Status: This is the original version (as it was originally made).

SCHEDULE 1

PART 1

Criteria for identifying the types of river, lake or transitional water to which the environmental standards specified in Part 2 of this Schedule apply

7. To determine the morphological conditions applicable to a lake or any part thereof, the Department must assign the hydromorphological characteristics of the lake or part thereof as being of the type specified in column 1 of Table 9 below which corresponds to the applicable measurements specified in columns 3 and 4 of that Table.

Table 1

Criteria for identifying the types of river to which the dissolved oxygen, ammonia and biochemical oxygen demand standards for rivers apply

Site Altitude		Alkalinity (as mg/l CaCO ₃)				
		Less than 10	10 to 50	50 to 100	100 to 200	Over 200
Under metres	80	Type 1	Type 2	Type 3	Type 5	Туре 7
Over metres	80	1		Type 4	Туре 6	

Table 2

Final typology for dissolved oxygen, ammonia and biochemical oxygen demand in rivers			
Column 1 Column 2			
Upland and low alkalinity	Types (1+2), 4 and 6		
Lowland and high alkalinity	Types 3, 5 and 7		

Table 3

Criteria for identifying types of river to which morphological conditions apply

Туре	Characteristics				
Bedrock channel	Normally high altitude	Channel cuts down laterally		Bedrock substrate	
Cascade Step Pool	Normally high altitude	Channel cuts down	Both turbulent and tranquil flows	Cobble and boulder substrate	
Pool-riffle- glide	Normally medium altitude	Often not confined within a valley	Slightly meandering	Pebble and cobble substrate	
Meandering	Normally low altitude	Flow laminar and would naturally interact with floodplain	Meandering	More fines than other substrates	

Table 4

Criteria for identifying types of river to which the river flow standards apply

Column 1	Column 2	Column 3	Column 4	
Туре	Standard Average Annual Rainfall mm (period 1961-1990)	Base Flow Index (BFI)	Catchment area (km ²)	
A1	< 810.5	< 0.715	A	ny
		≥ 0.715	≥ 251.8	
A2	< 810.5	≥ 0.715	< 251.8	≤ 100 (A2 headwaters) > 100 (A2 downstream)
	\geq 810.5 and < 1413	≥ 0.7495	Any	≤ 100 (A2 headwaters) > 100 (A2 downstream)
B1	\geq 810.5 and < 1155	≥ 0.3615 and < 0.7495	< 267.4	
B2	\geq 810.5 and < 1413	≥ 0.3615 and < 0.7495	< 267.4	
C2	≥ 1155 and < 1413	≥ 0.3615 and < 0.7495	< 267.4	
	≥ 1413	≥ 0.3615	≥ 3	2.33
D2	≥ 1413	≥ 0.3615	< 32.33	
	≥ 810.5	< 0.3615	А	ny

Table 5

Geological categories to which total phosphorus, phytoplankton and phytobenthos standards for lakes apply

Geological category	Annual mean alkalinity (micro-equivalents per litre)
Low alkalinity	< 200
Moderate alkalinity	200 - 1000
High alkalinity	> 1000
Marl	

Table 6

Depth categories to which total phosphorus standards for lakes apply

Depth category	Mean depth (metres)
Very shallow	< 3
Shallow	3 – 15
Deep	> 15

Table 7

Colour categories to which total phosphorus standards for lakes apply

Colour category	Platinum (mg/l)	
Humic	> 30	
Non humic	≤ 3 0	

Table 8

Geological characteristics used to identify lake types to which lake level standards apply

Categories	
Column 1	Column 2
Peat	Non-Peat
mean water colour ≥ 90 hazen units; or	mean water colour <90 hazen units; or
\geq 75% of solid catchment area comprised of peat	<75% of solid catchment area comprised of peat

Table 9

Hydromorphological characteristics used to identify lake types to which morphological conditions apply

Column 1	Column 2	Column 3	Column 4
Туре	Lake-MImAS ⁽¹⁾ code	Mean Depth	Alkalinity
Low Alkalinity	P/L-vS	<4m	< 20 mgl ⁻¹ CaCO ₃
Very Shallow			
Low Alkalinity Shallow/ Deep	P/L-ShD	>4m	$< 20 \text{ mgl}^{-1} \text{ CaCO}_3$
Moderate Alkalinity Very Shallow	MA-vS	<4m	20 – 100 mgl ⁻¹ CaCO ₃
Moderate Alkalinity Shallow/Deep	MA-ShD	>4m	20 – 100 mgl ⁻¹ CaCO ₃

(1) Morphological Impact Assessment System

Column 1	Column 2	Column 3	Column 4
Туре	Lake-MImAS ⁽¹⁾ code	Mean Depth	Alkalinity
High Alkalinity Very Shallow	HA/M-vS	<4m	> 100 mgl ⁻¹ CaCO ₃
High Alkalinity Shallow/ Deep	HA/M-ShD	>4m	> 100 mgl ⁻¹ CaCO ₃

(1) Morphological Impact Assessment System