rm max} = 100 \text{ mrad}$
T ₂	α < 1,5	$T_2 = 10 s$
	$1,5 < \alpha < 100$	$T_2 = 10 \cdot [10^{(\alpha - 1,5)/98,5}] s$
	α > 100	$T_2 = 100 \text{ s}$

Parameter as listed in ICNIRP	Valid exposure time range (s)	Value
γ	$t \leq 100$	$\gamma = 11 \text{ [mrad]}$
	$100 < t < 10^4$	$\gamma = 1,1 t^{0,5} [mrad]$
	$t > 10^4$	$\gamma = 110 \text{ [mrad]}$

TableCorrection for repetitive exposure2.6

Each of the following three general rules should be applied to all repetitive exposures as occur from repetitively pulsed or scanning laser systems:

- 1. The exposure from any single pulse in a train of pulses shall not exceed the exposure limit value for a single pulse of that pulse duration.
- 2. The exposure from any group of pulses (or sub-group of pulses in a train) delivered in time t shall not exceed the exposure limit value for time t.
- 3. The exposure from any single pulse within a group of pulses shall not exceed the single-pulse exposure limit value multiplied by a cumulative-thermal correction factor $C_p=N^{-0,25}$, where N is the number of pulses. This rule applies only to exposure limits to

Parameter	Valid spectral range (nm)	Value
T _{min}	$315 < \lambda \leq 400$	$T_{min} = 10^{-9} s (= 1 ns)$
	$400 < \lambda \le 1\ 050$	$T_{min} = 18 \cdot 10^{-6} \text{ s} (= 18 \mu \text{ s})$
	$1\ 050 < \lambda \le 1\ 400$	$T_{min} = 50 \cdot 10^{-6} \text{ s} (= 50 \mu \text{s})$
	$1\ 400 < \lambda \le 1\ 500$	$T_{min} = 10^{-3} s (= 1 ms)$
	$1\ 500 < \lambda \le 1\ 800$	$T_{min} = 10 \text{ s}$
	$1\ 800 < \lambda \le 2\ 600$	$T_{min} = 10^{-3} s (= 1 ms)$
	$2\ 600 < \lambda \le 10^{-6}$	$T_{min} = 10^{-7} s (= 100 ns)$

protect against thermal injury, where all pulses delivered in less than T_{min} are treated as a single pulse.

IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.