Commission Implementing Decision (EU) 2016/588
of 14 April 2016
on the approval of the technology used in 12 Volt efficient alternators as an innovative technology for reducing CO2 emissions from passenger cars pursuant to Regulation (EC) No 443/2009 of the European Parliament and of the Council
(Text with EEA relevance) (repealed)
THE EUROPEAN COMMISSION,
Having regard to the Treaty on the Functioning of the European Union,
Whereas:
The information provided in the Valeo and Bosch applications demonstrates that the conditions and the criteria referred to in Article 12 of Regulation (EC) No 443/2009 and in Articles 2 and 4 of Implementing Regulation (EU) No 725/2011 have been met. As a consequence, the Valeo and Bosch efficient alternators should be approved as innovative technologies.
It is therefore appropriate to provide manufacturers with the possibility to certify the CO2 savings from 12 V efficient alternators that meet those conditions. In order to ensure that only alternators that are compliant with those conditions are proposed for certification, the manufacturer should provide a verification report from an independent verification body confirming the compliance together with the application for certification submitted to the type approval authority.
If the type approval authority finds that the 12 V alternator does not satisfy the conditions for certification, the application for certification of the savings should be rejected.
It is appropriate to approve the testing methodology for determining the CO2 savings from 12 V efficient alternators.
In order to determine the CO2 savings from a 12 V efficient alternator, it is necessary to establish the baseline technology against which the efficiency of the alternator should be assessed. On the basis of the experience gained, it is appropriate to consider a 12 V alternator with 67 % efficiency as a baseline technology.
In order to facilitate a wider deployment of 12 V efficient alternators in new vehicles, a manufacturer should also have the possibility to apply for the certification of the CO2 savings from several 12 V efficient alternators by a single certification application. It is however appropriate to ensure that where this possibility is used a mechanism is applied that incentivises the deployment of only those alternators that offer the highest efficiency.
HAS ADOPTED THIS DECISION:
Article 1Approval
The technology used in the Valeo high efficient alternator with high efficiency diodes and in the Bosch efficient alternator with MOS gated diodes is approved as an innovative technology within the meaning of Article 12 of Regulation (EC) No 443/2009.
Article 2Application for certification of CO2 savings
1.
The manufacturer may apply for certification of the CO2 savings from one or several 12 Volt (V) efficient alternators intended for use in M1 vehicles, provided that it complies with the following conditions:
(a)
it is a component used solely to charge the vehicle battery and to power the electrical system of the vehicle when its combustion engine is running;
(b)
the mass of the efficient alternator does not exceed the mass of the baseline alternator of 7 kg by more than 3 kg;
F1(c)
its efficiency is at least:
- (i)
73,8 % for petrol- or E85-fuelled vehicles other than turbo-charged;
- (ii)
73,4 % for turbo-charged petrol- or E85-fuelled vehicles;
- (iii)
74,2 % for diesel-fuelled vehicles;
- (iv)
74,6 % for vehicles fuelled with liquefied petroleum gas (LPG) other than turbo-charged;
- (v)
74,1 % for turbo-charged LPG-fuelled vehicles;
- (vi)
76,3 % for vehicles fuelled with compressed natural gas (CNG) other than turbo-charged;
- (vii)
75,7 % for turbo-charged CNG -fuelled vehicles.
2.
An application for the certification of the savings from one or several efficient alternators shall be accompanied by an independent verification report certifying that the alternator or alternators comply with the conditions set out in paragraph 1.
3.
Article 3Certification of CO2 savings
1.
The reduction in CO2 emissions from the use of an efficient alternator referred to in Article 2(1) shall be determined using the methodology set out in the Annex.
2.
Where a manufacturer applies for the certification of the CO2 savings from more than one efficient alternator referred to in Article 2(1) in relation to one vehicle version, the F4Secretary of State shall determine which of the alternators tested delivers the lowest CO2 savings, and record the lowest value in the relevant type approval documentation. That value shall be indicated in the certificate of conformity in accordance with Article 11(2) of Implementing Regulation (EU) No 725/2011.
F53.
Where the innovative technology is fitted in a bi-fuel or flex-fuel vehicle, the F6Secretary of State shall record the CO 2 savings as follows:
(a)
for bi-fuel vehicles using petrol and gaseous fuels, the CO 2 savings value with regard to LPG or CNG;
(b)
for flex-fuel vehicles using petrol and E85, the CO 2 savings value with regard to petrol.
4.
The certified CO 2 savings recorded by reference to eco-innovation code No 17 may only be taken into account for the calculation of the average specific emissions of manufacturers until and including the calendar year 2020.
Article 4Eco-innovation code
The eco-innovation code No 17 shall be entered into the type approval documentation where reference is made to this Decision in accordance with Article 11(1) of Implementing Regulation (EU) No 725/2011.
F7Article 5Entry into force
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANNEXMETHODOLOGY TO DETERMINE THE CO2 SAVINGS OF A 12 V EFFICIENT ALTERNATOR
1.INTRODUCTION
In order to determine the CO2 savings that can be attributed to the use of an efficient alternator in an M1 vehicle, it is necessary to specify the following:
- (1)
the testing conditions;
- (2)
the test equipment;
- (3)
the determination of the efficiency of the efficient alternator and the baseline alternator;
- (4)
the calculation of the CO2 savings;
- (5)
the calculation of the statistical error.
Symbols, parameters and units
Latin symbols
CO2 savings [g CO2/km]
- CO2
Carbon dioxide
- CF
Conversion factor (l/100 km) — (g CO2/km) [g CO2/l] as defined in Table 3
- h
Frequency as defined in Table 1
- I
Current intensity at which the measurement shall be carried out [A]
- m
Number of measurements of the sample
- M
Torque [Nm]
- n
Rotational frequency [min– 1] as defined in Table 1
- P
Power [W]
Standard deviation of the eco-innovative alternator efficiency [%]
Standard deviation of the eco-innovative alternator efficiency mean [%]
Standard deviation of the total CO2 savings [g CO2/km]
- U
Test voltage at which the measurement shall be carried out [V]
- v
Mean driving speed of the New European Driving Cycle (NEDC) [km/h]
- VPe
Consumption of effective power [l/kWh] as defined in Table 2
Sensitivity of calculated CO2 savings related to the efficiency of the eco-innovative alternator
Greek symbols
- Δ
Difference
- η
Baseline alternator efficiency [%]
- ηEI
Efficient alternator efficiency [%]
Mean of the eco-innovative alternator efficiency at operating point i [%]
Subscripts
Index (i) refers to operating point
Index (j) refers to measurement of the sample
- EI
Eco-innovative
- m
Mechanical
- RW
Real-world conditions
- TA
Type approval conditions
- B
Baseline
2.TEST CONDITIONS
Test equipment
The test equipment shall be in accordance with the specifications set out in ISO 8854:2012.
3.MEASUREMENTS AND DETERMINATION OF THE EFFICIENCY
The efficiency of the efficient alternator shall be determined in accordance with ISO 8854:2012, with the exception of the elements specified in the present paragraph.
The measurements shall be conducted at different operating points i, as defined in Table 1. The alternator current intensity is defined as half of the rated current for all operating points. For each speed the voltage and the output current of the alternator are to be kept constant, the voltage at 14,3 V.
Operating pointi | Holding time[s] | Rotational frequencyni [min– 1] | Frequencyhi |
|---|---|---|---|
1 | 1 200 | 1 800 | 0,25 |
2 | 1 200 | 3 000 | 0,40 |
3 | 600 | 6 000 | 0,25 |
4 | 300 | 10 000 | 0,10 |
The efficiency shall be calculated in accordance with to Formula 1.
Formula 1
The efficiency of the eco-innovative alternator (ηEI) shall be calculated in accordance with Formula 2.
Formula 2
The efficient alternator leads to saved mechanical power under real-world conditions (ΔPmRW) and type approval conditions (ΔPmTA) as defined in Formula 3.
Formula 3
ΔPm = ΔPmRW – ΔPmTA
Where the saved mechanical power under real-world conditions (ΔPmRW) is calculated in accordance with Formula 4 and the saved mechanical power under type-approval conditions (ΔPmTA) in accordance with Formula 5.
Formula 4
Formula 5
where
- PRW
Power requirement under ‘real-world’ conditions [W], which is 750 W
- PTA
Power requirement under type-approval conditions [W], which is 350 W
- ηB
Efficiency of the baseline alternator [%], which is 67 %
Calculation of the CO2 savings
The CO2 savings of the efficient alternator are to be calculated with the following formula.
Formula 6
where
- v
Mean driving speed of the NEDC [km/h], which is 33,58 km/h
- VPe
Is the consumption of effective power specified in the following Table 2
F1Table 2 Consumption of effective powerType of Engine
Consumption of effective power (V pe ) [l/kWh]
Petrol/E85
0,264
Petrol/E85 Turbo
0,280
Diesel
0,220
LPG
0,342
LPG Turbo
0,363
Consumption of effective power (V pe ) [m 3 /kWh]
CNG (G20)
0,259
CNG (G20) Turbo
0,275
- CF
Is the factor specified in the following Table 3
F1Table 3 Fuel conversion factor (CF)Type of fuel
Conversion factor
[100 g CO 2 /l]
[g CO 2 /l]
Petrol/E85
23,3
2 330
Diesel
26,4
2 640
LPG
16,3
1 629
[100 g CO 2 /m 3 ]
[g CO 2 /m 3 ]
CNG (G20)
18,0
1 795
Calculation of the statistical error
The statistical errors in the results of the testing methodology caused by the measurements are to be quantified. For each operating point the standard deviation is calculated as defined by the following formula:
Formula 7
Formula 8
Formula 9
Statistical Significance
It has to be demonstrated for each type, variant and version of a vehicle fitted with the efficient alternator that the error in the CO2 savings calculated in accordance with Formula 9 is not greater than the difference between the total CO2 savings and the minimum savings threshold specified in Article 9(1) of Implementing Regulation (EU) No 725/2011 (see Formula 10).
Formula 10
where:
- MT
Minimum threshold [g CO2/km], which is 1 g CO2/km
Test and evaluation Report
The report shall include:
Model and mass of the tested alternators
Description of the bench
Test results (measured values)
Calculated results and corresponding formulae
The efficient alternator to be fitted in vehicles
The F8Secretary of State is to certify the CO2 savings based on measurements of the efficient alternator and the baseline alternator using the test methodology set out in this Annex. Where the CO2 emission savings are below the threshold specified in Article 9(1), the second subparagraph of Article 11(2) of Implementing Regulation (EU) No 725/2011 shall apply.