Council Directive of 20 December 1979 on the approximation of the laws of the Member States relating to units of measurement and on the repeal of Directive 71/354/EEC (80/181/EEC)

[${ }^{\mathrm{x} 1}$ ANNEX

Editorial Information

X1 Substituted by Corrigendum to Council Directive 80/181/EEC of 20 December 1979 on the aproximation of the laws of the Member States relating to units of measurement and on the repeal of Directive 71/354/ EEC (Official Journal of the European Communities No L 39 of 15 February 1980)

CHAPTER I

LEGAL UNITS OF MEASUREMENT REFERRED TO IN ARTICLE 1 (a)

1. SI UNITS AND THEIR DECIMAL MULTIPLES AND SUBMULTIPLES
${ }^{\mathrm{F} 1} 1.1$. SI base units

Quantity	Unit	Symbol
	Name	s
Time	second	m
Length	metre	kg
Mass	kilogram	A
Electric current	ampere	K
Thermodynamic temperature	kelvin	mol
Amount of substance	mole	cd
Luminous intensity	candela	

Definitions of SI base units:

Unit of time

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency Δv_{Cs}, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9192631770 when expressed in the unit Hz , which is equal to s^{-1}.

Unit of length

The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299792458 when expressed in the unit m / s, where the second is defined in terms of Δv_{Cs}.

Unit of mass

The kilogram, symbol kg , is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be $6,62607015 \times 10^{-34}$ when expressed in the unit J s, which is equal to $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$, where the metre and the second are defined in terms of c and Δv_{CS}.
Unit of electric current

The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be $1,602176634 \times 10^{-19}$ when expressed in the unit C , which is equal to A s , where the second is defined in terms of Δv_{C}.
Unit of thermodynamic temperature
The kelvin, symbol K , is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be $1,380649 \times 10^{-23}$ when expressed in the unit $\mathrm{J} \mathrm{K}^{-1}$, which is equal to $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$, where the kilogram, metre and second are defined in terms of h, c and Δv_{Cs}.

Unit of amount of substance

The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6,02214076 \times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, N_{A}, when expressed in the unit mol^{-1} and is called the Avogadro number.

The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.
Unit of luminous intensity
The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency $540 \times 10^{12} \mathrm{~Hz}, K_{\mathrm{cd}}$, to be 683 when expressed in the unit $\mathrm{m} \mathrm{W}^{-1}$, which is equal to $\mathrm{cd} \mathrm{sr} \mathrm{W}^{-1}$, or $\mathrm{cd} \mathrm{sr} \mathrm{kg}^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{3}$, where the kilogram, metre and second are defined in terms of h, c and Δv_{Cs}.
1.1.1. Special name and symbol of the SI derived unit of temperature for expressing Celsius temperature

Quantity	Unit	
	Name	Symbol
Celsius temperature	degree Celsius	${ }^{\circ} \mathrm{C}$

Celsius temperature t is defined as the difference $t=T-T_{0}$ between the two thermodynamic temperatures T and T_{0} where $T_{0}=273,15 \mathrm{~K}$. An interval or difference of temperature may be expressed either in kelvins or in degrees Celsius. The unit 'degree Celsius' is equal to the unit 'kelvin'.]

Textual Amendments

F1 Substituted by Commission Directive (EU) 2019/1258 of 23 July 2019 amending, for the purpose of its adaptation to technical progress, the Annex to Council Directive 80/181/EEC as regards the definitions of SI base units (Text with EEA relevance).
$\left[{ }^{\mathrm{F} 2} 1.2\right.$. SI derived units]
${ }^{\mathrm{F} 3}$ 1.2.1. SI supplementary units

Status: EU Directives are being published on this site to aid cross referencing from UK legislation. After IP completion day (31 December 2020 11pm) no further amendments will be applied to this version.

[${ }^{F 3}$

F3
Definitions of SI supplementary units:
Unit of plane angle

Unit of solid angle

Textual Amendments

F3 Deleted by Directive 2009/3/EC of the European Parliament and of the Council of 11 March 2009 amending Council Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (Text with EEA relevance).
[${ }^{\mathrm{F} 2}$ 1.2.2. General rule for SI derived units
Units derived coherently from SI base units are given as algebraic expressions in the form of products of powers of the SI base units with a numerical factor equal to 1 .

1.2.3. SI derived units with special names and symbols

Quantity	Unit		Expression	
	Name	Symbol	In terms of other SI units	In terms of SI base units
Plane angle	radian	rad		$\mathrm{m} \cdot \mathrm{m}^{-1}$
Solid angle	steradian	sr		$\mathrm{m}^{2} \cdot \mathrm{~m}^{-2}$
Frequency	hertz	Hz		s^{-1}
Force	newton	N		$\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{s}^{-2}$
Pressure, stress	pascal	Pa	$\mathrm{N} \cdot \mathrm{m}^{-2}$	$\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
Energy, work; quantity of heat	joule	J	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
Power ${ }^{\text {a }}$, radiant flux	watt	W	$\mathrm{J} \cdot \mathrm{s}^{-1}$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}$
Quantity of electricity, electric charge	coulomb	C		s - A
Electric potential, potential difference,	volt	V	$\mathrm{W} \cdot \mathrm{A}^{-1}$	$\mathrm{m}_{1}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-}$

a Special names for the unit of power: the name volt-ampere (symbol 'VA') when it is used to express the apparent power of alternating electric current, and var (symbol 'var') when it is used to express reactive electric power. The 'var' is not included in GCPM resolutions.

electromotive force				
Electric resistance	ohm	Ω	$\mathrm{V} \cdot \mathrm{A}^{-1}$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-}$ 2
Conductance	siemens	S	$\mathrm{A} \cdot \mathrm{V}^{-1}$	$\mathrm{m}^{-2} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{3} \cdot$ $\mathrm{~A}^{2}$
Capacitance	farad	F	$\mathrm{C} \cdot \mathrm{V}^{-1}$	$\mathrm{~m}^{-2} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{4} \cdot$
$\mathrm{~A}^{2}$				

Units derived from SI base units may be expressed in terms of the units listed in Chapter I.
In particular, derived SI units may be expressed by the special names and symbols given in the above table; for example, the SI unit of dynamic viscosity may be expressed as $\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-}$ ${ }^{1}$ or $\mathrm{N} \cdot \mathrm{s} \cdot \mathrm{m}^{-2}$ or $\mathrm{Pa} \cdot \mathrm{s}$.]

Textual Amendments

F2 Substituted by Directive 2009/3/EC of the European Parliament and of the Council of 11 March 2009 amending Council Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (Text with EEA relevance).
1.3. Prefixes and their symbols used to designate certain decimal multiples and submultiples

[${ }^{\text {4 }}$ Factor	Prefix	Symbol
10^{24}	yotta	Y
10^{21}	zetta	Z
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	[$\left.{ }^{\mathrm{X} 2} \mathrm{k}\right]$
10^{2}	hecto	$\left[{ }^{\mathrm{x} 2} \mathrm{~h}\right]$
10^{1}	deca	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a
10^{-21}	zepto	Z
10^{-24}	yocto	y]

The names and symbols of the decimal multiples and submultiples of the unit of mass are formed by attaching prefixes to the word 'gram' and their symbols to the symbol ' g '.

Where a derived unit is expressed as a fraction, its decimal multiples and submultiples may be designated by attaching a prefix to units in the numerator or the denominator, or in both these parts.

Compound prefixes, that is to say prefixes formed by the juxtaposition of several of the above prefixes, may not be used.
1.4. Special authorized names and symbols of decimal multiples and submultiples of SI units

Quantity	Unit		
	Name	Symbol	Value
Volume	litre	$1{\text { or } \mathrm{L}^{\mathrm{a}}}^{3}$	$11=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
Mass	tonne	t	$1 \mathrm{t}=1 \mathrm{Mg}=10^{3} \mathrm{~kg}$
Pressure, stress	bar	bar $^{\text {b }}$	$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$

a The two symbols 'I'and 'L' may be used for the litre unit.
(Sixteenth CGPM (1979), resolution 6).
b Unit listed in the International Bureau of Weights and Measures booklet as among the units to be permitted temporarily.

Note:

The prefixes and their symbols listed in 1.3 may be used in conjunction with the units and symbols contained in Table 1.4.

2. UNITS WHICH ARE DEFINED ON THE BASIS OF SI UNITS BUT ARE NOT DECIMAL MULTIPLES OR SUBMULTIPLES THEREOF

Quantity	Unit		
	Name	Symbol	Value
Plane angle	revolution*ab		1 revolution $=2 \pi \mathrm{rad}$
	grade* or gon*	gon*	$1 \mathrm{gon}=\frac{\mathrm{r}}{20} \mathrm{rad}$
	degree	-	$1^{*}=\frac{\pi}{150} \mathrm{rad}$
	minute of angle	,	$1^{\prime}=\frac{\pi}{10060} 10800 \mathrm{rad}$
	second of angle	"	$1^{\prime \prime}=\frac{x^{\prime}}{648000} 648000 \mathrm{rad}$
Time	minute	min	$1 \mathrm{~min}=60 \mathrm{~s}$
	hour	h	$1 \mathrm{~h}=3600 \mathrm{~s}$
	day	d	$1 \mathrm{~d}=86400 \mathrm{~s}$

a The character $\left({ }^{*}\right)$ after a unit name or symbol indicates that it does not appear in the lists drawn up by the CGPM, CIPM o BIPM. This applies to the whole of this Annex.
b No international symbol exists.

Note:
The prefixes listed in 1.3 may only be used in conjunction with the names 'grade' or 'gon' and the symbol 'gon'.
[${ }^{\text {F43 } 3 . ~ U N I T S ~ U S E D ~ W I T H ~ T H E ~ S I, ~ W H O S E ~ V A L U E S ~ I N ~ S I ~ A R E ~ O B T A I N E D ~}$ EXPERIMENTALLY

Quantity	Unit		
	Name	Symbol	Definition
Energy	Electronvolt	eV	The electron volt is the kinetic energy acquired by an electron in passing

			through a potential difference of 1 volt in vaccum
Mass	Unified atomic mass unit	u	The unified atomic mass units is equal to $1 / 12$ of the mass of an atom of the nuclide ${ }^{12} \mathrm{C}$.

Note:
The prefixes and their symbols listed in 1.3 may be used in conjunction with these two units and with their symbols.]

4. UNITS AND NAMES OF UNITS PERMITTED IN SPECIALIZED FIELDS ONLY

Quantity	Unit	Symbol	Value
	Name		1 dioptre $=1 \mathrm{~m}^{-1}$
Vergency of optical systems	dioptre*		1 metric carat $=2 \times$ $10^{-4} \mathrm{~kg}$
Mass of precious stones	metric carat	$1 \mathrm{a}=10^{2} \mathrm{~m}^{2}$	
Area of farmland and building land	are	a	1 tex $=10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{-1}$
Mass per unit length of textile yarns and threads	tex*	tex*	$1 \mathrm{~mm} \mathrm{Hg}=133,322$ Pa
I5 Blood pressure and pressure of other body fluids	Millimetre of mercury	$\mathrm{mm} \mathrm{Hg}(*)$	$1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2]}$
Effective cross- sectional area	Barn	b	

Note:
$\left[{ }^{\mathrm{F} 6}\right.$ The prefixes and their symbols listed in 1.3 may be used in conjunction with the above units and symbols, with the exception of the millimetre of mercury and its symbol. The multiple of $10^{2} \mathrm{a}$ is, however, called a 'hectare'.]

5. COMPOUND UNITS

Combinations of the units listed in Chapter I form compound units.

[${ }^{\mathrm{F7}} \mathrm{CHAPTER} \mathrm{II}$

LEGAL UNITS OF MEASUREMENT REFERRED TO IN ARTICLE 1 (b), PERMITTED FOR SPECIFIC USES ONLY

Field of application	Unit			
	Name	Approximate value		Symbol
Road traffic signs, distance and speed measurement	mile	$1 \mathrm{mile}=$	1609 m	mile
	yard	$1 \mathrm{yd}=$	0,9144 m	yd
	foot	$1 \mathrm{ft}=$	0,3048 m	ft
	inch	$1 \mathrm{in}=$	$2,54 \times 10^{-2} \mathrm{~m}$	in
Dispense of draught beer and cider; milk in returnable containers	pint	$1 \mathrm{pt}=$	$0,5683 \times 10^{-3} \mathrm{~m}^{3}$	pt
$\left[{ }^{\text {F3 }}\right]$				
Transaction in precious metals	troy ounce	$1 \mathrm{oztr}=$	$31,10 \times 10^{-3} \mathrm{~kg}$	oz tr

[${ }^{\mathrm{F} 2}$ The units listed in this Chapter may be combined with each other or with those in Chapter I to form compound units.]]

Textual Amendments

F7 Substituted by Council Directive of 27 November 1989 amending Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (89/617/EEC).

CHAPTER III

LEGAL UNITS OF MEASUREMENT REFERRED TO IN ARTICLE 1 (c)

QUANTITIES, NAMES OF UNITS, SYMBOLS AND APPROXIMATE VALUES		
Length		
inch	1 in	$=2.54 \times 10^{-2} \mathrm{~m}$
foot	1 ft	$=0.3048 \mathrm{~m}$
$\left[{ }^{\text {E8 }}\right]$		
mile	1 mile	$=1609 \mathrm{~m}$
yard	1 yard	$=0.9144 \mathrm{~m}$
Area		
a ${ }^{\text {[8] }}$]		

QUANTITIES, NAMES OF UNITS, SYMBOLS AND APPROXIMATE VALUES

square foot	1 sq ft	$=0.929 \times 10^{-1} \mathrm{~m}^{2}$
acre	1 ac	$=4047 \mathrm{~m}^{2}$
square yard	1 sq yd	$=0.8361 \mathrm{~m}^{2}$

Volume

fluid ounce	1 fl oz	$=28.41 \times 10^{-6} \mathrm{~m}^{3}$
gill	1 gill	$=0.1421 \times 10^{-3} \mathrm{~m}^{3}$
pint	1 pt	$=0.5683 \times 10^{-3} \mathrm{~m}^{3}$
quart	1 qt	$=1.137 \times 10^{-3} \mathrm{~m}^{3}$
gallon	1 gal	$=4.546 \times 10^{-3} \mathrm{~m}^{3}$

Mass		
ounce (avoirdupois)	1 oz	$=28.35 \times 10^{-3} \mathrm{~kg}$
troy ounce	1 oz tr	$=31 \cdot 10 \times 10^{-3} \mathrm{~kg}$
pound	1 lb	$=0.4536 \mathrm{~kg}$
Energy	1 therm	$=105.506 \times 10^{6} \mathrm{~J}$
therm		

Textual Amendments

F8 Deleted by Council Directive of 27 November 1989 amending Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (89/617/EEC).

Until the date to be fixed under Article 1 (c), the units listed in Chapter III may be combined with each other or with those in Chapter I to form compound units.]

[${ }^{\mathrm{F9}}$ CHAPTER IV

LEGAL UNITS OF MEASUREMENT REFERRED TO IN ARTICLE I (d), PERMITTED IN SPECIALIZED FIELDS ONLY

Field of application	Unit			
	Name	Approximate value		Symbol
Marine navigation	fathom	$1 \mathrm{fm}=$	$1,829 \mathrm{~m}$	fm
Beer, cider, waters, lemonades and fruit juices	pint	fluid ounce	$1 \mathrm{pt}=$	$0,5683 \times 10^{-3} \mathrm{~m}^{3}$

in returnable containers				
Spirit drinks	gill	1 gill $=$	$0,142 \times 10^{-3} \mathrm{~m}^{3}$	gill
Goods sold loose in bulk	ounce (avoir dupois)	$1 \mathrm{oz}=$	$28,35 \times 10^{-3} \mathrm{~kg}$	oz
	pound	$1 \mathrm{lb}=$	$0,4536 \mathrm{~kg}$	lb
Gas supply	therm	1 therm $=$	$105,506 \times 10^{6} \mathrm{~J}$	therm

Until the date to be fixed under Article 1 (d), the units listed in this Chapter may be combined with each other or with those in Chapter I to form compound units.]

Textual Amendments

F9 Inserted by Council Directive of 27 November 1989 amending Directive 80/181/EEC on the approximation of the laws of the Member States relating to units of measurement (89/617/EEC).

