Council Regulation (EU) 2018/2069 of 20 December 2018 amending Regulation (EU) No 1387/2013 suspending the autonomous Common Customs Tariff duties on certain agricultural and industrial products

COUNCIL REGULATION (EU) 2018/2069

of 20 December 2018

amending Regulation (EU) No 1387/2013 suspending the autonomous Common Customs Tariff duties on certain agricultural and industrial products

THE COUNCIL OF THE EUROPEAN UNION,

Having regard to the Treaty on the Functioning of the European Union, and in particular Article 31 thereof,

Having regard to the proposal from the European Commission,

Whereas:

- (1) In order to ensure a sufficient and uninterrupted supply of certain agricultural and industrial products which are unavailable in the Union and thereby avoid any disturbances in the market for those products, autonomous Common Customs Tariff ('CCT') duties on those products have been suspended by Council Regulation (EU) No 1387/2013⁽¹⁾. Those products can be imported into the Union at reduced or zero duty rates.
- (2) The Union production of 87 products that are not listed in the Annex to Regulation (EU) No 1387/2013 is inadequate or non-existent. It is therefore in the interest of the Union to suspend totally the autonomous CCT duties on those products.
- (3) It is necessary to modify the conditions for the suspension of autonomous CCT duties for 26 products listed in the Annex to Regulation (EU) No 1387/2013 in order to take into account technical product developments and economic trends in the market.
- (4) For certain products listed in the Annex to Regulation (EU) No 1387/2013, the classification in the Combined Nomenclature (CN) of the products covered by suspensions should be amended.
- (5) It is also necessary, in the interest of the Union, to amend the end date for the mandatory review of 720 products listed in the Annex to Regulation (EU) No 1387/2013 in order to allow duty-free imports beyond that date. The autonomous CCT duty suspensions for those products have been reviewed and new revised dates should be set for their next mandatory review.
- (6) It is no longer in the interest of the Union to maintain the suspension of autonomous CCT duties for 13 products listed in the Annex to Regulation (EU) No 1387/2013. The suspensions for those products should therefore be deleted. Moreover, according to the communication from the Commission concerning autonomous tariff suspensions and quotas⁽²⁾ (the 'Commission communication'), for practical reasons, requests for tariff

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

suspensions or quotas where the amount of uncollected customs duty is estimated to be less than EUR 15 000 per year cannot be taken into consideration. The mandatory review of the existing suspensions has indicated that imports in relation to 197 products listed in the Annex to Regulation (EU) No 1387/2013 do not reach that threshold. Those suspensions should therefore be deleted.

- (7) In the interest of clarity, and taking into account the number of amendments to be made, the Annex to Regulation (EU) No 1387/2013 should be replaced.
- (8) Regulation (EU) No 1387/2013 should therefore be amended accordingly.
- (9) In order to avoid any interruption of the application of the autonomous suspension scheme and to comply with the guidelines set out in the Commission communication, the changes provided for in this Regulation regarding the suspensions for the products concerned should apply from 1 January 2019. This Regulation should therefore enter into force as a matter of urgency,

HAS ADOPTED THIS REGULATION:

Article 1

The Annex to Regulation (EU) No 1387/2013 is replaced by the text set out in the Annex to this Regulation.

Article 2

This Regulation shall enter into force on the day following that of its publication in the *Official Journal of the European Union*.

It shall apply from 1 January 2019.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

Done at Brussels, 20 December 2018.

For the Council

The President

E. KÖSTINGER

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ANNEX

CN code	TARIC	Description	Rate of	Supplementary Datet	
			autonomous duty		foreseen for mandatory review
ex 0709 59 10	10	Fresh or chilled chanterelles for treatment other than simple repacking for retail sale ^{ab}	0 %		31.12.2020
^g ex 0710 21 00	10	Peas in pods, of the species <i>Pisum sativum</i> of the variety <i>Hortense axiphium</i> , frozen, of a thickness of not more than 6 mm, to be used, in their pods, in the manufacture of prepared meals ab	0 %		31.12.2023
gex 0710 80 95	50	Bamboo shoots, frozen, not put up for retail sale	0 %	_	31.12.2023
ex 0711 59 00	11	Mushrooms, excluding mushrooms of the genera Agaricus, Calocybe, Clitocybe, Lepista, Leucoagaricus Leucopaxillus, Lyophyllum and Tricholoma, provisionally preserved in brine, in	0 %		31.12.2021

		sulphur water, or in other preservative solutions, but unsuitable in that state for immediate consumption, for the food-canning industry ^b			
ex 0712 32 00 ex 0712 33 00 ex 0712 39 00		Mushrooms, excluding mushrooms of the genus Agaricus, dried, whole or in identifiable slices or pieces, for treatment other than simple repacking for retail sale ^{ab}	0 %		31.12.2023
^g ex 0804 10 00	30	Dates, fresh or dried, for use in the manufacture (excluding packing) of products of drink or food industries ^b	0 %	_	31.12.2023
ex 0811 90 50 0811 90 70 ex 0811 90 95	70	Fruit of the genus Vaccinium, uncooked or cooked by steaming or boiling in water, frozen, not containing added sugar or other sweetening matter	0 %		31.12.2023

					·
gex 0811 90 95	20	Boysenberries, frozen, not containing added sugar, not put up for retail sale	0 %		31.12.2023
^g ex 0811 90 95	30	Pineapple (Ananas comosus), in pieces, frozen	0 %	_	31.12.2023
gex 0811 90 95	40	Rose-hips, uncooked or cooked by steaming or boiling in water, frozen, not containing added sugar or other sweetening matter	0 %		31.12.2023
gex 1511 90 19 ex 1511 90 91 ex 1513 11 10 ex 1513 19 30 ex 1513 21 10 ex 1513 29 30	20 20 20 20 20 20 20	fatty acids of	carboxylic eading yl		31.12.2019

1	subheadings
	2905
	17,
	2905
	19
	and
	3823
	70
	used
	for
	the
	manufacture
	of .
	cosmetics,
	washing
	products
	or
	pharmaceutical
	products,
	fatty
	alcohols
	of
	01
	subheading
	2905
	16,
	pure
	or
	mixed,
	used
	for
	the
	manufacture
	of .
	cosmetics,
	washing
	products
	or
	pharmaceutical
	products,
_	stearic
	acid
	of
	subheading
	3823
	11
	00,
	goods
	of
	heading
	3401
	or
	fatty
	acids

	I	.11ء۔۔۔	I	I	I
		with high			
		purity	y		
		of			
		headi			
		2915 ^t	•		
ex 1512 19 10	10	Refined safflower oil (CAS RN	0 %		31.12.2020
		8001-23-8) for use in the manufacture			
		of:			
		— conju	gated		
		linole acid	eic		
		of			
		headi	ng		
		3823.			
		or			
		— ethyl-	<u> </u> 		
		or	.1		
		methy esters			
		of			
		linole	ic		
		acid			
		of			
		headi			
		2916 ^t			
^g ex 1515 90	92	Vegetable	0 %	_	31.12.2023
99		oil, refined,			
		containing by weight 35			
		% or more			
		but not more			
		than 50 % of			
		arachidonic			
		acid or 35 % or more but			
		not more but			
		than 50 % of			
		docosahexaeno	ic		
		acid			
ex 1516 20 96	20	Jojoba oil,	0 %	_	31.12.2019
		hydrogenated			
		and			
		interesterified,			
		without any further			
		chemical			
	I	Circinical	I	l	I

		modification and not subjected to any texturisation process		
ex 1517 90 99	10	Vegetable oil, refined, containing by weight 25 % or more but not more than 50 % arachidonic acid or 12 % or more but not more than 65 % docosahexaenc acid and standardized with high oleic sunflower oil (HOSO)		31.12.2021
gex 1901 90 99 ex 2106 90 98	39 45	Preparation in powder form containing by weight: — 15 % or more but not more than 35 % of whea deriv. Malto — 15 % or more but not more than 35 % or more but not more than 35 % or more but not more than 35	t	31.12.2023

	%	
	of	
	whey	
	(milk	
	serum),	
	10	
	%	
	or	
	more	
	but	
	not	
	more	
	than	
	30	
	%	
	of	
	refined,	
	bleached,	
	deodorised	
	and	
	non-	
	hydrogenated	
	sunflower	
	oil,	
	10	
	%	
	or	
	more	
	but	
	not	
	more	
	than	
	30	
	%	
	of	
	blended,	
	aged	
	spray	
	dried	
	cheese,	
_	5 %	
	or	
	more	
	but	
	not	
	more	
	than	
	15	
	%	
	of	
	buttermilk,	
	and	
•	1	

Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		- 0,1 % or more but not more than 10 % of sodiu casein disod phosp lactic acid	m nate, ium bhate,	
^g ex 1902 30 10 ex 1903 00 00	10 20	Transparent noodles, cut in pieces, obtained from beans (<i>Vigna radiata</i> (L.) Wilczek), not put up for retail sale	0 %	 31.12.2023
gex 2005 91 00	10	Bamboo shoots, prepared or preserved, in immediate packings of a net content of more than 5 kg	0 %	31.12.2023
ex 2007 99 50 ex 2007 99 50 ex 2007 99 93	83 93 10	Mango puree concentrate, obtained by cooking: — of the Genu Mang spp., with a sugar conte by weigh of	rifera nt	31.12.2022

	not more than 30 % for use in the manufacture of products of food and drink industry ^b		
ex 2007 99 50 ex 2007 99 50	Papaya puree concentrate, obtained by cooking: — of the Genu Caric spp., with a sugar conter by weigh of more than 13 % but not more than 30 %, for use in the manufacture of products of food and drink industry ^b	nt	31.12.2022
ex 2007 99 50 ex 2007 99 50	Guava puree concentrate, obtained by cooking: — of the Genu Psidi spp.,	um	31.12.2022

	i ·	Ī		1
		with a sugar conte by weigh of more than 13 % but	nt	
		not more		
		than 30 %,		
		for use in the manufacture of products of food and drink industry ^b		
ex 2008 93 91	20	Sweetened dried cranberries, excluding packing alone as processing, for the manufacture of products of food processing industries ^d	0 %	31.12.2022
ex 2008 99 48	94	— of the genus	entrate, s gifera,	31.12.2020

ex 2008 99 49 ex 2008 99 99	40	more than 2 used in the manufacture of products of drink industry ^b Seedless boysenberry puree not containing added spirit, whether or not containing added sugar		31.12.2019
ex 2008 99 49 ex 2008 99 99		— 0,1 % or more but not more than 1,4 % of acidit express as citric acid	entration, y ssed	31.12.2022

Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		more than 2 000 mg/ kg of sodiu benze accor COD STAN 192-1 for use in the manufacture of stuffed vine leaves with rice b	m pate ding EX N 995,	
ex 2008 99 91	20	Chinese water chestnuts (Eleocharis dulcis or Eleocharis tuberosa) peeled, washed, blanched, chilled and individually questioner for use in the manufacture of products of food industry for treatment other than simple repacking ab		31.12.2020
ex 2009 41 92 ex 2009 41 99	20 70	Pineapple juice: not from	as,	31.12.2020

11 or more but not more than 16, used in the manufacture of products of drink industry ^b	
ex 2009 49 30 91 Pineapple juice, other than in powder form: — with a Brix value of more than 20 but not more than 67, — a value of more than EUR 30 per 100 kg net weight, — containing added sugar, used in the manufacture of products of food or drink industry ^b	2019

ex 2009 81 31	10	Cranberry juice concentrate: — of a Brix value of 40 or more but not more than 66, — in imme packi of a conte of 50 litres or more	ediate ngs nt	31.12.2019
ex 2009 89 73	11	Passion	0 %	21 12 2010
ex 2009 89 73 ex 2009 89 73		Passion fruit juice and passion fruit juice concentrate, whether or not frozen: with a Brix value of 13,7 or more but not more than : of a value of more than EUR 30 per	55,	31.12.2019

ex 2009 89 79	20	100 kg net weigh in imme packi of a conte of 50 litres or more and with addec sugar for the use in the manufacture of products of food or drink industry ^b Frozen	ediate ngs ent	31.12.2021
ex 2009 89 79	20	boysenberry juice concentrate with a Brix value of 61 or more, but not more than 67, in immediate packings of a content of 50 litres or more	0 %	31.12.2021
gex 2009 89 79	30	Frozen acerola juice concentrate: — with a Brix value of more than 48 but not more than 67,		31.12.2023

		packi of a conte of 50 litres or more	nt		
ex 2009 89 79	85	Acai berry juice concentrate: — of the speciener olera — froze — not sweet — not in powd form, — of a Brix value of 23 or more but not more than 32, in immediate packings of a content of 10 kg or more	pe cea, n, tened,		31.12.2021
ex 2009 89 97 ex 2009 89 97		Passion fruit juice and passion fruit juice concentrate, whether or not frozen: with a Brix value	0 %	_	31.12.2019

			of 10 or		
		_	more but not more than 1 of a value of		
]	more than EUR 30 per 100		
		_	kg net weigh in imme packi	diate	
			of a conte of 50 litres or	nt	
			more, and witho added sugar	ut I	
		for the use in the manufactor of product food or drindustry ^b	ure ts of		
ex 2009 89 99	96		unfer not conta added	0 % mented, ining	 31.12.2021
			spirit or sugar and in imme	,	
	I		7		I

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		packi of a conte of 20 litres or more	nt	
gex 2106 10 20	20	Soya protein concentrate having a protein content by weight, calculated on a dry weight basis, of 65% or more but not more than 90% in powder or textured form	0 %	31.12.2023
gex 2106 10 20	30	Preparation on the base of soya protein isolate, containing by weight 6,6 % or more but not more than 8,6 % of calcium phosphate	0 %	31.12.2023
ex 2106 90 92	45	Preparation containing by weight: — more than 30 % but not more than 35 % licori extracomore than 65		31.12.2021

2104 00 02		standardised by weight to 3 % or more but not more than 4 % glabridin	rylin,	21.12.2022
ex 2106 90 92	50	Casein protein hydrolysate consisting of: — by weigh 20 % or more but not more than 70 % free amind acids and — pepto of which by weigh more than 90 % havin a moled weigh of not more than 2	o nes h ht	31.12.2022

		000			
		Da			
ex 2106 90 98	47	Dranaration	0 %		31.12.2022
ex 2100 90 98	4/	Preparation,	0 70	_	31.12.2022
		having a			
		moisture			
		content of 1			
		% or more			
		but not more			
		than 4 %, and			
		containing by			
		weight:			
		<u> </u>			
		%			
		or			
		more			
		but			
		not			
		more	;		
		than			
		35			
		%			
		of			
			rmilk,		
			,		
		%			
		(±			
		10			
		%)			
		of			
		lacto	90		
			30,		
		%			
		(± 10			
		%) of			
		whey	/		
		prote	III		
		conc	entrate,		
		<u> </u>			
		%			
		(±			
		10			
		%)			
		of			
		ched	dar		
		chee	se,		
		3 %			
		(± 2			
		%)			
		of			
		salt,			
		'			1

		— 0,1 % or more but not more than 10 % of lactic acid E270 — 0,1 % or more but not more than 10 % of gum arabic E414 for use in the manufacture of products of food and drink industry ^b	Ç		
ex 2519 90 10	10	Fused magnesia with a purity by weight of 94 % or more	0 %	_	31.12.2021
ex 2707 50 00 ex 2707 99 80		Mixture of xylenol-isomers and ethyl phenol-isomers, with a total xylenol content by weight of 62 % or more but less than 95 %	0 %		31.12.2019

gex 2707 99 99	10	Heavy and medium oils, whose aromatic content exceeds their non-aromatic content, for use as refinery feedstock to undergo one of the specific processes described in Additional note 5 to Chapter 27 ^b	0 %		31.12.2023
gex 2710 19 81 ex 2710 19 99	10 30	Catalytically hydroisomeriza and dewaxed base oil of hydrogenated, highly isoparaffinic hydrocarbons, containing: — 90 % or more by weigh of satura and — not more than 0,03 % by weigh of sulph with a viscosity index of 80 or more	ht ates,		31.12.2023
ex 2710 19 99	20	Catalytic de-waxed	0 %	_	31.12.2019

base oil	1		
synthesi			
from ga			
hydroca			
followed			
by a hea			
paraffin			
convers			
process			
(HPC),			
containi	ng:		
_	not		
	more		
	than		
	1		
	mg/		
	kg		
	of		
	sulphur,		
	more		
	than		
	99		
	%		
	by		
	weight		
	of		
	saturated		
	hydrocarbons,		
	more than		
	75		
	%		
	by		
	weight		
	of		
	n-		
	and		
	iso-		
	paraffinic		
	ĥydrocarbons		
	with		
	a		
	carbon		
	chain		
	length		
	of 18		
	or more		
	but		
	not		
	more		
	than		
1	I	I	

		50, and		
		— a kinen visco at		
		40 °C of		
		more than 6,5 m		
		s, or a kinen		
		visco at 40 °C	sity	
		of more than		
		11 m s with	m^2 /	
		a visco index of		
		120 or more		
ex 2712 90 99	10	Blend of 1-alkenes (alpha- olefins) (CAS RN 131459-42-2) containing by weight 80 % or more of 1- alkenes of a chain length of 24 carbon atoms or more but not exceeding 64 carbon atoms containing by weight more than 72 % 1- alkenes with	0 %	31.12.2022

		more than 28 carbon atoms			
gex 2804 50 90	40	Tellurium (CAS RN 13494-80-9) of a purity by weight of 99,99 % or more, but not more than 99,999 %, based on metallic impurities measured by ICP analysis	0 %		31.12.2023
g2804 70 00		Phosphorus	0 %	_	31.12.2023
ex 2805 12 00	10	Calcium with a purity of 98 % or more by weight, in powder or wire form (CAS RN 7440-70-2)	0 %	_	31.12.2020
ex 2805 19 90	20	Lithium metal (CAS RN 7439-93-2) of a purity by weight of 98,8 % or more	0 %	_	31.12.2022
^g ex 2805 30 10	10	Alloy of cerium and other rare-earth metals, containing by weight 47 % or more of cerium	0 %	_	31.12.2023
2805 30 20 2805 30 30 2805 30 40		Rare-earth metals, scandium and yttrium, of a purity by weight of 95 % or more	0 %	_	31.12.2020
^g ex 2811 19 80	10	Sulphamidic acid	0 %	_	31.12.2023

		(CAS RN 5329-14-6)			
ex 2811 19 80	20	Hydrogen iodide (CAS RN 10034-85-2)	0 %	_	31.12.2021
gex 2811 22 00	10	Silicon dioxide (CAS RN 7631-86-9) in the form of powder, for use in the manufacture of high performance liquid chromatograph columns (HPLC) and sample preparation cartridges ^b	0 %		31.12.2023
ex 2811 22 00	15	Amorphous silicon dioxide (CAS RN 60676-86-0): — in the form of powd of a purity by weigh of 99,0 % or more with a media grain size of 0,7 µm or	nt an		31.12.2020

		more but not more than 2,1 µm where 70 % of the partic have a diame of not more than 3 µm	e eles eter		
ex 2811 22 00	60	of			31.12.2019
ex 2811 29 90	10	Tellurium dioxide (CAS RN 7446-07-3)	0 %	_	31.12.2022

gex 2812 90 00	10	Nitrogen trifluoride (CAS RN 7783-54-2)	0 %	_	31.12.2023
ex 2816 40 00	10	Barium hydroxide (CAS RN 17194-00-2)	0 %	_	31.12.2022
ex 2818 10 91	20	Sintered corundum with a micro crystalline structure, consisting of aluminium oxide (CAS RN 1344-28-1), magnesium aluminate (CAS RN 12068-51-8) and the rare earth aluminates of yttrium, lanthanum, and neodymium, with a content by weight (calculated as oxides) of: — 94 % or more but less than 98,5 % of alum oxide — 2% (± 1,5 %) of	inium		31.12.2020

		oxide 1 % (± 0,6 %) of yttriu oxide and — either 2 % (± 1,2 %) of lantha oxide or — 2 % (± 1,2 %) of lantha oxide and neody oxide with less than 50 % of the total weight having a particle size of more than 10 mm	m , anum , mium		
ex 2818 20 00	10	Activated alumina with a specific surface area of at least 350 m ² /g	0 %		31.12.2019
ex 2818 30 00	20	Aluminium hydroxide (CAS RN 21645-51-2): — in the form of powd	0 % er	_	31.12.2020

g 2010 20	30	point of 263 °C or more with a partic size of 4 µm (± 1 µm) — with a Total-Na ₂ O conte by weigh of not more than 0,06 %	mposition le		21 12 2022
^g ex 2818 30 00	30	Aluminium hydroxide oxide in the form of boehmite or pseudoboehmit (CAS RN 1318-23-6)	0 % te		31.12.2023
ex 2819 90 90	10	Dichromium trioxide (CAS RN 1308-38-9)	0 %	_	31.12.2021

		for use in metallurgy ^b			
ex 2823 00 00	10	Titanium dioxide (CAS RN 13463-67-7): — of a purity by weigh of 99,9 % or more with an avera grain size of 0,7 µm or more but not more than 2,1 µm	ht ge		31.12.2022
ex 2825 10 00	10	Hydroxylamm chloride (CAS RN 5470-11-1)	ા જેના	_	31.12.2022
2825 30 00		Vanadium oxides and hydroxides	0 %	_	31.12.2021
gex 2825 50 00	20	Copper (I or II) oxide containing by weight 78 % or more of copper and not more than 0,03 % of chloride	0 %	_	31.12.2023
ex 2825 50 00	30	Copper (II) oxide (CAS RN	0 %	_	31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		1317-38-0), with a particle size of not more than 100 nm			
ex 2825 60 00	10	Zirconium dioxide (CAS RN 1314-23-4)	0 %		31.12.2022
ex 2825 70 00	10	Molybdenum trioxide (CAS RN 1313-27-5)	0 %	_	31.12.2021
ex 2825 70 00	20	Molybdic Acid (CAS RN 7782-91-4)	0 %	_	31.12.2021
ex 2826 19 90	10	Tungsten hexafluoride (CAS RN 7783-82-6) with a purity by weight of 99,9 % or more	0 %	_	31.12.2020
^g ex 2826 90 80	10	Lithium hexafluoropho (1-) (CAS RN 21324-40-3)	0 % sphate	_	31.12.2023
^g ex 2826 90 80	20	Lithium difluorophosph (CAS RN 24389-25-1)	0 % ate	_	31.12.2023
^g ex 2827 39 85	10	Copper monochloride (CAS RN 7758-89-6) of a purity by weight of 96 % or more but not more than 99 %	0 %		31.12.2023
ex 2827 39 85	20	Antimony pentachloride (CAS RN 7647-18-9) of a purity by	0 %		31.12.2021

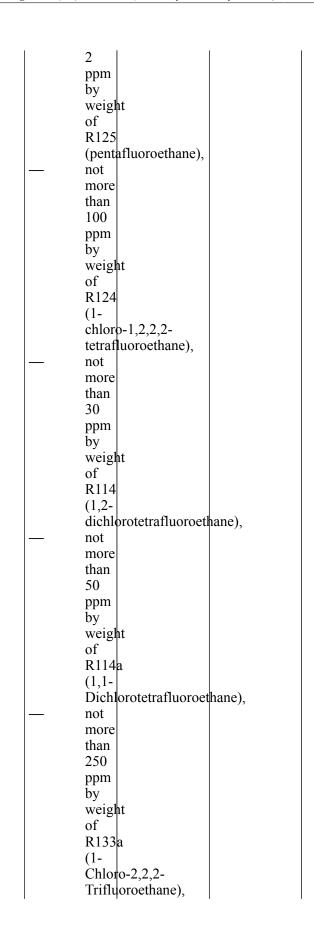
		weight of 99 % or more			
^g ex 2827 39 85	40	Barium chloride dihydrate (CAS RN 10326-27-9)	0 %	_	31.12.2023
^g ex 2827 49 90	10	Hydrated zirconium dichloride oxide	0 %	_	31.12.2023
ex 2827 60 00	10	Sodium iodide (CAS RN 7681-82-5)	0 %	_	31.12.2019
gex 2830 10 00	10	Disodium tetrasulphide, containing by weight 38 % or less of sodium calculated on the dry weight	0 %		31.12.2023
^g ex 2833 29 80	20	Manganese sulphate monohydrate (CAS RN 10034-96-5)	0 %	_	31.12.2023
ex 2833 29 80	30	Zirconium sulphate (CAS RN 14644-61-2)	0 %	_	31.12.2020
ex 2835 10 00	10	Sodium hypophosphite monohydrate (CAS RN 10039-56-2)	0 %	_	31.12.2022
gex 2835 10 00	20	Sodium hypophosphite (CAS RN 7681-53-0)	0 %	_	31.12.2023
gex 2835 10 00	30	Aluminium Phosphinate (CAS RN 7784-22-7)	0 %	_	31.12.2023

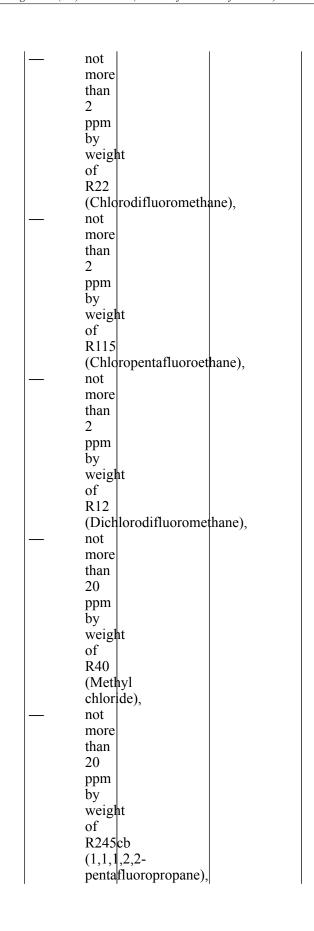
^g ex 2836 91	20	Lithium	0 %	31.12.2023
00		carbonate		
		containing one or	3	
		more of th	ie	
		following		
		impurities		
		at the		
		concentrat	tions	
		indicated:		
			2	
		1	ng/	
			cg or	
			nore	
			of	
			arsenic,	
		_ 2	200	
		1	ng/	
		1	Kg	
			or	
			nore	
			of calcium,	
			200	
			ng/	
		1	Kg	
			or	
			nore	
			of	
			chlorides,	
			20	
		1	mg/ kg	
			or	
			nore	
			of	
		i	ron,	
			150	
		1	ng/	
			Kg	
			or	
			nore of	
			nagnesium,	
			20	
		1	ng/	
		1	kg	
			or	
		1	more	
			of	
			neavy	
		1	netals,	

		- 300 mg/kg or more of potas - 300 mg/kg or more of sodiu - 200 mg/kg or more of sulph determined according to the methods specified in the European	sium, m,		
⁹ ex 2836 99 17	30	Pharmacopæia Zirconium (IV) basic carbonate (CAS RN 57219-64-4 or 37356-18-6) with a purity by weight of 96 % or more	0 %		31.12.2023
^g ex 2837 19 00	20	Copper cyanide (CAS RN 544-92-3)	0 %		31.12.2023
ex 2837 20 00	10	Tetrasodium hexacyanoferra (II) (CAS RN 13601-19-9)	0 % ite	_	31.12.2021
ex 2839 19 00	10	Disodium disilicate (CAS RN 13870-28-5)	0 %	_	31.12.2022
gex 2839 90 00	20	Calcium silicate	0 %	_	31.12.2023

		(CAS RN 1344-95-2)			
ex 2840 20 90	10	Zinc borate (CAS RN 12767-90-7)	0 %	_	31.12.2020
ex 2841 50 00	10	Potassium dichromate (CAS RN 7778-50-9)	0 %	_	31.12.2022
^g ex 2841 70 00	10	Diammonium tetraoxomolyb (CAS RN 13106-76-8)	0 % date(2-)	_	31.12.2023
ex 2841 70 00	20	Diammonium tridecaoxotetra (CAS RN 12207-64-6)		_	31.12.2019
ex 2841 70 00	30	Hexaammoniu heptamolybdat anhydrous (CAS RN 12027-67-7) or as tetrahydrate (CAS RN 12054-85-2)		_	31.12.2019
ex 2841 70 00	40	Diammonium dimolybdate (CAS RN 27546-07-2)	0 %	_	31.12.2021
ex 2841 80 00	10	Diammonium wolframate (ammonium paratungstate) (CAS RN 11120-25-5)	0 %	_	31.12.2022
ex 2841 90 30	10	Potassium metavanadate (CAS RN 13769-43-2)	0 %	_	31.12.2022
ex 2841 90 85	10	Lithium cobalt(III) oxide (CAS RN 12190-79-3) with a cobalt content of at least 59 %	0 %	_	31.12.2022

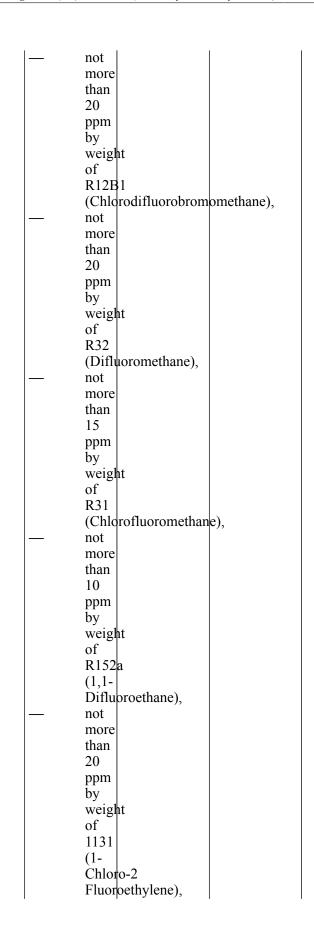
			I		
^g ex 2841 90 85	20	Potassium titanium oxide (CAS RN 12056-51-8) in powder form with a purity of 99 % or more	0 %		31.12.2023
^g ex 2842 10 00	10	Synthetic beta zeolite powder	0 %	_	31.12.2023
ex 2842 10 00	20	Synthetic chabasite zeolite powder	0 %	_	31.12.2019
ex 2842 10 00	40	Aluminosilicat (CAS RN 1318-02-1) with a zeolite structure of Aluminophosp eighteen (AEI) for use in the manufacture of catalytic preparations ^b			31.12.2021
ex 2842 10 00	50	Fluorphlogopit (CAS RN 12003-38-2)	e0 %	_	31.12.2022
ex 2842 90 10	10	Sodium selenate (CAS RN 13410-01-0)	0 %	_	31.12.2019
ex 2842 90 80	30	Aluminum trititanium dodecachloride (CAS RN 12003-13-3)	0 %	_	31.12.2022
^g 2845 10 00		Heavy water (deuterium oxide) (Euratom) (CAS RN 7789-20-0)	0 %	_	31.12.2023
g2845 90 10		Deuterium and	0 %	_	31.12.2023

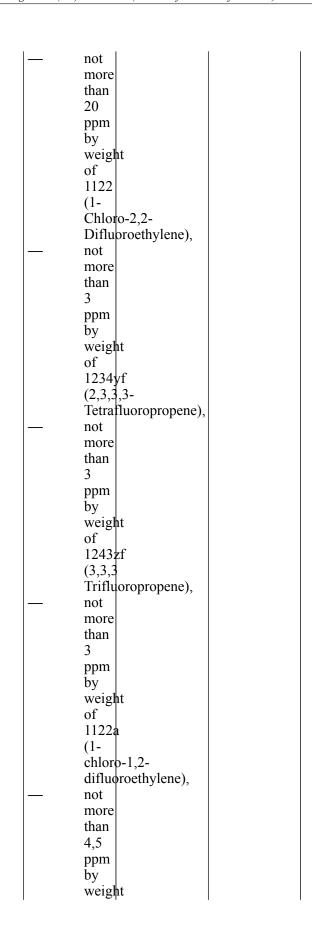

		compounds thereof; hydrogen and compounds thereof, enriched in deuterium; mixtures and solutions containing these products (Euratom)			
ex 2845 90 90	10	Helium-3 (CAS RN 14762-55-1)	0 %	_	31.12.2021
^g ex 2845 90 90	20	Water enriched at a level of 95 % or more by weight with oxygen-18 (CAS RN 14314-42-2)	0 %		31.12.2023
ex 2845 90 90	30	(13C)Carbon monoxide (CAS RN 1641-69-6)	0 %	_	31.12.2021
gex 2846 10 00 ex 3824 99 96	10 53	Rare-earth concentrate containing by weight 60 % or more but not more than 95 % of rare-earth oxides and not more than 1 % each of zirconium oxide, aluminium oxide or iron oxide, and having a loss on ignition of 5 % or more by weight	0 %		31.12.2023
^g ex 2846 10 00	20	Dicerium tricarbonate (CAS RN	0 %	_	31.12.2023


		537-01-9), whether or not hydrated			
^g ex 2846 10 00	30	Cerium lanthanum carbonate, whether or not hydrated	0 %	_	31.12.2023
\$2846 90 10 2846 90 20 2846 90 30 2846 90 90		Compounds, inorganic or organic, of rare-earth metals, of yttrium or of scandium or of mixtures of these metals, other than those of subheading 2846 10 00	0 %		31.12.2023
^g ex 2850 00 20	10	Silane (CAS RN 7803-62-5)	0 %		31.12.2023
^g ex 2850 00 20	20	Arsine (CAS RN 7784-42-1)	0 %	_	31.12.2023
ex 2850 00 20	30	Titanium nitride (CAS RN 25583-20-4) with a particle size of not more than 250 nm	0 %	_	31.12.2022
ex 2850 00 20	40	Germanium tetrahydride (CAS RN 7782-65-2)	0 %	_	31.12.2021
ex 2850 00 20	60	Disilane (CAS RN 1590-87-0)	0 %	_	31.12.2022
⁴ ex 2850 00 20	70	Cubic Boron nitride (CAS RN 10043-11-5)	0 %	_	31.12.2023

^g ex 2850 00 60	10	Sodium azide (CAS RN 26628-22-8)	0 %	_	31.12.2023
^g ex 2853 90 90	20	Phosphine (CAS RN 7803-51-2)	0 %	_	31.12.2023
ex 2903 39 19	20	5- Bromopent-1- ene (CAS RN 1119-51-3)	0 %	_	31.12.2022
2903 39 21		Difluorometha (CAS RN 75-10-5)	n@ %	_	31.12.2020
ex 2903 39 24	10	Pentafluoroeth (CAS RN 354-33-6)	a n e%	_	31.12.2019
ex 2903 39 26	10	more more than 5 ppm by weig of R143 (1,1,5)	ht 2,2- luoroethane), ht a 1- oroethane),		31.12.2019

Document Generated: 2023-09-19


Status: Point in time view as at 20/12/2018.



Document Generated: 2023-09-19

Status: Point in time view as at 20/12/2018.

	of	
	1234vf	
	+112 2 a	
	+1243zf	
	(2,3,3,3-	
	tetrafluoropropene,	
	+1-	
	Chloro-1,2-	
	Difluoroethylene	
	+3,3,3-	
	Trifluoropropene),	
_	not not	
	more	
	than	
	3	
	- I	
	ppm by	
	by weight	
	of	
	-	
	any individual	
	l l	
	unspecified/	
	unknown	
	chemical,	
-	not	
	more	
	than	
	10	
	ppm	
	by	
	weight	
	of	
	all	
	unspecified/	
	unknown	
	chemicals	
	combined,	
	not	
	more	
	than	
	10	
	ppm	
	by	
	weight	
	of S	
	Water,	
	with	
	an	
	acidity	
	level	
	of	
	not	
	more	
1	111010	

		than 0,1 ppm by weight, without Halides, not more than 0,01
		by volume of High Boilers, without any odour (no
		malodour), for further purification to an inhalation grade of HFC 134a produced under GMP
		(Good Manufacturing Practice) for use in the manufacture of a propellant for medical
		aerosols whose contents are taken into the oral or nasal cavities, and/or the respiratory tract (CAS RN 811-97-2) ^b
^g ex 2903 39 27	10	1,1,1,3,3- Pentafluoropropane (CAS RN 460-73-1)

^g ex 2903 39 28	10	Carbon tetrafluoride (tetrafluoromet (CAS RN 75-73-0)	0 % thane)	_	31.12.2023
^g ex 2903 39 28	20	Perfluoroethan (CAS RN 76-16-4)	e0 %	_	31.12.2023
^g ex 2903 39 29	10	1H- Perfluorohexar (CAS RN 355-37-3)	0 % ne	_	31.12.2023
2903 39 31		2,3,3,3- Tetrafluoropropene (2,3,3,3- tetrafluoroprop (CAS RN 754-12-1)		_	31.12.2022
^g ex 2903 39 35	20	Trans-1,3,3,3- tetrafluoroprop ene (Trans-1,3 tetrafluoroprop (CAS RN 29118-24-9)	-1- ,3,3-	_	31.12.2023
ex 2903 39 39	10	Perfluoro(4- methyl-2- pentene) (CAS RN 84650-68-0)	0 %	_	31.12.2021
^g ex 2903 39 39	20	(Perfluorobuty ethylene (CAS RN 19430-93-4)	10 %	_	31.12.2023
ex 2903 39 39	30	Hexafluoropro (CAS RN 116-15-4)	p@rf6	_	31.12.2021
ex 2903 39 39	40	1,1,2,3,4,4- hexafluorobuta diene (CAS RN 685-63-2)	0 % -1,3-	_	31.12.2022
ex 2903 74 00	10	2-Chloro-1,1- difluoroethane (CAS RN 338-65-8)	0 %	_	31.12.2020
^g ex 2903 77 60	10	1,1,1- Trichlorotrifluo	0 % proethane		31.12.2023

		(CAS RN 354-58-5)			
ex 2903 77 90	10	Chlorotrifluoro (CAS RN 79-38-9)	dil‰lene	_	31.12.2021
^g ex 2903 78 00	10	Octafluoro-1,4 diiodobutane (CAS RN 375-50-8)	-0 %		31.12.2023
ex 2903 79 30	10	Trans-1- chloro-3,3,3- trifluoroproper RN 102687-65-0)	0 % ne (CAS	_	31.12.2019
^g ex 2903 89 80	10	Dodecachlorop	, 06 /47,17,18,18 entacyclo ¹³ .0 ^{5,10}]octadeca		31.12.2023
ex 2903 89 80	40	Hexabromocyo	1006decane	_	31.12.2021
ex 2903 89 80	50	Chlorocyclope (CAS RN 930-28-9)	nOarie	_	31.12.2022
ex 2903 89 80	60	Octafluorocycl (CAS RN 115-25-3)	Ab litane		31.12.2022
ex 2903 99 80	15	4-Bromo-2- chloro-1- fluorobenzene (CAS RN 60811-21-4)	0 %		31.12.2020
^g ex 2903 99 80	20	1,2- Bis(pentabrom (CAS RN 84852-53-9)	0 % ophenyl)ethane	_	31.12.2023
^g ex 2903 99 80	40	2,6- Dichlorotoluer of a purity by weight of 99 % or more and containing: — 0,001 mg/kg or			31.12.2023

		 — 0,001 mg/ kg or less of tetrace 0,2 mg/ kg or less of 	hlorodibenzodio		
gex 2903 99 80	50	Fluorobenzene (CAS RN 462-06-6)	0 %	_	31.12.2023
ex 2903 99 80	60	1,1'- methanediylbis fluorobenzene) (CAS RN 457-68-1)		_	31.12.2022
ex 2903 99 80	75	3-Chloro- alpha,alpha,alp trifluorotoluen (CAS RN 98-15-7)		_	31.12.2019
^g ex 2903 99 80	80	1- Bromo-3,4,5- trifluorobenzer (CAS RN 138526-69-9)	0 % ne	_	31.12.2023
ex 2904 10 00	30	Sodium <i>p</i> -styrenesulphon (CAS RN 2695-37-6)	0 % ate	_	31.12.2019
ex 2904 10 00	50	Sodium 2- methylprop-2- ene-1- sulphonate (CAS RN 1561-92-8)	0 %		31.12.2019
ex 2904 20 00	10	Nitromethane (CAS RN 75-52-5)	0 %	_	31.12.2020

ex 2904 20 00	20	Nitroethane (CAS RN 79-24-3)	0 %	_	31.12.2020
ex 2904 20 00	30	1- Nitropropane (CAS RN 108-03-2)	0 %	_	31.12.2020
ex 2904 20 00	40	2- Nitropropane (CAS RN 79-46-9)	0 %	_	31.12.2019
ex 2904 91 00	10	Trichloronitror (CAS RN 76-06-2), for the manufacture of goods of subheading 3808 92 ^b	not Mane	_	31.12.2019
ex 2904 99 00	20	1-Chloro-2,4- dinitrobenzene (CAS RN 97-00-7)	0 %	_	31.12.2019
ex 2904 99 00	25	Difluorometha chloride (CAS RN 1512-30-7)	n ⊕ s‰lphonyl	_	31.12.2020
ex 2904 99 00	30	Tosyl chloride (CAS RN 98-59-9)	0 %	_	31.12.2019
ex 2904 99 00	35	1-Fluoro-4- nitrobenzene (CAS RN 350-46-9)	0 %	_	31.12.2020
ex 2904 99 00	40	4- Chlorobenzene chloride (CAS RN 98-60-2)	0 % sulphonyl	_	31.12.2022
^g ex 2904 99 00	45	2- Nitrobenzeness Chloride (CAS RN 1694-92-4)	0 % alfonyl	_	31.12.2023
^g ex 2904 99 00	50	Ethanesulphon chloride	y 0 %	_	31.12.2023

		(CAS RN 594-44-5)			
ex 2904 99 00	60	4,4'- Dinitrostilbene disulfonic acid (CAS RN 128-42-7)	0 % -2,2'-	_	31.12.2019
ex 2904 99 00	70	1-Chloro-4- nitrobenzene (CAS RN 100-00-5)	0 %	_	31.12.2019
ex 2904 99 00	80	1-Chloro-2- nitrobenzene (CAS RN 88-73-3)	0 %	_	31.12.2019
ex 2905 11 00	10	Methanol (CAS RN 67-56-1) with a purity of 99,85 % by weight or more	0 %	_	31.12.2023
ex 2905 11 00 ex 2905 19 00		Methyl methanesulpho (CAS RN 66-27-3)	0 % nate	_	31.12.2021
⁸ ex 2905 19 00	11	Potassium tert- butanolate (CAS RN 865-47-4), whether or not in the form of a solution in tetrahydrofural according to note 1e) to Chapter 29 of the CN	0 %		31.12.2023
^g ex 2905 19 00	20	Butyltitanate monohydrate, homopolymer RN162303-51-	0 % (CAS 7)	_	31.12.2023
^g ex 2905 19 00	25	Tetra-(2- ethylhexyl) titanate	0 %	_	31.12.2023

		(CAS RN 1070-10-6)			
gex 2905 19 00	30	2,6- Dimethylhepta ol (CAS RN 108-82-7)	0 % n-4-	_	31.12.2023
ex 2905 19 00	40	2,6- Dimethylhepta ol (CAS RN 13254-34-7)	0 % n-2-	_	31.12.2019
ex 2905 19 00	70	Titanium tetrabutanolate (CAS RN 5593-70-4)	0 %	_	31.12.2022
ex 2905 19 00	80	Titanium tetraisopropoxi (CAS RN 546-68-9)	0 % ide	_	31.12.2022
gex 2905 19 00	85	Titanium tetraethanolate (CAS RN 3087-36-3)	0 %	_	31.12.2023
ex 2905 22 00	10	Linalool (CAS RN 78-70-6) containing by weight 90,7 % or more of (3R)- (-)-Linalool (CAS RN 126-91-0)	0 %		31.12.2019
ex 2905 22 00	20	3,7- Dimethyloct-6- en-1-ol (CAS RN 106-22-9)	0 %	_	31.12.2021
ex 2905 29 90	10	Cis-hex-3- en-1-ol (CAS RN 928-96-1)	0 %	_	31.12.2022
ex 2905 39 95	10	Propane-1,3- diol (CAS RN 504-63-2)	0 %	_	31.12.2020
ex 2905 39 95	20	Butane-1,2- diol (CAS RN 584-03-2)	0 %	_	31.12.2022
ex 2905 39 95	30	2,4,7,9- Tetramethyl-4,	0 % 7-	_	31.12.2021

		decanediol			
		(CAS RN 17913-76-7)			
ex 2905 39 95	40	Decane-1,10- diol (CAS RN 112-47-0)	0 %	_	31.12.2022
^g ex 2905 39 95	50	2-Methyl-2- propylpropane diol (CAS RN 78-26-2)	0 % -1,3-	_	31.12.2023
ex 2905 49 00	10	Ethylidynetrim (CAS RN 77-85-0)	ethanol		31.12.2020
ex 2905 59 98	20	2,2,2- Trifluoroethano (CAS RN 75-89-8)	0 % ol	_	31.12.2019
gex 2906 19 00	10	Cyclohex-1,4- ylenedimethan (CAS RN 105-08-8)		_	31.12.2023
^g ex 2906 19 00	20	4,4'- Isopropylidene (CAS RN 80-04-6)	0 % dicyclohexanol		31.12.2023
ex 2906 19 00	50	4-tert- Butylcyclohext (CAS RN 98-52-2)	0 % anol		31.12.2019
^g ex 2906 29 00	20	1- Hydroxymethy methyl-2,3,5,6 tetrafluorobenz (CAS RN 79538-03-7)	1	_	31.12.2023
ex 2906 29 00	30	2- Phenylethanol (CAS RN 60-12-8)	0 %	_	31.12.2022
ex 2906 29 00	40	2-Bromo-5- iodo- benzenemethan (CAS RN 946525-30-0)	0 % nol		31.12.2020
ex 2906 29 00	50	2,2'-(m- phenylene)dipi	0 % opan-2-	_	31.12.2022

		ol (CAS RN 1999-85-5)			
ex 2907 12 00	20	Mixture of meta-cresol (CAS RN 108-39-4) and para-cresol (CAS RN 106-44-5) with a purity by weight of 99 % or more	0 %	_	31.12.2019
ex 2907 12 00	30	p-Cresol (CAS RN 106-44-5)	0 %		31.12.2019
ex 2907 15 90	10	2-Naphthol (CAS RN 135-19-3)	0 %	_	31.12.2021
ex 2907 19 10	10	2,6-Xylenol (CAS RN 576-26-1)	0 %	_	31.12.2019
^g ex 2907 19 90	20	Biphenyl-4- ol (CAS RN 92-69-3)	0 %	_	31.12.2023
^g ex 2907 21 00	10	Resorcinol (CAS RN 108-46-3)	0 %		31.12.2023
gex 2907 29 00	15	6,6'-Di-tert- butyl-4,4'- butylidenedi- m-cresol (CAS RN 85-60-9)	0 %	_	31.12.2023
^g ex 2907 29 00	20	4,4'-(3,3,5- Trimethylcyclo (CAS RN 129188-99-4)	0 % hexylidene)dip	— henol	31.12.2023
ex 2907 29 00	25	4- Hydroxybenzy alcohol (CAS RN 623-05-2)	0 % l	_	31.12.2019
^g ex 2907 29 00	30	4,4',4"- Ethylidynetripl (CAS RN 27955-94-8)	0 % nenol	_	31.12.2023
ex 2907 29 00	45	2- Methylhydroqu	0 % inone	_	31.12.2021

		(CAS RN 95-71-6)			
^g ex 2907 29 00	50	6,6',6"- Tricyclohexyl- butane-1,1,3- triyltri(<i>m</i> - cresol) (CAS RN 111850-25-0)	0 % 4,4′,4″-	_	31.12.2023
ex 2907 29 00	65	2,2'- Methylenebis(cyclohexyl- p-cresol) (CAS RN 4066-02-8)	0 % 6-	_	31.12.2019
² ex 2907 29 00	70	2,2',2",6,6',6"- Hexa-tert- butyl-\alpha,\alpha',\alpha"- (mesitylene-2,\triyl)tri-p- cresol (CAS RN 1709-70-2)		_	31.12.2023
^g ex 2907 29 00	75	Biphenyl-4,4'- diol (CAS RN 92-88-6)	0 %	_	31.12.2023
^g ex 2907 29 00	85	Phloroglucinol whether or not hydrated	0 %	_	31.12.2023
^g ex 2908 19 00	10	Pentafluorophe (CAS RN 771-61-9)	1001 ∕₀	_	31.12.2023
gex 2908 19 00	20	4,4'- (Perfluoroisopa (CAS RN 1478-61-1)	0 % ropylidene)diph	enol	31.12.2023
ex 2908 19 00	30	4- Chlorophenol (CAS RN 106-48-9)	0 %	_	31.12.2019
ex 2908 19 00	40	3,4,5- Trifluoropheno (CAS RN 99627-05-1)	0 % 1	_	31.12.2020
ex 2908 19 00	50	4- Fluorophenol	0 %	_	31.12.2020

suspending...
Document Generated: 2023-09-19

		(CAS RN 371-41-5)			
^g ex 2909 19 90	20	Bis(2- chloroethyl) ether (CAS RN 111-44-4)	0 %	_	31.12.2023
gex 2909 19 90	30	Mixture of isomers of nonafluorobuty methyl ether or nonafluorobuty ethyl ether, of a purity by weight of 99 % or more			31.12.2023
ex 2909 19 90	50	3-Ethoxy- perfluoro-2- methylhexane (CAS RN 297730-93-9)	0 %	_	31.12.2021
ex 2909 20 00	10	8- Methoxycedran (CAS RN 19870-74-7)	0 % ne	_	31.12.2021
^g ex 2909 30 38	10	Bis(pentabrom ether (CAS RN 1163-19-5)	oφħényl)	_	31.12.2023
ex 2909 30 38	20	1,1'- Propane-2,2- diylbis[3,5- dibromo-4- (2,3- dibromopropos (CAS RN 21850-44-2)	0 % xy)benzene]	_	31.12.2021
ex 2909 30 38	30	1,1'-(1- Methylethylide dibromo-4- (2,3- dibromo-2- methylpropoxy benzene (CAS RN 97416-84-7)	, -	_	31.12.2020
^g ex 2909 30 38	40	4- Benzyloxybror	0 % nobenzene	_	31.12.2023

		(CAS RN 6793-92-6)			
ex 2909 30 90	10	2- (Phenylmethox (CAS RN 613-62-7)	0 % y)naphthalene	_	31.12.2019
ex 2909 30 90	15	{[(2,2-dimethylbut-3-yn-1-yl)oxy]methyl} (CAS RN 1092536-54-3)	benzene	_	31.12.2021
ex 2909 30 90	20	1,2-Bis(3- methyl- phenoxy)ethan (CAS RN 54914-85-1)	0 % e	_	31.12.2019
ex 2909 30 90	25	1,2-Diphenoxyetha (CAS RN 104-66-5) in the form of powder or as an aqueous dispersion containing by weight 30 % or more but not more than 60 % of 1,2- diphenoxyetha			31.12.2021
ex 2909 30 90	30	3,4,5- Trimethoxytolu (CAS RN 6443-69-2)	0 % uene	_	31.12.2020
ex 2909 30 90	40	1-Chloro-2,5- dimethoxybenz (CAS RN 2100-42-7)		_	31.12.2020
ex 2909 30 90	50	1-Ethoxy-2,3- difluorobenzen (CAS RN 121219-07-6)		_	31.12.2020
ex 2909 30 90	60	1-Butoxy-2,3- difluorobenzen (CAS RN 136239-66-2)		_	31.12.2020

ex 2909 30 90	70	O,O,O-1,3,5- trimethylresord (CAS RN 621-23-8)	0 % cinol	_	31.12.2021
ex 2909 30 90	80	Oxyfluorfen (ISO) (CAS RN 42874-03-3) with a purity by weight of 97 % or more	0 %		31.12.2021
ex 2909 49 80	10	1- Propoxypropar ol (CAS RN 1569-01-3)	0 % n-2-	_	31.12.2020
^g ex 2909 50 00	10	4-(2- Methoxyethyl) (CAS RN 56718-71-9)	0 % phenol	_	31.12.2023
ex 2909 50 00	20	Ubiquinol (CAS RN 992-78-9)	0 %		31.12.2020
gex 2909 60 00	10	Bis(α,α-dimethylbenzy peroxide (CAS RN 80-43-3)	0 % l)	_	31.12.2023
ex 2909 60 00	30	3,6,9- Triethyl-3,6,9- trimethyl-1,4,7 triperoxonane (CAS RN 24748-23-0), dissolved in isoparaffinic hydrocarbons	0 %	_	31.12.2019
^g ex 2910 90 00	15	1,2- Epoxycyclohez (CAS RN 286-20-4)	0 % kane	_	31.12.2023
^g ex 2910 90 00	30	2,3- Epoxypropan- ol (glycidol) (CAS RN 556-52-5)	0 %	_	31.12.2023
ex 2910 90 00	50	2,3- Epoxypropyl phenyl ether	0 %	_	31.12.2020

		(CAS RN 122-60-1)			
ex 2910 90 00	80	Allyl glycidyl ether (CAS RN 106-92-3)	0 %	_	31.12.2021
ex 2911 00 00	10	Ethoxy-2,2- difluoroethano (CAS RN 148992-43-2)	0 %	_	31.12.2020
ex 2912 19 00	10	Undecanal (CAS RN 112-44-7)	0 %	_	31.12.2021
ex 2912 29 00	15	2,6,6- Trimethylcyclo (alpha-beta isomers mixture) (CAS RN 52844-21-0)	0 % hexenecarbalde	— hyde	31.12.2021
ex 2912 29 00	25	methy (CAS) RN 73200 — 15 (± 10) % by weigh of 2- isobu methy (CAS) RN	tyl-2- ylbenzaldehyde 6-60-7) nt tyl-4- yllbenzaldehyde		31.12.2021

ex 2912 29 00	35	Cinnamaldehyo (CAS RN 104-55-2)	d ⊕ %	_	31.12.2022
ex 2912 29 00	45	p- Phenylbenzald (CAS RN 3218-36-8)	0 % ehyde	_	31.12.2022
^g ex 2912 29 00	50	4- Isobutylbenzal (CAS RN 40150-98-9)	0 % dehyde	_	31.12.2023
^g ex 2912 29 00	70	4-tert- Butylbenzaldel (CAS RN 939-97-9)	0 % hyde	_	31.12.2023
^g ex 2912 29 00	80	4- Isopropylbenza (CAS RN 122-03-2)	0 % lldehyde	_	31.12.2023
^g ex 2912 49 00	10	3- Phenoxybenza (CAS RN 39515-51-0)	0 % dehyde	_	31.12.2023
ex 2912 49 00	20	4- Hydroxybenza (CAS RN 123-08-0)	0 % Idehyde	_	31.12.2022
ex 2912 49 00	30	Salicylaldehyd (CAS RN 90-02-8)	e0 %	_	31.12.2020
ex 2912 49 00	40	3-Hydroxy-p- anisaldehyde (CAS RN 621-59-0)	0 %	_	31.12.2020
ex 2912 49 00	50	2,6- dihydroxybenz (CAS RN 387-46-2)	0 % aldehyde	_	31.12.2022
ex 2914 19 90	20	Heptan-2- one (CAS RN 110-43-0)	0 %	_	31.12.2022
ex 2914 19 90	30	3- Methylbutanor (CAS RN 563-80-4)	0 % e		31.12.2022

ex 2914 19 90	40	Pentan-2-one (CAS RN 107-87-9)	0 %	_	31.12.2022
gex 2914 19 90	60	Zinc acetylacetonate (CAS RN 14024-63-6)	0 %	_	31.12.2023
gex 2914 29 00	15	oestr-5(10)- ene-3,17- dione (CAS RN 3962-66-1)	0 %	_	31.12.2023
gex 2914 29 00	20	Cyclohexadecenone (CAS RN 3100-36- 5)	89 %	_	31.12.2023
^g ex 2914 29 00	25	Cyclohex-2- enone (CAS RN 930-68-7)	0 %	_	31.12.2023
ex 2914 29 00	30	(R)-p- Mentha-1(6),8- dien-2-one (CAS RN 6485-40-1)	0 %	_	31.12.2020
^g ex 2914 29 00	40	Camphor	0 %	_	31.12.2023
ex 2914 29 00	50	trans-β- Damascone (CAS RN 23726-91-2)	0 %	_	31.12.2021
ex 2914 29 00	70	2-sec- butylcyclohexa (CAS RN 14765-30-1)	0 % none	_	31.12.2022
ex 2914 29 00	80	1-(cedr-8- en-9- yl)ethanone (CAS RN 32388-55-9)	0 %	_	31.12.2022
ex 2914 39 00	15	2,6- Dimethyl-1- indanone (CAS RN 66309-83-9)	0 %	_	31.12.2019
ex 2914 39 00	25	1,3- Diphenylpropa	0 % ne-1,3-	_	31.12.2019

		dione (CAS RN 120-46-7)			
ex 2914 39 00	30	Benzophenone (CAS RN 119-61-9)	0 %	_	31.12.2022
^g ex 2914 39 00	50	4- Phenylbenzoph (CAS RN 2128-93-0)	0 % enone	_	31.12.2023
^g ex 2914 39 00	60	4- Methylbenzopl (CAS RN 134-84-9)	0 % nenone	_	31.12.2023
ex 2914 39 00	70	Benzil (CAS RN 134-81-6)	0 %	_	31.12.2022
ex 2914 39 00	80	4'- Methylacetoph (CAS RN 122-00-9)	0 % enone	_	31.12.2022
ex 2914 50 00	20	3'- Hydroxyacetor (CAS RN 121-71-1)	0 % henone	_	31.12.2020
^g ex 2914 50 00	25	4'- Methoxyaceton (CAS RN 100-06-1)	0 % henone	_	31.12.2023
^g ex 2914 50 00	36	2,7- Dihydroxy-9- fluorenone (CAS RN 42523-29-5)	0 %	_	31.12.2023
ex 2914 50 00	40	4-(4- Hydroxypheny one (CAS RN 5471-51-2)	0 % l)butan-2-	_	31.12.2021
ex 2914 50 00	45	3,4- Dihydroxybenz (CAS RN 10425-11-3)	0 % zophenone	_	31.12.2022
ex 2914 50 00	60	2,2- Dimethoxy-2- phenylacetoph (CAS RN 24650-42-8)	0 % enone	_	31.12.2022

ex 2914 50 00	65	3- Methoxyacetor (CAS RN 586-37-8)	0 % bhenone	_	31.12.2020
ex 2914 50 00	75	7- Hydroxy-3,4- dihydro-1(2H)- naphthalenone (CAS RN 22009-38-7)	0 %	_	31.12.2020
^g ex 2914 50 00	80	2',6'- Dihydroxyacet (CAS RN 699-83-2)	0 % ophenone	_	31.12.2023
ex 2914 50 00	85	4,4'- Dihydroxybenz (CAS RN 611-99-4)	0 % zophenone		31.12.2021
^g ex 2914 69 80	10	2- Ethylanthraqui (CAS RN 84-51-5)	0 % none	_	31.12.2023
ex 2914 69 80	20	2- Pentylanthraqu (CAS RN 13936-21-5)	0 % inone		31.12.2019
^g ex 2914 69 80	30	1,4- Dihydroxyanth (CAS RN 81-64-1)	0 % raquinone	_	31.12.2023
ex 2914 69 80	40	<i>p</i> -Benzoquinone (CAS RN 106-51-4)	0 %	_	31.12.2021
ex 2914 69 80	50	(CAS RN 68892-28-4) and 2-(1,1-	0 % I)anthraquinone I)anthraquinone		31.12.2019
ex 2914 79 00	15	1-(4- Methylphenyl) trifluorobutane		_	31.12.2020

suspending...
Document Generated: 2023-09-19

		dione (CAS RN 720-94-5)			
ex 2914 79 00	20	2,4'- Difluorobenzo (CAS RN 342-25-6)	0 % phenone	_	31.12.2022
ex 2914 79 00	25	1-(7- Bromo-9,9- difluoro-9H- fluoren-2- yl)-2- chloroethanone (CAS RN 1378387-81-5)		_	31.12.2020
^g ex 2914 79 00	30	5-Methoxy-1- [4- (trifluoromethy one (CAS RN 61718-80-7)	0 % d)phenyl]pentar	— ı-1-	31.12.2023
^g ex 2914 79 00	35	1-[4- (benzyloxy)phobromopropan- one (CAS RN 35081-45-9)		_	31.12.2023
^g ex 2914 79 00	40	Perfluoro(2- methylpentan-3 one) (CAS RN 756-13-8)	0 %	_	31.12.2023
gex 2914 79 00	50	3'- Chloropropiop (CAS RN 34841-35-5)	0 % henone	_	31.12.2023
ex 2914 79 00	60	4'-tert- Butyl-2',6'- dimethyl-3',5'- dinitroacetophe (CAS RN 81-14-1)	0 % enone	_	31.12.2020
ex 2914 79 00	65	1,4-bis(4- Fluorobenzoyl) Benzene (CAS RN 68418-51-9)	0 %	_	31.12.2021
ex 2914 79 00	70	4-Chloro-4'- hydroxybenzon (CAS RN 42019-78-3)	0 % bhenone	_	31.12.2021

ex 2914 79 00	75	4,4'- Difluorobenzo (CAS RN 345-92-6)	0 % phenone	_	31.12.2021
gex 2914 79 00	80	Tetrachloro- p- benzoquinone (CAS RN 118-75-2)	0 %	_	31.12.2023
ex 2915 12 00	10	Aqueous solution containing by weight 60 % or more but not more than 84 % of caesium formate (CAS RN 3495-36-1)	0 %	_	31.12.2021
ex 2915 39 00	10	Cis-3-hexenyl acetate (CAS RN 3681-71-8)	0 %	_	31.12.2022
gex 2915 39 00	25	2- Methylcyclohe acetate (CAS RN 5726-19-2)	0 % xyl	_	31.12.2023
ex 2915 39 00	30	4-tert- butylcyclohexy acetate (CAS RN 32210-23-4)	0 % /1	_	31.12.2022
gex 2915 39 00	40	tert-Butyl acetate (CAS RN 540-88-5)	0 %	_	31.12.2023
ex 2915 39 00	50	3- Acetylphenyl acetate (CAS RN 2454-35-5)	0 %	_	31.12.2019
ex 2915 39 00	60	Dodec-8- enyl acetate (CAS RN 28079-04-1)	0 %	_	31.12.2020
ex 2915 39 00	65	Dodeca-7,9- dienyl acetate	0 %	_	31.12.2020

		(CAS RN 54364-62-4)			
ex 2915 39 00	70	Dodec-9- enyl acetate (CAS RN 16974-11-1)	0 %	_	31.12.2020
ex 2915 39 00	75	Isobornyl acetate (CAS RN 125-12-2)	0 %	_	31.12.2021
ex 2915 39 00	80	1-Phenylethyl acetate (CAS RN 93-92-5)	0 %	_	31.12.2021
^g ex 2915 39 00	85	2-tert- Butylcyclohex acetate (CAS RN 88-41-5)	0 % yl	_	31.12.2023
ex 2915 60 19	10	Ethyl butyrate (CAS RN 105-54-4)	0 %	_	31.12.2022
^g ex 2915 70 40	10	Methyl palmitate (CAS RN 112-39-0)	0 %	_	31.12.2023
^g ex 2915 90 30	10	Methyl laurate (CAS RN 111-82-0)	0 %	_	31.12.2020
ex 2915 90 70	20	Methyl (R)-2- fluoropropiona (CAS RN 146805-74-5)		_	31.12.2022
^g ex 2915 90 70	25	Methyl octanoate (CAS RN 111-11-5), methyl decanoate (CAS RN 110-42-9) or methyl myristate (CAS RN 124-10-7)	0 %		31.12.2023
ex 2915 90 70	30	3,3- Dimethylbutyr chloride (CAS RN 7065-46-5)	0 % yl	_	31.12.2022

^g ex 2915 90	35	2,2-	0 %		31.12.2023
70	33	Dimethylbutan chloride (CAS RN 5856-77-9)			31.12.2023
ex 2915 90 70	45	Trimethyl orthoformate (CAS RN 149-73-5)	0 %	_	31.12.2019
ex 2915 90 70	50	Allyl heptanoate (CAS RN 142-19-8)	0 %	_	31.12.2019
^g ex 2915 90 70	55	Triethyl orthoformate (CAS RN 122-51-0)	0 %	_	31.12.2023
ex 2915 90 70	60	Ethyl-6,8- dichlorooctano (CAS RN 1070-64-0)	0 % ate	_	31.12.2020
ex 2915 90 70	65	2-Ethyl-2- methyl butanoic acid (CAS RN 19889-37-3)	0 %	_	31.12.2020
ex 2915 90 70	80	Ethyl difluoroacetate (CAS RN 454-31-9)	0 %	_	31.12.2021
gex 2916 12 00	10	2-tert- Butyl-6- (3-tert- butyl-2- hydroxy-5- methylbenzyl)- methylphenyl acrylate (CAS RN 61167-58-6)	0 %		31.12.2023
^g ex 2916 12 00	40	2,4-Di-tert- pentyl-6-[1- (3,5-di-tert- pentyl-2- hydroxyphenyl (CAS RN 123968-25-2)	0 %)ethyl]phenylac	rylate	31.12.2023

ex 2916 12 00	70	2-(2-	0 %		31.12.2022
		Vinyloxyethox acrylate (CAS RN 86273-46-3)			
gex 2916 13 00	20	Zinc dimethacrylate in the form of powder (CAS RN 13189-00-9)	0 %	_	31.12.2023
ex 2916 13 00	30	Zinc monomethacry powder (CAS RN 63451-47-8) whether or not containing not more than 17 % by weight of manufacturing impurities	0 % late		31.12.2020
gex 2916 14 00	10	2,3- Epoxypropyl methacrylate (CAS RN 106-91-2)	0 %	_	31.12.2023
^g ex 2916 14 00	20	Ethyl methacrylate (CAS RN 97-63-2)	0 %	_	31.12.2023
⁸ ex 2916 19 95	20	Methyl 3,3- dimethylpent-4 enoate (CAS RN 63721-05-1)	0 %	_	31.12.2023
⁸ ex 2916 19 95	40	Sorbic acid (CAS RN 110-44-1) for use in the manufacture of animal feeds ^b	0 %	_	31.12.2023
ex 2916 19 95	50	Methyl 2- fluoroacrylate	0 %	_	31.12.2019

		(CAS RN 2343-89-7)			
ex 2916 20 00	15	Transfluthrin (ISO) (CAS RN 118712-89-3)	0 %	_	31.12.2021
ex 2916 20 00	20	Mixture of the (1S,2R,6R,7R) and (1R,2R,6R, isomers of ethyl tricyclo[5.2.1.0 carboxylate (CAS RN's 80657-64-3 and 80623-07-0)			31.12.2022
^g ex 2916 20 00	50	Ethyl 2,2- dimethyl-3- (2- methylpropeny (CAS RN 97-41-6)	0 %	carboxylate	31.12.2023
ex 2916 20 00	60	3- Cyclohexylpro acid (CAS RN 701-97-3)	0 % pionic		31.12.2020
^g ex 2916 20 00	70	Cyclopropaned chloride (CAS RN 4023-34-1)	arbanyl	_	31.12.2023
ex 2916 31 00	10	Benzyl benzoate (CAS RN 120-51-4)	0 %	_	31.12.2021
ex 2916 39 90	13	3,5- Dinitrobenzoic acid (CAS RN 99-34-3)	0 %	_	31.12.2019
ex 2916 39 90	15	2-Chloro-5- nitrobenzoic acid (CAS RN 2516-96-3)	0 %	_	31.12.2021
ex 2916 39 90	18	2,4- Dichloropheny acid	0 % lacetic	_	31.12.2019

		(CAS RN 19719-28-9)			
^g ex 2916 39 90	20	3,5- Dichlorobenzo chloride (CAS RN 2905-62-6)	0 % yl	_	31.12.2023
ex 2916 39 90	23	(2,4,6- Trimethylphen chloride (CAS RN 52629-46-6)	0 % yl)acetyl	_	31.12.2019
ex 2916 39 90	25	2-Methyl-3- (4- Fluorophenyl)- propionyl chloride (CAS RN 1017183-70-8)		_	31.12.2021
ex 2916 39 90	30	2,4,6- Trimethylbenz chloride (CAS RN 938-18-1)	0 % oyl	_	31.12.2020
ex 2916 39 90	33	Methyl 4'- (bromomethyl) carboxylate (CAS RN 114772-38-2)	0 % biphenyl-2-	_	31.12.2021
^g ex 2916 39 90	35	Methyl 4- <i>tert</i> -butylbenzoate (CAS RN 26537-19-9)	0 %	_	31.12.2023
ex 2916 39 90	41	4-Bromo-2,6- difluorobenzoy chloride (CAS RN 497181-19-8)	0 %	_	31.12.2020
^g ex 2916 39 90	48	3- Fluorobenzoyl chloride (CAS RN 1711-07-5)	0 %	_	31.12.2023
^g ex 2916 39 90	50	3,5- Dimethylbenzo chloride (CAS RN 6613-44-1)	0 % pyl	_	31.12.2023

ex 2916 39 90	51	3-Chloro-2- fluorobenzoic acid (CAS RN 161957-55-7)	0 %	_	31.12.2020
ex 2916 39 90	53	5-Iodo-2- methylbenzoic acid (CAS RN 54811-38-0)	0 %	_	31.12.2020
ex 2916 39 90	55	4-tert- Butylbenzoic acid (CAS RN 98-73-7)	0 %	_	31.12.2022
ex 2916 39 90	61	2- Phenylbutyric Acid (CAS RN 90-27-7)	0 %	_	31.12.2020
^g ex 2916 39 90	70	Ibuprofen (INN) (CAS RN 15687-27-1)	0 %	_	31.12.2023
ex 2916 39 90	73	(2,4-Dichloropheny chloride (CAS RN 53056-20-5)	0 % l)acetyl	_	31.12.2021
ex 2916 39 90	75	m-Toluic acid (CAS RN 99-04-7)	0 %	_	31.12.2022
ex 2916 39 90	85	(2,4,5- Trifluoropheny acid (CAS RN 209995-38-0)	0 % l)acetic	_	31.12.2022
gex 2917 11 00	20	Bis(p- methylbenzyl) oxalate (CAS RN 18241-31-1)	0 %	_	31.12.2023
ex 2917 11 00	30	Cobalt oxalate (CAS RN 814-89-1)	0 %	_	31.12.2019
^g ex 2917 12 00	20	Bis(3,4- epoxycyclohex adipate	0 % ylmethyl)	_	31.12.2023

		(CAS RN 3130-19-6)			
ex 2917 19 10	10	Dimethyl malonate (CAS RN 108-59-8)	0 %	_	31.12.2019
ex 2917 19 10	20	Diethyl malonate (CAS RN 105-53-3)	0 %	_	31.12.2022
^g ex 2917 19 80	15	Dimethyl but-2- ynedioate (CAS RN 762-42-5)	0 %	_	31.12.2023
ex 2917 19 80	30	Ethylene brassylate (CAS RN 105-95-3)	0 %	_	31.12.2019
^e ex 2917 19 80	35	Diethyl methylmalonat (CAS RN 609-08-5)	0 % e	_	31.12.2023
ex 2917 19 80	50	Tetradecanedic acid (CAS RN 821-38-5)	i0 %	_	31.12.2020
^g ex 2917 19 80	70	Itaconic acid (CAS RN 97-65-4)	0 %	_	31.12.2023
^e ex 2917 20 00	30	1,4,5,6,7,7- Hexachloro-8,9 trinorborn-5- ene-2,3- dicarboxylic anhydride (CAS RN 115-27-5)	0 % 9,10-	_	31.12.2023
^g ex 2917 20 00	40	3- Methyl-1,2,3,6 tetrahydrophth anhydride (CAS RN 5333-84-6)		_	31.12.2023
^g ex 2917 34 00	10	Diallyl phthalate (CAS RN 131-17-9)	0 %	_	31.12.2023

ex 2917 39 95	20	Dibutyl-1,4- benzenedicarbo (CAS RN 1962-75-0)	0 % oxylate	_	31.12.2020
ex 2917 39 95	25	Naphthalene-1 dicarboxylic anhydride (CAS RN 81-84-5)	8-%	_	31.12.2020
ex 2917 39 95	30	Benzene-1,2:4, tetracarboxylic dianhydride (CAS RN 89-32-7)		_	31.12.2020
ex 2917 39 95	35	1-Methyl-2- nitroterephthal (CAS RN 35092-89-8)	0 % ate	_	31.12.2020
^g ex 2917 39 95	40	Dimethyl 2- nitroterephthal (CAS RN 5292-45-5)	0 % ate	_	31.12.2023
ex 2917 39 95	50	1,4,5,8- Naphthalenetet acid-1,8- monoanhydrid (CAS RN 52671-72-4)	-	_	31.12.2019
ex 2917 39 95	60	Perylene-3,4:9 tetracarboxylic dianhydride(Ca RN 128-69-8)		_	31.12.2019
gex 2918 16 00	20	Calcium digluconate monohydrate (CAS RN 66905-23-5) for use in the manufacture of calcium gluconate lactate (CAS RN 11116-97-5) ^b	0 %		31.12.2019
ex 2918 19 30	10	Cholic acid (CAS RN 81-25-4)	0 %		31.12.2019

ex 2918 19 30	20	3-α,12-α- Dihydroxy-5- β-cholan-24- oic acid (deoxycholic acid) (CAS RN 83-44-3)	0 %		31.12.2019
gex 2918 19 98	20	L-Malic acid (CAS RN 97-67-6)	0 %	_	31.12.2023
^g ex 2918 29 00	10	Monohydroxyr acids	1919Mithoic	_	31.12.2023
ex 2918 29 00	35	Propyl 3,4,5- trihydroxybenz (CAS RN 121-79-9)	0 % coate	_	31.12.2022
gex 2918 29 00	50	Hexamethylend bis[3-(3,5- di-tert- butyl-4- hydroxyphenyl (CAS RN 35074-77-2)			31.12.2023
ex 2918 29 00	60	Methyl-, ethyl-, propyl- or butyl esters of 4- hydroxybenzoi acid or their sodium salts (CAS RN 35285-68-8, 99-76-3, 5026-62-0, 94-26-8, 94-13-3, 35285-69-9, 120-47-8, 36457-20-2 or 4247-02-3)	0 % c		31.12.2021
		<u> </u>			21 12 2010
ex 2918 29 00	70	3,5- Diiodosalicylic acid (CAS RN 133-91-5)	0 %		31.12.2019

		(CAS RN 550363-85-4)			
^g ex 2918 30 00	30	Methyl-2- benzoylbenzoa (CAS RN 606-28-0)	0 % te	_	31.12.2023
ex 2918 30 00	50	Ethyl acetoacetate (CAS RN 141-97-9)	0 %		31.12.2022
ex 2918 30 00	60	4-Oxovaleric acid (CAS RN 123-76-2)	0 %		31.12.2019
ex 2918 30 00	70	2-[4- Chloro-3- (chlorosulphon acid (CAS RN 68592-12-1)	0 % yl)benzoyl]benz	zoic	31.12.2019
ex 2918 30 00	80	Methyl benzoylformat (CAS RN 15206-55-0)	0 % e		31.12.2021
^g ex 2918 99 90	10	3,4- Epoxycyclohex 3,4- epoxycyclohex (CAS RN 2386-87-0)	0 % sylmethyl anecarboxylate	_	31.12.2023
ex 2918 99 90	13	3-Methoxy-2- methylbenzoyl chloride (CAS RN 24487-91-0)	0 %	_	31.12.2020
ex 2918 99 90	15	Ethyl 2,3- epoxy-3- phenylbutyrate (CAS RN 77-83-8)	0 %	_	31.12.2022
ex 2918 99 90	18	Ethyl 2- hydroxy-2-(4- phenoxypheny (CAS RN 132584-17-9)	0 % l)propanoate		31.12.2020
ex 2918 99 90	20	Methyl 3- methoxyacryla	0 % te	_	31.12.2019

		(CAS RN 5788-17-0)			
ex 2918 99 90	23	1,8- Dihydroxyanth carboxylic acid (CAS RN 478-43-3)	0 % raquinone-3-	_	31.12.2021
^g ex 2918 99 90	25	Methyl (E)-3- methoxy-2- (2- chloromethylp propenoate (CAS RN 117428-51-0)	0 % henyl)-2-	_	31.12.2023
ex 2918 99 90	27	Ethyl 3- ethoxypropion (CAS RN 763-69-9)	0 % ate	_	31.12.2022
^g ex 2918 99 90	30	Methyl 2-(4-hydroxyphenox RN 96562-58-2)	0 % xy)propionate (0	 CAS	31.12.2023
ex 2918 99 90	35	p-Anisic acid (CAS RN 100-09-4)	0 %		31.12.2019
ex 2918 99 90	38	Diclofop- methyl (ISO) (CAS RN 51338-27-3)	0 %	_	31.12.2022
gex 2918 99 90	40	trans-4- Hydroxy-3- methoxycinnar acid (CAS RN 1135-24-6)	0 % nic	_	31.12.2023
ex 2918 99 90	45	4- Methylcatecho dimethyl acetate (CAS RN 52589-39-6)	0 % I	_	31.12.2019
^g ex 2918 99 90	50	Methyl 3,4,5- trimethoxyben (CAS RN 1916-07-0)	0 % zoate	_	31.12.2023
ex 2918 99 90	55	Stearyl glycyrrhetinate	0 % (CAS	_	31.12.2019

		RN 13832-70-7)			
gex 2918 99 90	60	3,4,5- Trimethoxyber acid (CAS RN 118-41-2)	0 % zoic	_	31.12.2023
ex 2918 99 90	65	Acetic acid, difluoro[1,1,2,; tetrafluoro-2- (pentafluoroeth ammonium salt (CAS RN 908020-52-0)		_	31.12.2019
ex 2918 99 90	70	Allyl-(3-methylbutoxy) (CAS RN 67634-00-8)	0 % acetate	_	31.12.2019
ex 2918 99 90	75	3,4- Dimethoxyben acid (CAS RN 93-07-2)	0 % zoic	_	31.12.2019
ex 2918 99 90	80	Sodium 5- [2-chloro-4- (trifluoromethy nitrobenzoate (CAS RN 62476-59-9)	0 % d)phenoxy]-2-		31.12.2021
ex 2918 99 90	85	Trinexapac- Ethyl (ISO) (CAS RN 95266-40-3) with a purity by weight of 96 % or more	0 %		31.12.2020
^g ex 2919 90 00	10	2,2'- Methylenebis(4 di-tert- butylphenyl) phosphate, monosodium salt (CAS RN 85209-91-2)	0 % 4,6-	_	31.12.2023
^g ex 2919 90 00	15	Benzene-1,3-diyl tetraphenyl bis(phosphate) (CAS RN 57583-54-7)	0 %	_	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

^g ex 2919 90 00	30	Aluminium hydroxybis[2,2 methylenebis(4 di- <i>tert</i> - butylphenyl)ph (CAS RN 151841-65-5)	1,6-		31.12.2023
^g ex 2919 90 00	40	Tri-n- hexylphosphat (CAS RN 2528-39-4)	0 % e	_	31.12.2023
ex 2919 90 00	50	Triethyl phosphate (CAS RN 78-40-0)	0 %	_	31.12.2021
^e ex 2919 90 00	60	Bisphenol-A bis(diphenyl phosphate) (CAS RN 5945-33-5)	0 %	_	31.12.2023
ex 2919 90 00	70	Tris(2- butoxyethyl)ph (CAS RN 78-51-3)	0 % osphate	_	31.12.2019
^g ex 2920 19 00	10	Fenitrothion (ISO) (CAS RN 122-14-5)	0 %		31.12.2023
^g ex 2920 19 00	20	Tolclofos- methyl (ISO) (CAS RN 57018-04-9)	0 %	_	31.12.2023
ex 2920 19 00	30	2,2'- Oxybis(5,5- dimethyl-1,3,2 dioxaphosphor disulphide (CAS RN 4090-51-1)		_	31.12.2019
^g 2920 23 00		Trimethyl phosphite (CAS RN 121-45-9)	0 %	_	31.12.2023
2920 24 00		Triethyl phosphite (CAS RN 122-52-1)	0 %	_	31.12.2021

^g ex 2920 29 00	10	O,O'- Dioctadecyl pentaerythritol bis(phosphite) (CAS RN 3806-34-6)	0 %	_	31.12.2023
ex 2920 29 00	15	Phosphorous acid 3,3',5,5'- tetrakis(1,1- dimethylethyl) dimethyl[1,1'- biphenyl]-2,2'- diyl tetra-1- naphthalenyl ester (CAS RN 198979-98-5)			31.12.2022
ex 2920 29 00	20	Tris(methylpho (CAS RN 25586-42-9)	nyl)phosphite	_	31.12.2020
ex 2920 29 00	30	2,2'- [[3,3',5,5'- Tetrakis(1,1- dimethylethyl) [1,1'- biphenyl]-2,2'- diyl]bis(oxy)]b dioxaphospher (CAS RN 138776-88-2)	is[biphenyl-1,3	2-	31.12.2020
ex 2920 29 00	40	Bis(2,4-dicumylphenyldiphosphite (CAS RN 154862-43-8)	0 %)pentaerythritol	_	31.12.2020
gex 2920 29 00	50	Fosetyl- aluminium (CAS RN 39148-24-8)	0 %	_	31.12.2023
ex 2920 29 00	60	Fosetyl-sodium (CAS RN 39148-16-8) in form of an aqueous solution with a content by weight of fosetyl-	0 %	_	31.12.2021

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		sodium of 35 % or more but not more than 45 % for use in the manufacture of pesticides ^b			
^g ex 2920 90 10	10	Diethyl sulphate (CAS RN 64-67-5)	0 %	_	31.12.2023
^g ex 2920 90 10	15	Ethyl methyl carbonate (CAS RN 623-53-0)	0 %	_	31.12.2023
^g ex 2920 90 10	20	Diallyl 2,2'- oxydiethyl dicarbonate (CAS RN 142-22-3)	0 %	_	31.12.2023
^g ex 2920 90 10	25	Diethyl carbonate (CAS RN 105-58-8)	0 %	_	31.12.2023
^g ex 2920 90 10	35	Vinylene carbonate (CAS RN 872-36-6)	0 %	_	31.12.2023
^g ex 2920 90 10	40	Dimethyl carbonate (CAS RN 616-38-6)	0 %	_	31.12.2023
^g ex 2920 90 10	50	Di-tert-butyl dicarbonate (CAS RN 24424-99-5)	0 %	_	31.12.2023
ex 2920 90 10	60	2,4-Di- <i>tert</i> -butyl-5-nitrophenyl methyl carbonate (CAS RN 873055-55-1)	0 %	_	31.12.2022
ex 2920 90 10	80	Sodium 2-[2-(2- tridecoxyethox sulphate (CAS RN	0 % y)ethoxy]ethyl	_	31.12.2021

		in the form of a liquid paste with a content by weight in water of 62 % or more but not more than 65 %			
^g ex 2920 90 70	30	2- isopropoxy-4,4 tetramethyl-1,3 dioxaborolane (CAS RN 61676-62-8)		_	31.12.2023
^g ex 2920 90 70	60	Bis(neopentylg (CAS RN 201733-56-4)	l 9&6 lato)diboro	n—	31.12.2023
ex 2920 90 70	80	Bis(pinacolato) (CAS RN 73183-34-3)	MiB6 ron	_	31.12.2020
2921 13 00		2-(N,N-Diethylamino) chloride hydrochloride (CAS RN 869-24-9)	0 % ethyl		31.12.2022
ex 2921 19 50 ex 2929 90 00	10 20	Diethylamino- triethoxysilane (CAS RN 35077-00-0)			31.12.2019
^g ex 2921 19 99	20	Ethyl(2- methylallyl)am (CAS RN 18328-90-0)	0 % line		31.12.2023
⁸ ex 2921 19 99	25	Dimethyl(tetra (CAS RN 112-75-4), containing by weight not more than 3 % of other dimethyl(alkyl amines			31.12.2023
^g ex 2921 19 99	30	Allylamine (CAS RN 107-11-9)	0 %		31.12.2023

ex 2921 19 99	45	2-Chloro- <i>N</i> - (2- chloroethyl)eth hydrochloride 821-48-7)		_	31.12.2021
ex 2921 19 99	70	N,N-Dimethyloctyle-boron trichloride (1:1) (CAS RN 34762-90-8)	0 % amine	_	31.12.2022
ex 2921 19 99	80	Taurine (CAS RN 107-35-7), with 0,5 % addition of anti-caking agent silicon dioxide (CAS RN 112926-00-8)	0 %	_	31.12.2019
^g ex 2921 29 00	20	Tris[3- (dimethylamin (CAS RN 33329-35-0)	0 % o)propyl]amine	_	31.12.2023
gex 2921 29 00	30	Bis[3- (dimethylamin RN 3855-32-1)	0 % o)propyl]methy	 lamine (CAS	31.12.2023
ex 2921 29 00	40	Decamethylene (CAS RN 646-25-3)	e 0 ia⁄mine	_	31.12.2020
ex 2921 29 00	50	N'-[3- (Dimethylamir dimethylpropa diamine, (CAS RN 6711-48-4)	0 % no)propyl]- <i>N</i> , <i>N</i> - ne-1,3-		31.12.2021
^g ex 2921 30 10	10	2-(4- (cyclopropaned methylpropaned acid cyclohexylami salt (CAS RN 1690344-90-1)	ne	<u> </u>	31.12.2023
ex 2921 30 99	30	1,3- Cyclohexanedi	0 % methanamine	_	31.12.2020

		(CAS RN 2579-20-6)			
ex 2921 30 99	40	Cyclopropylan (CAS RN 765-30-0)	ារិា&₀	_	31.12.2022
^g ex 2921 42 00	15	4-Amino-3- nitrobenzenesu acid (CAS RN 616-84-2)	0 % Iphonic	_	31.12.2019
^g ex 2921 42 00	25	Sodium hydrogen 2- aminobenzene- disulphonate (CAS RN 24605-36-5)	0 %	_	31.12.2023
ex 2921 42 00	33	2- Fluoroaniline (CAS RN 348-54-9)	0 %	_	31.12.2020
^g ex 2921 42 00	35	2-Nitroaniline (CAS RN 88-74-4)	0 %	_	31.12.2023
ex 2921 42 00	40	Sodium sulphanilate (CAS RN 515-74-2), also in form of its mono- or dihydrates (CAS RN 12333-70-0 or 6106-22-5)	0 %	_	31.12.2019
^g ex 2921 42 00	45	2,4,5- Trichloroanilin (CAS RN 636-30-6)	0 % e	_	31.12.2023
^g ex 2921 42 00	50	3- Aminobenzene acid (CAS RN 121-47-1)	0 % sulfonic	_	31.12.2023
ex 2921 42 00	70	2- Aminobenzene disulfonic acid (CAS RN 98-44-2)	0 % -1,4-	_	31.12.2019
^g ex 2921 42 00	80	4-Chloro-2- nitroaniline	0 %	_	31.12.2023

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		(CAS RN 89-63-4)			
gex 2921 42 00	85	3,5- Dichloroaniline (CAS RN 626-43-7)	0 %	_	31.12.2023
ex 2921 42 00	86	2,5- Dichloroaniline (CAS RN 95-82-9)	0 %	_	31.12.2022
ex 2921 42 00	87	N- Methylaniline (CAS RN 100-61-8)	0 %	_	31.12.2022
ex 2921 42 00	88	3,4- Dichloroaniline sulphonic acid (CAS RN 6331-96-0)	0 % ≥-6-	_	31.12.2022
^g ex 2921 43 00	20	4-Amino-6- chlorotoluene- sulphonic acid (CAS RN 88-51-7)	0 % 3-	_	31.12.2023
^g ex 2921 43 00	30	3-Nitro-p- toluidine (CAS RN 119-32-4)	0 %	_	31.12.2023
^g ex 2921 43 00	40	4- Aminotoluene- sulphonic acid (CAS RN 88-44-8)	0 % 3-	_	31.12.2019
ex 2921 43 00	50	4- Aminobenzotri (CAS RN 455-14-1)	0 % fluoride	_	31.12.2020
ex 2921 43 00	60	3- Aminobenzotri (CAS RN 98-16-8)	0 % fluoride	_	31.12.2020
^g ex 2921 44 00	20	Diphenylamine (CAS RN 122-39-4)	0 %	_	31.12.2023
^g ex 2921 45 00	20	2- Aminonaphtha	0 % lene-1,5-	_	31.12.2019

		disulphonic acid (CAS RN 117-62-4) or one of its sodium salts (CAS RN 19532-03-7) or (CAS RN 62203-79-6)			
gex 2921 45 00	50	7- Aminonaphtha trisulphonic acid (CAS RN 118-03-6)	0 % lene-1,3,6-	_	31.12.2019
ex 2921 45 00	60	Naphthylamine (CAS RN 134-32-7)	0 %	_	31.12.2022
ex 2921 45 00	70	8- Aminonaphtha sulphonic acid (CAS RN 119-28-8)	0 % lene-2-	_	31.12.2022
^g ex 2921 49 00	20	Pendimethalin (ISO) (CAS RN 40487-42-1)	3.5 %	_	31.12.2023
^g ex 2921 49 00	40	N-1- Naphthylanilin (CAS RN 90-30-2)	0 % e	_	31.12.2023
ex 2921 49 00	60	2,6- Diisopropylani (CAS RN 24544-04-5)	0 % line	_	31.12.2020
ex 2921 49 00	80	4- Heptafluoroiso methylaniline (238098-26-5)		_	31.12.2020
^g ex 2921 51 19	30	2-Methyl- <i>p</i> -phenylenediam sulphate (CAS RN 615-50-9)	0 % nine	_	31.12.2023
ex 2921 51 19	40	<i>p</i> -Phenylenedian (CAS RN 106-50-3)	0 % nine	_	31.12.2021

ex 2921 51 19	50	Mono- and dichloroderivator of <i>p</i> -phenylenediam and <i>p</i> -diaminotolue	ine	_	31.12.2019
^g ex 2921 51 19	60	2,4- Diaminobenzer acid (CAS RN 88-63-1)	0 % nesulphonic	_	31.12.2019
ex 2921 51 19	70	4-Bromo- 1,2- diaminobenzer (CAS RN 1575-37-7)	0 % e	_	31.12.2020
^g ex 2921 59 90	10	Mixture of isomers of 3,5- diethyltoluened (CAS RN 68479-98-1, CAS RN 75389-89-8)	0 % liamine	_	31.12.2023
ex 2921 59 90	30	3,3'- Dichlorobenzio dihydrochlorid (CAS RN 612-83-9)		_	31.12.2022
^g ex 2921 59 90	40	4,4'- Diaminostilber disulphonic acid (CAS RN 81-11-8)	0 % ne-2,2'-		31.12.2023
ex 2921 59 90	60	(2R,5R)-1,6- Diphenylhexar diamine dihydrochlorid (CAS RN 1247119-31-8)	e-2,5- e	_	31.12.2022
ex 2921 59 90	70	Tris(4- aminophenyl)n (CAS RN 548-61-8)	0 % nethane		31.12.2020
ex 2922 19 00	20	2-(2- Methoxypheno hydrochloride (CAS RN 64464-07-9)	0 % xy)ethylamine	_	31.12.2022

^g ex 2922 19 00	30	N,N,N',N'- Tetramethyl-2, oxybis(ethylan (CAS RN 3033-62-3)		_	31.12.2023
ex 2922 19 00	35	2-[2- (Dimethylamir ethanol (CAS RN 1704-62-7)	0 % no)ethoxy]	_	31.12.2020
ex 2922 19 00	40	(R)-1-((4- amino-2- bromo-5- fluorophenyl)a (benzyloxy)pro ol 4- methylbenzene (CAS RN 1294504-64-5)	ppan-2- sulphonate	_	31.12.2021
^g ex 2922 19 00	45	2- Methoxymethy p- phenylenediam 337906-36-2)		_	31.12.2023
^g ex 2922 19 00	50	2-(2- Methoxypheno (CAS RN 1836-62-0)	0 % xy)ethylamine	_	31.12.2019
^g ex 2922 19 00	60	N,N,N'- trimethyl-N'- (2-hydroxy- ethyl) 2,2'- oxybis(ethylan (CAS RN 83016-70-0)	0 %	_	31.12.2023
gex 2922 19 00	65	trans-4- Aminocyclohe (CAS RN 27489-62-9)	0 % xanol	_	31.12.2023
^g ex 2922 19 00	75	2- Ethoxyethylam (CAS RN 110-76-9)	0 % iine	_	31.12.2023
ex 2922 19 00	80	N-[2-[2- (Dimethylamir methyl-1,3- propanediamin	0 % to)ethoxy]ethyl]	 -N-	31.12.2019

		(CAS RN 189253-72-3)			
^g ex 2922 19 00	85	(1S,4R)- cis-4- Amino-2- cyclopentene-1 methanol- D-tartrate (CAS RN 229177-52-0)	0 %	_	31.12.2023
^g ex 2922 21 00	10	2-Amino-5- hydroxynaphth disulphonic acid (CAS RN 6535-70-2)	0 % alene-1,7-	_	31.12.2019
ex 2922 21 00	30	6-Amino-4- hydroxynaphth sulphonic acid (CAS RN 90-51-7)	0 % alene-2-	_	31.12.2019
^g ex 2922 21 00	40	7-Amino-4- hydroxynaphth sulphonic acid (CAS RN 87-02-5)	0 % alene-2-	_	31.12.2023
ex 2922 21 00	50	Sodium hydrogen 4-amino-5- hydroxynaphth disulphonate (CAS RN 5460-09-3)	0 % nalene-2,7-	_	31.12.2019
ex 2922 21 00	60	4-Amino-5- hydroxynaphth disulphonic acid with a purity by weight of 80 % or more (CAS RN 90-20-0)	0 % nalene-2,7-	_	31.12.2023
^g ex 2922 29 00	20	3- Aminophenol (CAS RN 591-27-5)	0 %	_	31.12.2023
^g ex 2922 29 00	25	5-Amino-o-cresol	0 %	_	31.12.2023

		(CAS RN 2835-95-2)			
ex 2922 29 00	30	1,2-Bis(2- aminophenoxy (CAS RN 52411-34-4)	0 %)ethane	_	31.12.2020
ex 2922 29 00	40	4-Hydroxy-6- [(3- sulphophenyl)a sulphonic acid (CAS RN 25251-42-7)	0 % nmino]naphthale	 ne-2-	31.12.2020
^g ex 2922 29 00	45	Anisidines	0 %	_	31.12.2023
ex 2922 29 00	63	Aclonifen (ISO) (CAS RN 74070-46-5) with a purity by weight of 97 % or more	0 %	_	31.12.2020
ex 2922 29 00	65	4- Trifluorometho (CAS RN 461-82-5)	0 % xyaniline	_	31.12.2019
^g ex 2922 29 00	67	4-Chloro-2,5-dimethoxyanili (CAS RN 6358-64-1)			31.12.2023
^g ex 2922 29 00	70	4-Nitro-o- anisidine (CAS RN 97-52-9)	0 %	_	31.12.2023
ex 2922 29 00	73	Tris(4- aminophenyl) thiophosphate (CAS RN 52664-35-4)	0 %	_	31.12.2021
ex 2922 29 00	75	4-(2- Aminoethyl)ph (CAS RN 51-67-2)	0 % enol	_	31.12.2020
^g ex 2922 29 00	80	3- Diethylaminop (CAS RN 91-68-9)	0 % henol	_	31.12.2023

^g ex 2922 29 00	85	4- Benzyloxyanili hydrochloride (CAS RN 51388-20-6)	0 % ine		31.12.2023
^g ex 2922 39 00	10	1-Amino-4- bromo-9,10- dioxoanthracer sulphonic acid and its salts	0 % ne-2-	_	31.12.2023
ex 2922 39 00	15	2-Amino-3,5- dibromobenzal (CAS RN 50910-55-9)		_	31.12.2022
ex 2922 39 00	20	2-Amino-5- chlorobenzoph (CAS RN 719-59-5)	0 % enone		31.12.2020
ex 2922 39 00	25	3- (Dimethylamir (1- naphthalenyl)- propanone)hyd (CAS RN 5409-58-5)] - 1-		31.12.2020
ex 2922 39 00	35	5-Chloro-2- (methylamino) 1022-13-5)	0 % benzophenone (CAS RN	31.12.2020
^g ex 2922 43 00	10	Anthranilic acid (CAS RN 118-92-3)	0 %	_	31.12.2023
^g ex 2922 49 85	10	Ornithine aspartate (INNM) (CAS RN 3230-94-2)	0 %	_	31.12.2023
ex 2922 49 85	20	3-Amino-4- chlorobenzoic acid (CAS RN 2840-28-0)	0 %	_	31.12.2022
ex 2922 49 85	25	Dimethyl 2- aminobenzene- dicarboxylate (CAS RN 5372-81-6)	0 % -1,4-	_	31.12.2019

ex 2922 49 85	30	Aqueous solution containing 40 % by weight or more of sodium methylaminoac (CAS RN 4316-73-8)	0 %	_	31.12.2020
ex 2922 49 85	35	2-(3- Amino-4- chloro- benzoyl) benzoic acid (CAS RN 118-04-7)	0 %	_	31.12.2021
^g ex 2922 49 85	40	Norvaline	0 %	_	31.12.2023
ex 2922 49 85	45	Glycine (CAS RN 56-40-6)	0 %	_	31.12.2020
ex 2922 49 85	50	D-(-)- Dihydrophenyl (CAS RN 26774-88-9)	0 % glycine	_	31.12.2019
ex 2922 49 85	55	(E)-Ethyl 4- (dimethylamin enoate maleate (CUS 0138070-7) ^e	0 % o)but-2-	_	31.12.2019
ex 2922 49 85	60	Ethyl-4- dimethylamino (CAS RN 10287-53-3)	0 % benzoate	_	31.12.2022
ex 2922 49 85	65	Diethyl aminomalonate hydrochloride (CAS RN 13433-00-6)	0 %	_	31.12.2020
^g ex 2922 49 85	70	2- Ethylhexyl-4- dimethylamino (CAS RN 21245-02-3)	0 % benzoate	_	31.12.2023
ex 2922 49 85	75	L-alanine isopropyl ester hydrochloride	0 %	_	31.12.2022

		(CAS RN 62062-65-1)			
^g ex 2922 49 85	80	12- Aminododecar acid (CAS RN 693-57-2)	0 % noic	_	31.12.2023
ex 2922 50 00	10	2-(2-(2- Aminoethoxy) acid hydrochloride (CAS RN 134979-01-4)	0 % ethoxy)acetic		31.12.2021
ex 2922 50 00	15	3,5- Diiodothyronii (CAS RN 1041-01-6)	0 % ne	_	31.12.2022
ex 2922 50 00	20	1-[2- Amino-1-(4- methoxypheny ethyl]- cyclohexanol hydrochloride (CAS RN 130198-05-9)	0 % I)-	_	31.12.2019
^g ex 2922 50 00	35	(2S)-2- Amino-3- (3,4- dimethoxypher methylpropand acid hydrochloride (CAS RN 5486-79-3)			31.12.2023
^g ex 2922 50 00	70	2-(1- Hydroxycyclol (4- methoxypheny acetate	0 % nexyl)-2- l)ethylammoniu	<u> </u>	31.12.2023
ex 2923 10 00	10	Calcium phosphoryl choline chloride tetrahydrate (CAS RN 72556-74-2)	0 %		31.12.2019
^g ex 2923 90 00	10	Tetramethylam hydroxide, in the form of	m2%ium	_	31.12.2023

ex 2923 90 00	20	an aqueous solution containing 25 % (± 0,5 %) by weight of tetramethylam hydroxide Tetramethylam hydrogen phthalate (CAS RN 79723-02-7)			31.12.2019
^g ex 2923 90 00	25		holestetradecyla	mmonium)	31.12.2023
ex 2923 90 00	55	Tetrabutylamm bromide (CAS RN 1643-19-2)	on‱m	_	31.12.2021
gex 2923 90 00	70	hydro 0,3 % by weigl or less of carbo 0,1 % by weigl or less of	ht propylammoniur oxide, ht	n	31.12.2023

	ı			ı	
		 500 mg/kg kg or less of brom and 25 mg/kg or less of potas and sodiu taken togetl 	sium m ner		
ex 2923 90 00	75	Tetraethylamm hydroxide, in the form of an aqueous solution containing: — 35 % (± 0,5 %) by weigh of tetrae hydromot more than 1 000 mg/kg of chlorimot more than 2 mg/kg of	nt thylammonium oxide,		31.12.2020

		iron, and not more than 10 mg/ kg of potas			
gex 2923 90 00	80	Diallyldimethy chloride (CAS RN 7398-69-8), in the form of an aqueous solution containing by weight 63 % or more but not more than 67 % of diallyldimethyl chloride			31.12.2023
ex 2923 90 00	85	N,N,N- Trimethylanilin chloride (CAS RN 138-24-9)	0 % nium		31.12.2019
gex 2924 19 00	10	2- Acrylamido-2- methylpropane acid (CAS RN 15214-89-8) or its sodium salt (CAS RN 5165-97-9), or its ammonium salt (CAS RN 58374-69-9)			31.12.2023
ex 2924 19 00	15	N-Ethyl N- methylcarbamo chloride (CAS RN 42252-34-6)	0 % oyl	_	31.12.2019
ex 2924 19 00	20	(R)-(-)-3- (carbamoylmet methylhexanoi		_	31.12.2020

		acid (CAS RN 181289-33-8)			
ex 2924 19 00	25	Isobutylidened (CAS RN 6104-30-9)	i Or&a	_	31.12.2022
gex 2924 19 00	30	Methyl 2- acetamido-3- chloropropiona (CAS RN 87333-22-0)	0 % ite	_	31.12.2023
ex 2924 19 00	35	Acetamide (CAS RN 60-35-5)	0 %	_	31.12.2019
ex 2924 19 00	45	3-Chloro- <i>N</i> -methoxy- <i>N</i> -methylpropana (CAS RN 1062512-53-1)		_	31.12.2021
gex 2924 19 00	50	Acrylamide (CAS RN 79-06-1)	0 %	_	31.12.2023
ex 2924 19 00	55	2-Propynyl butylcarbamate (CAS RN 76114-73-3)	0 %	_	31.12.2021
ex 2924 19 00	60	N,N- Dimethylacryla (CAS RN 2680-03-7)	0 % amide	_	31.12.2021
^g ex 2924 19 00	65	2,2,2- trifluoroacetam (CAS RN 354-38-1)	0 % nide	_	31.12.2023
gex 2924 19 00	70	Methylcarbama (CAS RN 598-55-0)	a le %	_	31.12.2023
ex 2924 19 00	80	Tetrabutylurea (CAS RN 4559-86-8)	0 %	_	31.12.2022
^g ex 2924 21 00	10	4,4'- Dihydroxy-7,7 ureylenedi(nap sulfonic acid) and its sodium salts		_	31.12.2023

^g ex 2924 21	20	(3-	0 %	_	31.12.2019
00		Aminophenyl) hydrochloride (CAS RN 59690-88-9)	шеа		
⁸ 2924 25 00		Alachlor (ISO), (CAS RN 15972-60-8)	0 %		31.12.2023
^g ex 2924 29 70	12	4- (Acetylamino)- aminobenzenes acid (CAS RN 88-64-2)			31.12.2019
^g ex 2924 29 70	15	Acetochlor (ISO), (CAS RN 34256-82-1)	0 %	_	31.12.2023
ex 2924 29 70	17	2- (Trifluorometh (CAS RN 360-64-5)	0 % yl)benzamide		31.12.2019
ex 2924 29 70	19	2-[[2- (Benzyloxycar acid (CAS RN 3079-63-8)	0 % bonylamino)ace	— tyl]amino]propi	31.12.2019 onic
ex 2924 29 70	20	2-Chloro- <i>N</i> - (2-ethyl-6- methylphenyl)- (propan-2- yloxymethyl)ac (CAS RN 86763-47-5)			31.12.2019
ex 2924 29 70	23	Benalaxyl- M (ISO) (CAS RN 98243-83-5)	0 %	_	31.12.2019
ex 2924 29 70	27	2-Bromo-4- fluoroacetanilio (CAS RN 1009-22-9)	0 % de		31.12.2021
ex 2924 29 70	30	Sodium 4- (4-methyl-3- nitrobenzoylan (CAS RN 84029-45-8)	0 % nino)benzenesul	phonate	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 2924 29 70	33	N-(4-	0 %	_	31.12.2019
		Amino-2-	acetamide (CAS	RN	
^g ex 2924 29 70	37	Beflubutamid (ISO) (CAS RN 113614-08-7)	0 %	_	31.12.2023
ex 2924 29 70	40	N,N'-1,4- Phenylenebis[2 oxobutyramide 24731-73-5)			31.12.2020
ex 2924 29 70	45	Propoxur (ISO) (CAS RN 114-26-1)	0 %	_	31.12.2020
ex 2924 29 70	50	N- Benzyloxycarb L-tert-leucine isopropylamin salt (CAS RN 1621085-33-3)	e	_	31.12.2021
ex 2924 29 70	53	4-Amino- <i>N</i> - [4- (aminocarbony (CAS RN 74441-06-8)	0 % l)phenyl]benzar	— mide	31.12.2022
ex 2924 29 70	55	N,N'-(2,5- Dimethyl-1,4- phenylene)bis[oxobutyramide (CAS RN 24304-50-5)			31.12.2020
ex 2924 29 70	60	N,N'-(2- Chloro-5- methyl-1,4- phenylene)bis[oxobutyramide (CAS RN 41131-65-1)			31.12.2020
ex 2924 29 70	61	(S)-1- Phenylethanan (S)-2- (((1R,2R)-2- allylcyclopropedimethylbutane 0143288-8) ^e	oxy)carbonylam	ino)-3,3-	31.12.2020
ex 2924 29 70	62	2- Chlorobenzam	0 % ide	_	31.12.2020

		(CAS RN 609-66-5)			
ex 2924 29 70	63	N-Ethyl-2- (isopropyl)-5- methylcyclohe (CAS RN 39711-79-0)	0 % xanecarboxamic	le	31.12.2021
ex 2924 29 70	64	N-(3',4'- dichloro-5- fluoro[1,1'- biphenyl]-2- yl)acetamide (CAS RN 877179-03-8)	0 %	_	31.12.2020
ex 2924 29 70	73	Napropamide (ISO) (CAS RN 15299-99-7)	0 %	_	31.12.2019
^g ex 2924 29 70	75	3-Amino-p- anisanilide (CAS RN 120-35-4)	0 %	_	31.12.2023
^g ex 2924 29 70	85	p- Aminobenzam (CAS RN 2835-68-9)	0 % ide	_	31.12.2023
ex 2924 29 70	86	Anthranilamid (CAS RN 88-68-6) of a purity by weight of 99,5 % or more	e0 %	_	31.12.2022
^g ex 2924 29 70	88	5'-Chloro-3- hydroxy-2'- methyl-2- naphthanilide (135-63-7)	0 % CAS RN	_	31.12.2023
^g ex 2924 29 70	89	Flutolanil (ISO) (CAS RN 66332-96-5)	0 %	_	31.12.2023
^g ex 2924 29 70	91	3- Hydroxy-2'- methoxy-2- naphthanilide (CAS RN 135-62-6)	0 %		31.12.2023

Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 2924 29 70	92	3-Hydroxy-2- naphthanilide (CAS RN 92-77-3)	0 %	_	31.12.2019
^g ex 2924 29 70	93	3- Hydroxy-2'- methyl-2- naphthanilide (CAS RN 135-61-5)	0 %		31.12.2023
^e ex 2924 29 70	94	2'-Ethoxy-3- hydroxy-2- naphthanilide (CAS RN 92-74-0)	0 %	_	31.12.2023
^g ex 2924 29 70	97	1,1- Cyclohexanedi acid monoamide (CAS RN 99189-60-3)	0 % acetic	_	31.12.2023
^g ex 2925 11 00	20	Saccharin and its sodium salt	0 %	_	31.12.2023
^g ex 2925 19 95	10	N-Phenylmaleim (CAS RN 941-69-5)	0 % de	_	31.12.2023
ex 2925 19 95	20	4,5,6,7- Tetrahydroisoidione (CAS RN 4720-86-9)	0 % ndole-1,3-	_	31.12.2022
ex 2925 19 95	30	N,N'-(m- Phenylene)dim (CAS RN 3006-93-7)	0 % aleimide	_	31.12.2022
gex 2925 29 00	10	Dicyclohexylcs (CAS RN 538-75-0)	afb‰diimide	_	31.12.2023
^g ex 2925 29 00	20	N-[3- (Dimethylamin N'- ethylcarbodiim hydrochloride (CAS RN 25952-53-8)		_	31.12.2023

ex 2925 29 00	30	Guanidine sulphamate (CAS RN 50979-18-5)	0 %	_	31.12.2020
ex 2926 90 70	12	Cyfluthrin (ISO) (CAS RN 68359-37-5) with a purity by weight of 95 % or more	0 %		31.12.2019
^g ex 2926 90 70	13	alpha-Bromo- o-toluonitrile (CAS RN 22115-41-9)	0 %	_	31.12.2019
ex 2926 90 70	14	Cyanoacetic acid (CAS RN 372-09-8)	0 %	_	31.12.2020
ex 2926 90 70	15	2- Cyclohexylide phenylacetonit (CAS RN 10461-98-0)		_	31.12.2022
ex 2926 90 70	16	4-Cyano-2- nitrobenzoic acid methyl ester (CAS RN 52449-76-0)	0 %	_	31.12.2019
ex 2926 90 70	17	Cypermethrin (ISO) with its stereoisomers (CAS RN 52315-07-8) with a purity by weight of 90 % or more	0 %		31.12.2020
ex 2926 90 70	18	Flumethrin (ISO) (CAS RN 69770-45-2)	0 %	_	31.12.2022
^g ex 2926 90 70	19	2-(4-amino-2-chloro-5-methylphenyl) (4-chlorophenyl) acetonitrile	0 %	_	31.12.2023

		(CAS RN 61437-85-2)			
ex 2926 90 70	20	2-(m- Benzoylphenyl (CAS RN 42872-30-0)	0 %)propiononitrile	_	31.12.2019
^g ex 2926 90 70	21	4-Bromo-2- chlorobenzonit (CAS RN 154607-01-9)	0 % rile	_	31.12.2023
gex 2926 90 70	22	Acetonitrile (CAS RN 75-05-8)	0 %		31.12.2023
^g ex 2926 90 70	23	Acrinathrin (ISO) (CAS RN 101007-06-1)	0 %	_	31.12.2023
ex 2926 90 70	25	2,2- Dibromo-3- nitrilopropiona (CAS RN 10222-01-2)	0 % mide	_	31.12.2021
^g ex 2926 90 70	27	Cyhalofop- butyl (ISO) (CAS RN 122008-85-9)	0 %	_	31.12.2023
ex 2926 90 70	30	4,5- Dichloro-3,6- dioxocyclohex diene-1,2- dicarbonitrile (CAS RN 84-58-2)	0 % a-1,4-		31.12.2021
ex 2926 90 70	33	Deltamethrin (ISO) (CAS RN 52918-63-5)	0 %	_	31.12.2022
ex 2926 90 70	35	4-Cyano-2- methoxybenza (CAS RN 21962-45-8)	0 % dehyde	_	31.12.2021
ex 2926 90 70	40	2-(4- Cyanophenylar acid (CAS RN 42288-26-6)	0 % mino)acetic	_	31.12.2021

⁸ ex 2926 90 70	50	Alkyl or alkoxyalkyl esters of cyanoacetic acid	0 %		31.12.2023
ex 2926 90 70	61	m-(1- Cyanoethyl)be acid (CAS RN 5537-71-3)	0 % nzoic	_	31.12.2021
ex 2926 90 70	64	Esfenvalerate (CAS RN 66230-04-4) of a purity by weight of 83 % or more in a mixture of its own isomers	0 %	_	31.12.2019
ex 2926 90 70	70	Methacrylonitr (CAS RN 126-98-7)	i le %	_	31.12.2019
ex 2926 90 70	74	Chlorothalonil (ISO) (CAS RN 1897-45-6)	0 %	_	31.12.2019
ex 2926 90 70	75	Ethyl 2- cyano-2- ethyl-3- methylhexanoa (CAS RN 100453-11-0)	0 %	_	31.12.2019
⁸ ex 2926 90 70	80	Ethyl 2- cyano-2- phenylbutyrate (CAS RN 718-71-8)	0 %	_	31.12.2023
^g ex 2926 90 70	86	Ethylenediami (CAS RN 5766-67-6)	nθt∯traacetonitr	l e	31.12.2023
^g ex 2926 90 70	89	Butyronitrile (CAS RN 109-74-0)	0 %	_	31.12.2023
^g ex 2927 00 00	10	2,2'- Dimethyl-2,2'- azodipropional dihydrochlorid		_	31.12.2023

^g ex 2927 00 00	20	4-Anilino-2- methoxybenze hydrogen sulphate (CAS RN 36305-05-2)	0 % nediazonium		31.12.2023
ex 2927 00 00	25	2,2'-azobis(4- methoxy-2,4- dimethylvalero (CAS RN 15545-97-8)	0 % nitrile)	_	31.12.2022
gex 2927 00 00	30	4'- Aminoazobenz sulphonic acid (CAS RN 104-23-4)	0 % ene-4-	_	31.12.2023
ex 2927 00 00	35	C.C'- Azodi(formam (CAS RN 123-77-3) in the form of yellow powder with a decomposition temperature of 180 °C or more but not more than 220 °C used as a foaming agent in the manufacture of thermoplastic resins, elastomer and cross-linked polythene foam			31.12.2019
gex 2927 00 00	60	4,4'- Dicyano-4,4'- azodivaleric acid (CAS RN 2638-94-0)	0 %		31.12.2023
ex 2927 00 00	80	4-[(2,5- Dichloropheny hydroxy-2- naphthoic	0 % l)azo]-3-	_	31.12.2022

		acid (CAS RN 51867-77-7)			
^g ex 2928 00 90	10	3,3'-Bis(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl bipropionamid (CAS RN 32687-78-8)		_	31.12.2023
ex 2928 00 90	13	Cymoxanil (ISO) (CAS RN 57966-95-7)	0 %	_	31.12.2019
ex 2928 00 90	18	Acetone oxime (CAS RN 127-06-0) of a purity by weight of 99 % or more	0 %	_	31.12.2019
ex 2928 00 90	23	Metobromuron (ISO) (CAS RN 3060-89-7) with a purity by weight of 98 % or more	0 %		31.12.2020
ex 2928 00 90	25	Acetaldehyde oxime (CAS RN 107-29-9) in an aqueous solution	0 %	_	31.12.2020
ex 2928 00 90	28	Pentan-2-one oxime (CAS RN 623-40-5)	0 %	_	31.12.2021
ex 2928 00 90	30	N- Isopropylhydro (CAS RN 5080-22-8)	0 % oxylamine	_	31.12.2021
^g ex 2928 00 90	33	4- Chlorophenylh Hydrochloride (CAS RN 1073-70-7)	0 % ydrazine	_	31.12.2023
gex 2928 00 90	40	O- Ethylhydroxyla in the form of an aqueous	0 % amine,	_	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		solution (CAS RN 624-86-2)			
gex 2928 00 90	45	Tebufenozide (ISO) (CAS RN 112410-23-8)	0 %	_	31.12.2023
ex 2928 00 90	50	Aqueous solution of 2,2'- (hydroxyimino bisethanesulph acid disodium salt (CAS RN 133986-51-3) with a content by weight of more than 33,5 % but not more than 36,5 %	0 %) onic		31.12.2020
^g ex 2928 00 90	55	Aminoguanidin hydrogen carbonate (CAS RN 2582-30-1)	ունա 16%	_	31.12.2023
ex 2928 00 90	65	2-Amino-3- (4- hydroxyphenyl propanal semicarbazone hydrochloride		_	31.12.2019
^g ex 2928 00 90	70	Butanone oxime (CAS RN 96-29-7)	0 %	_	31.12.2023
ex 2928 00 90	75	Metaflumizone (ISO) (CAS RN 139968-49-3)	0 %	_	31.12.2021
^g ex 2928 00 90	80	Cyflufenamid (ISO) (CAS RN 180409-60-3)	0 %	_	31.12.2023
ex 2928 00 90	85	Daminozide (ISO) with a purity by weight of 99 % or more	0 %	_	31.12.2021

		(CAS RN 1596-84-5)			
ex 2929 10 00	15	3,3'- Dimethylbiphe diyl diisocyanate (CAS RN 91-97-4)	0 % nyl-4,4'-	_	31.12.2019
ex 2929 10 00	20	Butyl isocyanate (CAS RN 111-36-4)	0 %	_	31.12.2022
^g ex 2929 10 00	40	m- Isopropenyl-α, dimethylbenzy isocyanate (CAS RN 2094-99-7)		_	31.12.2023
^g ex 2929 10 00	50	m- Phenylenediiso diisocyanate (CAS RN 2778-42-9)	0 % propylidene	_	31.12.2023
ex 2929 10 00	55	2,5 (and 2,6)- Bis(isocyanato (CAS RN 74091-64-8)	0 % methyl)bicyclo[31.12.2022
^g ex 2929 10 00	60	Trimethylhexa diisocyanate, mixed isomers	noethylene	_	31.12.2023
ex 2929 10 00	80	1,3- Bis(isocyanato (CAS RN 3634-83-1)	0 % methyl)benzene		31.12.2022
ex 2930 20 00	10	Prosulfocarb (ISO) (CAS RN 52888-80-9)	0 %	_	31.12.2022
ex 2930 20 00	20	2- Isopropylethyl (CAS RN 141-98-0)	0 % chiocarbamate	_	31.12.2021
ex 2930 90 98	10	2,3-Bis((2- mercaptoethyl) propanethiol	0 % thio)-1-	_	31.12.2020

		(CAS RN 131538-00-6)			
gex 2930 90 98	12	4,4'- Sulfonyldipher (CAS RN 80-09-1) used in the manufacture of polyarylsulfonor polyarylethersu	es		31.12.2023
ex 2930 90 98	13	Mercaptamine hydrochloride (CAS RN 156-57-0)	0 %	_	31.12.2021
^g ex 2930 90 98	15	Ethoprophos (ISO) (CAS RN 13194-48-4)	0 %	_	31.12.2023
ex 2930 90 98	16	3- (Dimethoxyme propanethiol (0 31001-77-1)		_	31.12.2019
^g ex 2930 90 98	17	2-(3- Aminophenyls hydrogen sulphate (CAS RN 2494-88-4)	0 % ulphonyl)ethyl	_	31.12.2019
ex 2930 90 98	19	N-(2- Methylsulfinyl dimethyl- ethyl)-N'-{2- methyl-4- [1,2,2,2- tetrafluoro-1- (trifluoromethy (CAS RN 371771-07-2)	0 % -1,1- /l)ethyl]phenyl}	— phthalamide	31.12.2020
ex 2930 90 98	21	[2,2'-Thio-bis(4-tert-octylphenolato n-butylamine nickel (CAS RN 14516-71-3)	0 %	_	31.12.2021

ex 2930 90 98	22	Tembotrione (ISO) (CAS RN 335104-84-2) with a purity by weight of 94,5 % or more	0 %		31.12.2020
^g ex 2930 90 98	23	Dimethyl [(methylsulpha (CAS RN 34840-23-8)	0 % nyl)methylylide	— ne]biscarbamat	31.12.2023 e
gex 2930 90 98	25	Thiophanate- methyl (ISO), (CAS RN 23564-05-8)	0 %		31.12.2023
ex 2930 90 98	26	Folpet (ISO) (CAS RN 133-07-3) with a purity by weight of 97,5 % or more	0 %		31.12.2020
ex 2930 90 98	27	2-[(4- Amino-3- methoxypheny hydrogen sulphate (CAS RN 26672-22-0)	0 % l)sulphonyl]ethy	— /I	31.12.2019
^g ex 2930 90 98	30	4-(4- Isopropoxyphe 95235-30-6)	0 % nylsulphonyl)pl	 nenol (CAS RN	31.12.2023
ex 2930 90 98	33	2-Amino-5- {[2- (sulfooxy)ethy acid (CAS RN 42986-22-1)	0 % l]sulfonyl}benz	enesulfonIc	31.12.2019
ex 2930 90 98	35	Glutathione (CAS RN 70-18-8)	0 %	_	31.12.2021
^g ex 2930 90 98	40	3,3'- Thiodi(propior acid) (CAS RN 111-17-1)	0 % iic		31.12.2023
^g ex 2930 90 98	43	Trimethylsulfo iodide	xto frium		31.12.2023

		(CAS RN 1774-47-6)			
^g ex 2930 90 98	45	2-[(p- Aminophenyl): hydrogen sulphate (CAS RN 2494-89-5)	0 % sulphonyl]ethyl	_	31.12.2019
ex 2930 90 98	53	Bis(4- chlorophenyl) sulphone (CAS RN 80-07-9)	0 %	_	31.12.2020
ex 2930 90 98	55	Thiourea (CAS RN 62-56-6)	0 %	_	31.12.2020
ex 2930 90 98	57	Methyl (methylthio)ac (CAS RN 16630-66-3)	0 % etate	_	31.12.2020
^g ex 2930 90 98	60	Methyl phenyl sulphide (CAS RN 100-68-5)	0 %	_	31.12.2023
ex 2930 90 98	64	3-Chloro-2- methylphenyl methyl sulphide (CAS RN 82961-52-2)	0 %	_	31.12.2019
ex 2930 90 98	65	Pentaerythritol tetrakis(3- mercaptopropie (CAS RN 7575-23-7)		_	31.12.2022
ex 2930 90 98	68	Clethodim (ISO) (CAS RN 99129-21-2)	0 %	_	31.12.2022
^g ex 2930 90 98	77	4-[4-(2- Propenyloxy)p (CAS RN 97042-18-7)	0 % henylsulphonyl	 phenol	31.12.2023
ex 2930 90 98	78	4- Mercaptomethy dithia-1,8-	0 % yl-3,6-	_	31.12.2021

		octanedithiol (CAS RN 131538-00-6)			
gex 2930 90 98	80	Captan (ISO) (CAS RN 133-06-2)	0 %		31.12.2023
ex 2930 90 98	81	Disodium hexamethylene bisthiosulfate dihydrate (CAS RN 5719-73-3)	3 % -1,6-		31.12.2019
ex 2930 90 98	85	2-Methyl-1- (methylthio)-2- propanamine (0 % - CAS RN 36567-	 -04-1)	31.12.2021
ex 2930 90 98	89	Potassium- or sodium-salt of O-ethyl-, O-isopropyl-, O-butyl-, O-isobutyl- or O-pentyl- dithiocarbonate	0 % es		31.12.2021
ex 2930 90 98	93	1- Hydrazino-3- (methylthio)pro ol (CAS RN 14	0 % opan-2- 1359-97-8)		31.12.2021
ex 2930 90 98	95	N- (cyclohexylthic (CAS RN 17796-82-6)	0 % phthalimide		31.12.2021
ex 2930 90 98		17770 02 0)			
	97	Diphenyl sulphone (CAS RN 127-63-9)	0 %		31.12.2021
ex 2931 39 90		Diphenyl sulphone (CAS RN	0 %	_	31.12.2021
ex 2931 39 90 ex 2931 39 90	08	Diphenyl sulphone (CAS RN 127-63-9) Sodium diisobutyldithic (CAS RN 13360-78-6) in an aqueous	0 % ophosphinate		

suspending... Document Generated: 2023-09-19

		(CAS RN 819-19-2)			
ex 2931 39 90	25	(Z)-Prop-1- en-1- ylphosphonic acid (CAS RN 25383-06-6)	0 %		31.12.2022
ex 2931 39 90	28	N- (Phosphonome acid (CAS RN 5994-61-6)	0 % thyl)iminodiace	— tic	31.12.2019
⁸ ex 2931 39 90	30	Bis(2,4,4- trimethylpenty acid (CAS RN 83411-71-6)	0 % l)phosphinic	_	31.12.2023
^g ex 2931 39 90	35	Ethyl phenyl(2,4,6- trimethylbenzo (CAS RN 84434-11-7)	0 % yl)phosphinate	_	31.12.2023
ex 2931 39 90	40	Tetrakis(hydro chloride (CAS RN 124-64-1)	xtyr‰ethyl)phosp	h o nium	31.12.2021
^g ex 2931 39 90	45	Diphenyl(2,4,6) trimethylbenzo oxide (CAS RN 75980-60-8)			31.12.2023
ex 2931 39 90	48	Tetrabutylphos acetate in the form of an aqueous solution (CAS RN 30345-49-4)	p h 8⁄nium	_	31.12.2019
^g ex 2931 39 90	55	3- (Hydroxyphen) acid (CAS RN 14657-64-8)	0 % ylphosphinoyl)p	— ropionic	31.12.2023
ex 2931 39 90	57	Trimethyl phosphonoacet (CAS RN 5927-18-4)	0 % ate	_	31.12.2020

^g ex 2931 90 00	03	Butylethylmag (CAS RN 62202-86-2), in the form of a solution in heptane	n@S%um		31.12.2023
ex 2931 90 00	05	Diethylmethox (CAS RN 7397-46-8), whether or not in the form of a solution in tetrahydrofurar according to note 1e to Chapter 29 of the CN			31.12.2020
ex 2931 90 00	10	(3-fluoro-5- isobutoxyphen acid (CAS RN 850589-57-0)	0 % yl)boronic	_	31.12.2022
ex 2931 90 00	15	Methylcyclope manganese tricarbonyl (CAS RN 12108-13-3) containing not more than 4,9 % by weight of cyclopentadien manganese tricarbonyl	-		31.12.2019
ex 2931 90 00	18	Methyl tris (2- pentanoneoxim silane (CAS RN 37859-55-5)	0 % ne)		31.12.2019
ex 2931 90 00	20	Ferrocene (CAS RN 102-54-5)	0 %		31.12.2022
ex 2931 90 00	33	Dimethyl[dimethyl[dimethyl[dimethyl]]	ൻ%silyldiinden 92-55-7)	yl] hafnium	31.12.2019
ex 2931 90 00	35	N,N- Dimethylanilin tetrakis(pentafl	0 % ium uorophenyl)bor	ate	31.12.2019

suspending... Document Generated: 2023-09-19

		(CAS RN 118612-00-3)			
ex 2931 90 00	50	Trimethylsilan (CAS RN 993-07-7)	e0 %	_	31.12.2021
ex 2931 90 00	53	Trimethylborai (CAS RN 593-90-8)	n ∂ %	_	31.12.2019
ex 2931 90 00	60	4-Chloro-2- fluoro-3- methoxypheny acid (CAS RN 944129-07-1)	0 % lboronic	_	31.12.2020
ex 2931 90 00	63	Chloroethenyld (CAS RN 1719-58-0)	lî mathylsilane	_	31.12.2020
ex 2931 90 00	65	Bis(4-tert- butylphenyl)io hexafluoropho (CAS RN 61358-25-6)		_	31.12.2020
ex 2931 90 00	67	Dimethyltin dioleate (CAS RN 3865-34-7)	0 %	_	31.12.2020
ex 2931 90 00	70	(4- Propylphenyl)l acid (CAS RN 134150-01-9)	0 % poronic	_	31.12.2020
^g ex 2932 13 00	10	Tetrahydrofurf alcohol (CAS RN 97-99-4)	uty¥6	_	31.12.2023
ex 2932 14 00	10	1,6- Dichloro-1,6- dideoxy-β-D- fructofuranosy chloro-4 deoxy-α-D- galactopyranos (CAS RN 56038-13-2)			31.12.2019
ex 2932 19 00	20	Tetrahydrofura borane (CAS RN 14044-65-6)	n0 %	_	31.12.2020

ex 2932 19 00	40	Furan (CAS RN 110-00-9) of a purity by weight of 99 % or more	0 %	_	31.12.2019
ex 2932 19 00	41	2,2 Di(tetrahydrofi (CAS RN 89686-69-1)	0 % aryl)propane	_	31.12.2019
ex 2932 19 00	70	Furfurylamine (CAS RN 617-89-0)	0 %	_	31.12.2019
gex 2932 19 00	75	Tetrahydro-2- methylfuran (CAS RN 96-47-9)	0 %	_	31.12.2023
ex 2932 19 00	80	5- Nitrofurfurylid di(acetate) (CAS RN 92-55-7)	0 % ene	_	31.12.2021
^g ex 2932 20 90	10	2'-Anilino-6'- [ethyl(isopenty methylspiro[isoxanthen]-3- one (CAS RN 70516-41-5)	0 % l)amino]-3'- benzofuran-1(3	— 8H),9'-	31.12.2023
ex 2932 20 90	15	Coumarin (CAS RN 91-64-5)	0 %	_	31.12.2021
ex 2932 20 90	40	(S)-(-)-α- Amino-γ- butyrolactone hydrobromide (CAS RN 15295-77-9)	0 %	_	31.12.2022
^g ex 2932 20 90	45	2,2- Dimethyl-1,3- dioxane-4,6- dione (CAS RN 2033-24-1)	0 %	_	31.12.2023
ex 2932 20 90	50	L-Lactide (CAS RN 4511-42-6) or D-Lactide (CAS RN 13076-17-0)	0 %	_	31.12.2022

		or dilactide (CAS RN 95-96-5)			
^g ex 2932 20 90	55	6- Dimethylamino bis(4- dimethylamino (CAS RN 1552-42-7)	0 % o-3,3- ophenyl)phthalid	 e	31.12.2023
ex 2932 20 90	60	6'- (Diethylamino) methyl-2'- (phenylamino) spiro[isobenzo [9H]xanthen]-3 one (CAS RN 29512-49-0)	furan-1(3 <i>H</i>),9'-	_	31.12.2021
ex 2932 20 90	65	Sodium 4- (methoxycarbo oxo-2,5- dihydrofuran-3 olate (CAS RN 1134960-41-0)	9-	_	31.12.2020
ex 2932 20 90	71	6'- (Dibutylamino methyl-2'- (phenylamino) spiro[isobenzo [9H]xanthen]-2 one (CAS RN	furan-1(3 <i>H</i>),9'-		31.12.2021
^g ex 2932 20 90	80	Gibberellic acid with a minimum purity by weight of 88 % (CAS RN 77-06-5)	0 %	_	31.12.2023
^g ex 2932 20 90	84	Decahydro-3a, tetramethylnap [2,1-b] furan-2 (1H)- one (CAS RN 564-20-5)			31.12.2023
^g ex 2932 99 00	10	Bendiocarb (ISO) (CAS RN 22781-23-3)	0 %	_	31.12.2023

ex 2932 99 00	13	(4-Chloro-3- (4- ethoxybenzyl)p ((3aS,5R,6S,6a hydroxy 2,2- dimethyltetrah d] [1,3]dioxol-5- yl)methanone (CAS RN 1103738-30-2)	S)-6- ydrofuro[2,3-		31.12.2021
ex 2932 99 00	15	1,3,4,6,7,8- Hexahydro-4,6 hexamethylind c]pyran (CAS RN 1222-05-5)		_	31.12.2021
ex 2932 99 00	18	4-(4- Bromo-3- ((tetrahydro-2F pyran-2- yloxy)methyl)p (CAS RN 943311-78-2)	0 % I- ohenoxy)benzon	itrile	31.12.2021
ex 2932 99 00	20	Ethyl-2- methyl-1,3- dioxolane-2- acetate (CAS RN 6413-10-1)	0 %	_	31.12.2021
ex 2932 99 00	23	2-ethyl-3- hydroxy-4- pyrone (CAS RN 4940-11-8)	0 %	_	31.12.2022
ex 2932 99 00	25	1-(2,2- Difluorobenzo [1,3]dioxol-5- yl)cyclopropan acid (CAS RN 862574-88-7)	_	_	31.12.2022
^g ex 2932 99 00	33	3-hydroxy-2- methyl-4- pyrone (CAS RN 118-71-8)	0 %	_	31.12.2023
ex 2932 99 00	43	Ethofumesate (ISO) (CAS RN	0 %	_	31.12.2019

		26225-79-6) with a purity by weight of 97 % or more			
^g ex 2932 99 00	45	2- Butylbenzofura (CAS RN 4265-27-4)	0 % an	_	31.12.2019
ex 2932 99 00	50	7-Methyl-3,4-dihydro-2 <i>H</i> -1,5 benzodioxepin one (CAS RN 28940-11-6)	5-	_	31.12.2020
gex 2932 99 00	53	1,3- Dihydro-1,3- dimethoxyisob (CAS RN 24388-70-3)	0 % enzofurane	_	31.12.2023
gex 2932 99 00	55	6-Fluoro-3,4- dihydro-2H-1- benzopyran-2- carboxylic acid (CAS RN 99199-60-7)	0 %	_	31.12.2019
ex 2932 99 00	65	4,4- Dimethyl-3,5,8 trioxabicyclo[5 (CAS RN 57280-22-5)		_	31.12.2020
ex 2932 99 00	70	1,3:2,4-bis-O-Benzylidene-Dglucitol (CAS RN 32647-67-9)		_	31.12.2021
ex 2932 99 00	75	3-(3,4- Methylenediox methylpropana (CAS RN 1205-17-0)		_	31.12.2021
^g ex 2932 99 00	80	1,3:2,4-bis- O-(4- Methylbenzylic glucitol (CAS RN 81541-12-0)	0 % dene)- <i>D</i> -	_	31.12.2023
^g ex 2932 99 00	85	1,3:2,4- bis-O-(3,4-	0 %	_	31.12.2023

		dimethylbenzy D-glucitol (CAS RN 135861-56-2)	lidene)-		
ex 2933 19 90	15	Pyrasulfotole (ISO) (CAS RN 365400-11-9) with a purity by weight of 96 % or more	0 %	_	31.12.2019
ex 2933 19 90	25	3- Difluoromethy methyl-1H- pyrazole-4- carboxylic acid (CAS RN 176969-34-9)	0 % I-1-		31.12.2019
gex 2933 19 90	30	3- Methyl-1-p- tolyl-5- pyrazolone (CAS RN 86-92-0)	0 %	_	31.12.2023
ex 2933 19 90	35	1,3- Dimethyl-5- fluoro-1H- pyrazole-4- carbonyl fluoride (CAS RN 191614-02-5)	0 %	_	31.12.2020
gex 2933 19 90	40	Edaravone (INN) (CAS RN 89-25-8)	0 %	_	31.12.2023
ex 2933 19 90	45	5-Amino-1- [2,6- dichloro-4- (trifluoromethy pyrazole-3- carbonitrile (CAS RN 120068-79-3)	0 %	_	31.12.2021
ex 2933 19 90	50	Fenpyroximate (ISO) (CAS RN 134098-61-6)	0 %	_	31.12.2019

ex 2933 19 90	55	5-Methyl-1- (naphthalen-2- yl)-1,2- dihydro-3H- pyrazol-3- one (CAS RN 1192140-15-0)	0 %	_	31.12.2021
ex 2933 19 90	60	Pyraflufen- ethyl (ISO) (CAS RN 129630-19-9)	0 %	_	31.12.2019
^g ex 2933 19 90	70	4,5- Diamino-1- (2- hydroxyethyl)- pyrazolsulphat (CAS RN 155601-30-2)		_	31.12.2023
ex 2933 19 90	80	3-(4,5- Dihydro-3- methyl-5- oxo-1 <i>H</i> - pyrazol-1- yl)benzenesulp acid (CAS RN 119-17-5)	0 % honic		31.12.2022
ex 2933 21 00	35	Iprodione (ISO) (CAS RN 36734-19-7) with a purity by weight of 97 % or more	0 %	_	31.12.2020
ex 2933 21 00	50	1-Bromo-3- chloro-5,5- dimethylhydan (CAS RN 16079-88-2) / (CAS RN 32718-18-6)	0 % toin	_	31.12.2021
ex 2933 21 00	55	1- Aminohydanto hydrochloride (CAS RN 2827-56-7)	0 % in		31.12.2020
ex 2933 21 00	60	DL-p- Hydroxypheny	0 % lhydantoin	_	31.12.2021

		(CAS RN 2420-17-9)			
ex 2933 21 00	80	5,5- Dimethylhydai (CAS RN 77-71-4)	0 % ntoin	_	31.12.2020
[#] ex 2933 29 90	15	Ethyl 4-(1- hydroxy-1- methylethyl)-2 propylimidazo carboxylate (CAS RN 144689-93-0)		_	31.12.2023
⁸ ex 2933 29 90	18	2-(2- chlorophenyl)- [2-(2- chlorophenyl)- diphenyl-2H- imidazol-2- yl]-4,5- diphenyl-1H- imidazole (CAS RN 7189-82-4)		_	31.12.2023
^g ex 2933 29 90	25	Prochloraz (ISO) (CAS RN 67747-09-5)	0 %	_	31.12.2023
ex 2933 29 90	40	Triflumizole (ISO) (CAS RN 68694-11-1)	0 %	_	31.12.2019
^g ex 2933 29 90	45	Prochloraz copper chloride (ISO) (CAS RN 156065-03-1)	0 %	_	31.12.2023
^g ex 2933 29 90	50	1,3- Dimethylimida one (CAS RN 80-73-9)	0 % zolidin-2-	_	31.12.2023
ex 2933 29 90	55	Fenamidone (ISO) (CAS RN 161326-34-7) with a purity	0 %	_	31.12.2019

		by weight of 97 % or more			
ex 2933 29 90	60	1-Cyano-2- methyl-1- [2-(5- methylimidazo ylmethylthio)e (CAS RN 52378-40-2)	0 % l-4- thyl]isothiourea		31.12.2021
ex 2933 29 90	65	(S)-tert- Butyl 2-(5- bromo-1H- imidazol-2- yl)pyrrolidine- carboxylate (CAS RN 1007882-59-8)			31.12.2020
ex 2933 29 90	70	Cyazofamid (ISO) (CAS RN 120116-88-3)	0 %	_	31.12.2021
ex 2933 29 90	75	2,2'- Azobis[2-(2- imidazolin-2- yl)propane] dihydrochlorid (CAS RN 27776-21-2)	0 % e		31.12.2021
ex 2933 29 90	80	Imazalil (ISO) (CAS RN 35554-44-0)	0 %	_	31.12.2022
2933 39 50		Fluroxypyr (ISO) methyl ester (CAS RN 69184-17-4)	0 %	_	31.12.2019
ex 2933 39 99	10	2- Aminopyridin- ol hydrochloride (CAS RN 1187932-09-7)		_	31.12.2021
ex 2933 39 99	11	2- (Chloromethyl (3- methoxypropo methylpyridine	xy)-3-	_	31.12.2019

		hydrochloride(RN 153259-31-5)	CAS		
ex 2933 39 99	12	2,3- Dichloropyridi (CAS RN 2402-77-9)	0 % ne		31.12.2022
ex 2933 39 99	13	Methyl (1S,3S,4R)-2- [(1R)-1- phenylethyl]-2 azabicyclo[2.2 ene-3- carboxylate (CAS RN 130194-96-6)			31.12.2020
ex 2933 39 99	14	N,4- Dimethyl-1- (phenylmethyl) 3- piperidinamine hydrochloride (1:2) (CAS RN 1228879-37-5)		_	31.12.2020
ex 2933 39 99	16	Methyl (2S,5R)-5- [(benzyloxy)ar carboxylate dihydrochlorid (CAS RN 1501976-34-6)		2-	31.12.2020
ex 2933 39 99	17	3,5- Dimethylpyrid (CAS RN 591-22-0)	0 % ine		31.12.2020
ex 2933 39 99	19	Methyl nicotinate (INNM) (CAS RN 93-60-7)	0 %	_	31.12.2020
ex 2933 39 99	20	Copper pyrithione powder (CAS RN 14915-37-8)	0 %		31.12.2020
ex 2933 39 99	21	Boscalid (ISO)	0 %		31.12.2019

		(CAS RN 188425-85-6)			
ex 2933 39 99	22	Isonicotinic acid (CAS RN 55-22-1)	0 %	_	31.12.2019
ex 2933 39 99	23	2-Chloro-3- cyanopyridine (CAS RN 6602-54-6)	0 %	_	31.12.2020
ex 2933 39 99	24	2- Chloromethyl- methoxy-3,5- dimethylpyridi hydrochloride (CAS RN 86604-75-3)		_	31.12.2019
^g ex 2933 39 99	25	Imazethapyr (ISO) (CAS RN 81335-77-5)	0 %	_	31.12.2023
ex 2933 39 99	26	2-[4- (Hydrazinylme pyridine dihydrochlorid (CAS RN 1802485-62-6)	e	_	31.12.2020
ex 2933 39 99	27	Pyridine-2,6-dicarboxylic acid (CAS RN 499-83-2)	0 %	_	31.12.2021
ex 2933 39 99	28	Ethyl-3-[(3-amino-4-methylamino-benzoyl)-pyridin-2-yl-amino]-propionate (CAS RN 212322-56-0)	0 %		31.12.2019
ex 2933 39 99	29	3,5- Dichloro-2- cyanopyridine (CAS RN 85331-33-5)	0 %	_	31.12.2021
ex 2933 39 99	31	2- (Chloromethyl methyl-4- (2,2,2-	0 %)-3-		31.12.2019

ex 2933 39 99	32	trifluoroethoxy hydrochloride(RN 127337-60-4) 2- (Chloromethyl dimethoxypyri hydrochloride (CAS RN 72830-09-2)	0 %)-3,4-		31.12.2021
ex 2933 39 99	33	5-(3- chlorophenyl)- methoxypyridi carbonitrile (CAS RN 1415226-39-9)	ne-2-	_	31.12.2021
ex 2933 39 99	34	3-Chloro-(5- trifluoromethy) pyridineaceton (CAS RN 157764-10-8)			31.12.2019
^g ex 2933 39 99	35	Aminopyralid (ISO) (CAS RN 150114-71-9)	0 %	_	31.12.2023
ex 2933 39 99	36	1-[2-[5- Methyl-3- (trifluoromethy pyrazol-1- yl]acetyl]piper carbothioamide (CAS RN 1003319-95-6)	idine-4-	_	31.12.2022
ex 2933 39 99	37	Aqueous solution of pyridine-2- thiol-1-oxide, sodium salt (CAS RN 3811-73-2)	0 %		31.12.2021
ex 2933 39 99	38	(2- chloropyridin- yl) methanol (CAS RN 42330-59-6)	0 % 3-		31.12.2022
ex 2933 39 99	39	2,6- dichloropyridir carboxamide	0 % ne-3-		31.12.2022

		(CAS RN 62068-78-4)			
ex 2933 39 99	41	2-chloro-6- (3-fluoro-5- isobutoxyphen acid (CAS RN 1897387-01-7)		_	31.12.2021
ex 2933 39 99	45	5- Difluorometho [[(3,4- dimethoxy-2- pyridyl)methyl benzimidazole (CAS RN 102625-64-9)			31.12.2019
^g ex 2933 39 99	46	Fluopicolide (ISO) (CAS RN 239110-15-7) with a content by weight of 97 % or more	0 %	_	31.12.2021
ex 2933 39 99	47	(-)-trans-4- (4'- Fluorophenyl)- hydroxymethyl methylpiperidi (CAS RN 105812-81-5)	I-N-	_	31.12.2021
ex 2933 39 99	48	Flonicamid (ISO) (CAS RN 158062-67-0)	0 %	_	31.12.2019
ex 2933 39 99	51	2,5- Dichloro-4,6- dimethylnicotin	0 % nonitrile (CAS I	— RN 91591-63-8)	31.12.2022
⁸ ex 2933 39 99	52	6-Chloro-3- nitropyridin-2- ylamine (CAS RN 27048-04-0)	0 %	_	31.12.2023
^g ex 2933 39 99	53	3- Bromopyridine (CAS RN 626-55-1)	0 %	_	31.12.2019
^g ex 2933 39 99	54	4-methyl-2- pyridylamine	0 %	_	31.12.2023

		(CAS RN 695-34-1)			
ex 2933 39 99	55	Pyriproxyfen (ISO) (CAS RN 95737-68-1) of a purity by weight of 97 % or more	0 %	_	31.12.2019
ex 2933 39 99	57	Tert-butyl 3- (6-amino-3- methylpyridin- yl)benzoate (CAS RN 1083057-14-0)		_	31.12.2022
gex 2933 39 99	60	2-Fluoro-6- (trifluoromethy (CAS RN 94239-04-0)	0 % d)pyridine	_	31.12.2023
gex 2933 39 99	65	Acetamiprid (ISO) (CAS RN 135410-20-7)	0 %	_	31.12.2023
gex 2933 39 99	67	(1R,3S,4S)- tert-Butyl 3- (6-bromo-1H- benzo[d]imida: yl)-2- azabicyclo[2.2 carboxylate (CAS RN 1256387-74-2)	.1]heptane-2-	_	31.12.2023
ex 2933 39 99	70	2,3- Dichloro-5- trifluoromethy (CAS RN 69045-84-7)	0 % Ipyridine	_	31.12.2021
ex 2933 39 99	72	5,6- Dimethoxy-2- [(4- piperidinyl)me one (CAS RN 120014-30-4)	0 % thyl]indan-1-	_	31.12.2021
^g ex 2933 39 99	77	Imazamox (ISO) (CAS RN 114311-32-9)	0 %	_	31.12.2023

ex 2933 39 99	85	2-Chloro-5- chloromethylp (CAS RN 70258-18-3)	0 % yridine	_	31.12.2020
^g ex 2933 49 10	10	Quinmerac (ISO) (CAS RN 90717-03-6)	0 %	_	31.12.2023
^g ex 2933 49 10	20	3-Hydroxy-2- methylquinolir carboxylic acid (CAS RN 117-57-7)	0 % ie-4-	_	31.12.2023
ex 2933 49 10	30	Ethyl 4- oxo-1,4- dihydroquinoli carboxylate (CAS RN 52980-28-6)	0 % ne-3-	_	31.12.2022
ex 2933 49 10	40	4,7- Dichloroquino (CAS RN 86-98-6)	0 % line	_	31.12.2019
ex 2933 49 10	50	1- Cyclopropyl-6, trifluoro-1,4- dihydro-4- oxo-3- quinolinecarbo acid (CAS RN 94695-52-0)		_	31.12.2020
^g ex 2933 49 10 ex 2933 49 90	60 65	Roxadustat (INN) (CAS RN 808118-40-3)	0 %	_	31.12.2023
ex 2933 49 90	25	Cloquintocet- mexyl (ISO) (CAS RN 99607-70-2)	0 %	_	31.12.2021
ex 2933 49 90	30	Quinoline (CAS RN 91-22-5)	0 %	_	31.12.2020
ex 2933 49 90	35	[1-(4- Benzyloxy- benzyl)-2- cyclobutylmeth octahydro-	0 % nyl-	_	31.12.2020

		isoquinoline-4a diol] (CUS 0141126-3) ^e	a,8a-		
ex 2933 49 90	40	Isoquinoline (CAS RN 119-65-3)	0 %	_	31.12.2020
^e ex 2933 49 90	45	6,7- Dimethoxy-3,4 dihydroisoquin hydrochloride (CAS RN 20232-39-7)		_	31.12.2023
^g ex 2933 49 90	70	Quinolin-8- ol (CAS RN 148-24-3)	0 %	_	31.12.2023
ex 2933 52 00	10	Malonylurea (barbituric acid) (CAS RN 67-52-7)	0 %	_	31.12.2021
ex 2933 59 95	10	6-Amino-1,3- dimethyluracil (CAS RN 6642-31-5)	0 %	_	31.12.2019
^g ex 2933 59 95	13	2- Diethylamino- hydroxy-4- methylpyrimid (CAS RN 42487-72-9)		_	31.12.2023
gex 2933 59 95	15	Sitagliptin phosphate monohydrate (CAS RN 654671-77-9)	0 %	_	31.12.2023
^e ex 2933 59 95	17	N,N'-(4,6- Dichloropyrim diyl)diformam (CAS RN 116477-30-6)		_	31.12.2019
ex 2933 59 95	18	1-Methyl-3- phenylpiperazi (CAS RN 5271-27-2)	0 % ne	_	31.12.2020
^g ex 2933 59 95	20	2,4- Diamino-6- chloropyrimidi	0 % ne	_	31.12.2023

Changes to legislation: There are currently no known outstanding effects for
the Council Regulation (EU) 2018/2069. (See end of Document for details)

		(CAS RN 156-83-2)			
ex 2933 59 95	21	N-(2-oxo-1,2-dihydropyrimicyl)benzamide (CAS RN 26661-13-2)			31.12.2020
ex 2933 59 95	22	6-chloro-1,3- dimethyluracil (CAS RN 6972-27-6)	0 %	_	31.12.2022
^g ex 2933 59 95	23	6-Chloro-3- methyluracil (CAS RN 4318-56-3)	0 %	_	31.12.2019
ex 2933 59 95	24	1- (Cyclopropylca hydrochloride (CAS RN 1021298-67-8)	0 % arbonyl)piperazi	— ne	31.12.2022
ex 2933 59 95	26	5-Fluoro-4- hydrazino-2- methoxypyrim (CAS RN 166524-64-7)	0 % idine	_	31.12.2022
⁸ ex 2933 59 95	27	2-[(2- Amino-6- oxo-1,6- dihydro-9H- purin-9- yl)methoxy]-3- hydroxypropyl (CAS RN 88110-89-8)			31.12.2023
^g ex 2933 59 95	30	Mepanipyrim (ISO) (CAS RN 110235-47-7)	0 %	_	31.12.2023
ex 2933 59 95	33	4,6- Dichloro-5- fluoropyrimidi (CAS RN 213265-83-9)	0 % ne		31.12.2019
ex 2933 59 95	37	6-Iodo-3- propyl-2- thioxo-2,3- dihydroquinazo	0 % plin-4(1H)-	_	31.12.2019

		one (CAS RN 200938-58-5)			
ex 2933 59 95	43	2-(4-(2- Hydroxyethyl) yl)ethanesulfor acid (CAS RN 7365-45-9)			31.12.2019
ex 2933 59 95	45	1-[3- (Hydroxymeth yl]-4- methyl-2- phenylpiperazi (CAS RN 61337-89-1)			31.12.2019
ex 2933 59 95	47	6-Methyl-2- oxoperhydropy ylurea (CAS RN 1129-42-6) with a purity of 94 % or more	0 % rimidin-4-		31.12.2020
ex 2933 59 95	50	2-(2- Piperazin-1- ylethoxy)ethan (CAS RN 13349-82-1)	0 % ol		31.12.2019
ex 2933 59 95	53	5-Fluoro-2- methoxypyrim one (CAS RN 1480-96-2)	0 % idin-4(3H)-	_	31.12.2020
ex 2933 59 95	57	5,7- Dimethoxy(1,2 a)pyrimidin-2- amine (CAS RN 13223-43-3)	0 % 2,4)triazolo(1,5-	_	31.12.2020
gex 2933 59 95	60	2,6- Dichloro-4,8- dipiperidinopy (CAS RN 7139-02-8)	0 % rimido[5,4- <i>d</i>]py	rimidine	31.12.2023
ex 2933 59 95	65	1- Chloromethyl- fluoro-1,4- diazoniabicycl- bis(tetrafluorol	o[2.2.2]octane	_	31.12.2019

		(CAS RN 140681-55-6)			
⁸ ex 2933 59 95	70	N-(4- Ethyl-2,3- dioxopiperazin ylcarbonyl)- D-2- phenylglycine (CAS RN 63422-71-9)	0 %	_	31.12.2023
ex 2933 59 95	75	(2R,3S/2S,3R) (6-Chloro-5- fluoro pyrimidin-4- yl)-2-(2,4- difluorophenyl (1 <i>H</i> -1,2,4- triazol-1- yl)butan-2-ol hydrochloride, (CAS RN 188416-20-8)			31.12.2019
ex 2933 59 95	77	3- (Trifluorometh tetrahydro[1,2, a]pyrazine hydrochloride (1:1) (CAS RN 762240-92-6)			31.12.2022
ex 2933 59 95	87	5-Bromo-2,4- dichloropyrimi (CAS RN 36082-50-5)	0 % dine	_	31.12.2021
ex 2933 59 95	89	6- Benzyladenine (CAS RN 1214-39-7)	0 %	_	31.12.2021
ex 2933 69 80	13	Metribuzin (ISO) (CAS RN 21087-64-9) with a purity by weight of 93 % or more	0 %	_	31.12.2020
ex 2933 69 80	15	2-Chloro-4,6-dimethoxy-1,3 triazine	0 % ,5-	_	31.12.2020

		(CAS RN 3140-73-6)			
ex 2933 69 80	17	Benzoguanami (CAS RN 91-76-9)	r û e %	_	31.12.2020
ex 2933 69 80	40	Troclosene sodium (INNM) (CAS RN 2893-78-9)	0 %	_	31.12.2021
gex 2933 69 80	45	2-(4,6-Bis-(2,4-dimethylpheny triazin-2-yl)-5-(octyloxy)-phenol (CAS RN 2725-22-6)	0 % l)-1,3,5-		31.12.2023
ex 2933 69 80	55	Terbutryn (ISO) (CAS RN 886-50-0)	0 %	_	31.12.2020
ex 2933 69 80	60	Cyanuric acid (CAS RN 108-80-5)	0 %	_	31.12.2020
⁸ ex 2933 69 80	65	1,3,5- Triazine-2,4,6(trithione, trisodium salt (CAS RN 17766-26-6)	0 % 1H,3H,5H)-	_	31.12.2023
ex 2933 69 80	75	Metamitron (ISO) (CAS RN 41394-05-2)	0 %	_	31.12.2019
^g ex 2933 69 80	80	Tris(2- hydroxyethyl)- triazinetrione (CAS RN 839-90-7)	0 % 1,3,5-	_	31.12.2023
ex 2933 79 00	15	Ethyl <i>N-(tert-</i> Butoxycarbony L-pyroglutamate (CAS RN 144978-12-1)	0 % {I)-	_	31.12.2021

ex 2933 79 00	25	Methyl 2- oxo-2,3- dihydro-1H- indole-6- carboxylate (CAS RN 14192-26-8)	0 %	_	31.12.2022
ex 2933 79 00	30	5-Vinyl-2- pyrrolidone (CAS RN 7529-16-0)	0 %	_	31.12.2022
^g ex 2933 79 00	35	1-tert-butyl 2- methyl(2S)-5- oxopyrrolidine dicarboxylate (CAS RN 108963-96-8)	0 %	_	31.12.2023
^g ex 2933 79 00	50	6-Bromo-3- methyl-3H- dibenz(f,ij)isoc dione (CAS RN 81-85-6)	0 % juinoline-2,7-	_	31.12.2023
ex 2933 79 00	60	3,3- Pentamethylen butyrolactam (CAS RN 64744-50-9)	0 % e-4-	_	31.12.2019
ex 2933 79 00	70	(S)-N- [(Diethylamino alpha-ethyl-2- oxo-1- pyrrolidineacet L-(+)-tartrate, (CAS RN 754186-36-2)			31.12.2020
ex 2933 99 80	11	Fenbuconazole (ISO) (CAS RN 114369-43-6)	0 %	_	31.12.2019
ex 2933 99 80	12	Myclobutanil (ISO) (CAS RN 88671-89-0)	0 %	_	31.12.2019
ex 2933 99 80	13	5- Difluorometho mercapto-1- H- benzimidazole		_	31.12.2021

		(CAS RN 97963-62-7)			
^g ex 2933 99 80	14	2-(2H-benzotriazol-2-yl)-4-methyl-6-(2-methylprop-2-en-1-yl)phenol(CASRN 98809-58-6)			31.12.2023
gex 2933 99 80	15	2-(2 <i>H</i> -Benzotriazol-2 yl)-4,6-di- <i>tert</i> -pentylphenol (CAS RN 25973-55-1)	0 %	_	31.12.2023
ex 2933 99 80	16	Pyridate (ISO) (CAS RN 55512-33-9) with a purity by weight of 90 % or more	0 %	_	31.12.2020
ex 2933 99 80	17	Carfentrazone- ethyl (ISO) (CAS RN 128639-02-1) with a purity by weight of 93 % or more	0 %	_	31.12.2020
ex 2933 99 80	19	2-(2,4- Dichloropheny (1H-1,2,4- triazol-1- yl)propan-1- ol (CAS RN 112281-82-0)	0 % 1)-3-	_	31.12.2019
ex 2933 99 80	20	2-(2 <i>H</i> -Benzotriazol-2 yl)-4,6-bis(1-methyl-1-phenylethyl)ph (CAS RN 70321-86-7)		_	31.12.2023
ex 2933 99 80	21	1- (Bis(dimethyla [1,2,3]triazolo	0 % mino)methylend 4,5-	 e)-1H-	31.12.2020

		b]pyridinium 3-oxide hexafluorophos (CAS RN 148893-10-1)	sphate(V)		
ex 2933 99 80	23	Tebuconazole (ISO) (CAS RN 107534-96-3) with a purity by weight of 95 % or more	0 %	_	31.12.2019
ex 2933 99 80	24	1,3- Dihydro-5,6- diamino-2 <i>H</i> - benzimidazol-2 one (CAS RN 55621-49-3)	0 %	_	31.12.2022
ex 2933 99 80	26	(2S,3S,4R)- Methyl 4- (3-(1,1- difluorobut-3- enyl)-7- methoxyquinox yloxy)-3- ethylpyrrolidin carboxylate 4- methylbenzene (CUS 0143289-9) ^e	e-2-		31.12.2020
ex 2933 99 80	27	5,6- Dimethylbenzi (CAS RN 582-60-5)	0 % midazole		31.12.2019
ex 2933 99 80	29	3-[3-(4- Fluorophenyl)-(1- methylethyl)-1 indol-2- yl]-(E)-2- propenal (CAS RN 93957-50-7)			31.12.2020
^g ex 2933 99 80	30	Quizalofop- P-ethyl (ISO) (CAS RN 100646-51-3)	0 %	_	31.12.2023

ex 2933 99 80	31	Triadimenol (ISO) (CAS RN 55219-65-3) with a purity by weight of 97 % or more	0 %	_	31.12.2020
ex 2933 99 80	33	Penconazole (ISO) (CAS RN 66246-88-6)	0 %	_	31.12.2019
ex 2933 99 80	34	2,4- Dihydro-5- methoxy-4- methyl-3 <i>H</i> -1,2 triazol-3-on (CAS RN 135302-13-5)	0 %		31.12.2021
ex 2933 99 80	36	3-Chloro-2- (1,1- difluoro-3- buten-1-yl)-6- methoxyquinox	0 % valine (CAS RN	— [1799733-46-2]	31.12.2021
ex 2933 99 80	37	8- Chloro-5,10- dihydro-11 <i>H</i> - dibenzo [<i>b,e</i>] [1,4]diazepin-1 one (CAS RN 50892-62-1)	0 %	_	31.12.2019
ex 2933 99 80	38	(4aS,7aS)- Octahydro-1 <i>H</i> - pyrrolo[3,4- b]pyridine (CAS RN 151213-40-0)	0 %	_	31.12.2021
ex 2933 99 80	39	O- (benzotriazol-1 yl)-N,N,N',N'- tetramethyluro tetrafluorobora (CAS RN 125700-67-6)	nium	_	31.12.2021
^g ex 2933 99 80	40	trans-4- Hydroxy-L- proline (CAS RN 51-35-4)	0 %	_	31.12.2023

ex 2933 99 80	41	5-[4'- (bromomethyl) yl]-1- trityl-1H- tetrazole (CAS RN 124750-51-2)	0 % biphenyl-2-	_	31.12.2022
ex 2933 99 80	42	(S)-2,2,4- Trimethylpyrro hydrochloride (CAS RN 1897428-40-8)		_	31.12.2021
ex 2933 99 80	44	(2S,3S,4R)- Methyl 3- ethyl-4- hydroxypyrroli carboxylate 4- methylbenzene (CAS RN 1799733-43-9)	sulphonate	_	31.12.2021
^g ex 2933 99 80	45	Maleic hydrazide (ISO) (CAS RN 123-33-1)	0 %		31.12.2023
ex 2933 99 80	46	(S)-indoline-2-carboxylic acid (CAS RN 79815-20-6)	0 %	_	31.12.2022
ex 2933 99 80	47	Paclobutrazol (ISO) (CAS RN 76738-62-0)	0 %	_	31.12.2022
ex 2933 99 80	48	5-Amino-6- methyl-2- benzimidazolo (CAS RN 67014-36-2)	0 % ne		31.12.2022
^g ex 2933 99 80	50	Metconazole (ISO) (CAS RN 125116-23-6)	3.2 %	_	31.12.2023
ex 2933 99 80	51	Diquat dibromide (ISO) (CAS RN 85-00-7)	0 %	_	31.12.2021

		in aqueous solution for use in the manufacture of herbicides ^b			
ex 2933 99 80	52	N-Boc- trans-4- Hydroxy- L-proline methyl ester (CAS RN 74844-91-0)	0 %		31.12.2020
^g ex 2933 99 80	53	Potassium (S)-5-(tert- butoxycarbony azaspiro[2.4]he carboxylate (CUS 0133723-1)e		_	31.12.2023
ex 2933 99 80	54	3- (Salicyloylami triazole (CAS RN 36411-52-6)	0 % no)-1,2,4-	_	31.12.2020
ex 2933 99 80	55	Pyridaben (ISO) (CAS RN 96489-71-3)	0 %	_	31.12.2019
^g ex 2933 99 80	56	Methyl 3,5- diamino-6- chloropyrazine carboxylate (CAS RN 1458-01-1)	0 %	_	31.12.2023
^g ex 2933 99 80	57	2-(5- Methoxyindol- yl)ethylamine (CAS RN 608-07-1)	0 % 3-	_	31.12.2023
ex 2933 99 80	67	Candesartan ethyl ester (INNM) (CAS RN 139481-58-6)	0 %	_	31.12.2021
^g ex 2933 99 80	71	10- Methoxyimino (CAS RN 4698-11-7)	0 % stilbene	_	31.12.2023

gov. 2022 00	72	1,4,7-	0 %		31.12.2023
gex 2933 99 80	72	Trimethyl-1,4,′ triazacyclonon (CAS RN 96556-05-7)	7-		31.12.2023
^g ex 2933 99 80	74	Imidazo[1,2-b] pyridazine-hydrochloride (CAS RN 18087-70-2)	0 %	_	31.12.2019
^g ex 2933 99 80	78	3-Amino-3- azabicyclo (3.3.0) octane hydrochloride (CAS RN 58108-05-7)	0 %	_	31.12.2023
ex 2933 99 80	81	1,2,3- Benzotriazole (CAS RN 95-14-7)	0 %	_	31.12.2021
^g ex 2933 99 80	82	Tolytriazole (CAS RN 29385-43-1)	0 %	_	31.12.2023
^g ex 2933 99 80	89	Carbendazim (ISO) (CAS RN 10605-21-7)	0 %	_	31.12.2023
^g ex 2934 10 00	10	Hexythiazox (ISO) (CAS RN 78587-05-0)	0 %	_	31.12.2023
ex 2934 10 00	15	4-Nitrophenyl thiazol-5- ylmethyl carbonate (CAS RN 144163-97-3)	0 %	_	31.12.2022
gex 2934 10 00	20	2-(4- Methylthiazol- yl)ethanol (CAS RN 137-00-8)	0 % 5-	_	31.12.2023
ex 2934 10 00	25	(S)-Ethyl-2- (3-((2- isopropylthiazo yl)methyl)-3- methylureido)- morpholinobut	4 -	_	31.12.2022

		oxalate (CAS RN 1247119-36-3)			
ex 2934 10 00	35	(2- Isopropylthiazo yl)-N- methylmethana dihydrochlorid (CAS RN 1185167-55-8)	amine e	_	31.12.2022
ex 2934 10 00	45	Cyanimino-1,3 thiazolidine (CAS RN 26364-65-8)	0 %	_	31.12.2019
ex 2934 10 00	60	Fosthiazate (ISO) (CAS RN 98886-44-3)	0 %		31.12.2019
ex 2934 10 00	80	3,4- Dichloro-5- carboxyisothia (CAS RN 18480-53-0)	0 % zole	_	31.12.2021
ex 2934 20 80	15	Benthiavalicari isopropyl (ISO) (CAS RN 177406-68-7)	b 0 %	_	31.12.2022
ex 2934 20 80	30	2-[[(Z)-[1- (2-Amino-4- thiazolyl)-2- (2- benzothiazolyl oxoethylidene] acetic acid, methyl ester (CAS RN 246035-38-1)			31.12.2021
ex 2934 20 80	40	1,2- Benzisothiazol one (Benzisothiazo (BIT)) (CAS RN 2634-33-5)			31.12.2022
^g ex 2934 20 80	50	S-(1,3- Benzothiazol-2	0 %	_	31.12.2019

		yl)-(Z)-2-(2- aminothiazol-4 yl)-2- (acetyloxyimin (CAS RN 104797-47-9)			
ex 2934 20 80	60	Benzothiazol-2 yl-(Z)-2- trityloxyimino- (2- aminothiazole- yl)- thioacetate (CAS RN 143183-03-3)	2-		31.12.2020
ex 2934 20 80	70	N,N-Bis(1,3-benzothiazol-2 ylsulphanyl)-2-methylpropan- amine (CAS RN 3741-80-8)	<u> </u> 		31.12.2020
ex 2934 30 90	10	2- Methylthiophe (CAS RN 7643-08-5)	0 % nothiazine	_	31.12.2022
ex 2934 99 90	10	Fluralaner (INN) (CAS RN 864731-61-3)	0 %	_	31.12.2019
gex 2934 99 90	12	Dimethomorph (ISO) (CAS RN 110488-70-5)	0 %	_	31.12.2023
⁸ ex 2934 99 90	15	Carboxin (ISO) (CAS RN 5234-68-4)	0 %	_	31.12.2023
ex 2934 99 90	16	Difenoconazol (ISO) (CAS RN 119446-68-3)	e0 %	_	31.12.2019
ex 2934 99 90	19	2-[4- (Dibenzo[b,f] [1,4]thiazepin- yl)piperazin-1- yl] ethanol		_	31.12.2019

		(CAS RN 329216-67-3)			
ex 2934 99 90	20	Thiophene (CAS RN 110-02-1)	0 %	_	31.12.2019
ex 2934 99 90	23	Bromuconazol (ISO) with a purity by weight of 96 % or more (CAS RN 116255-48-2)	e0 %	_	31.12.2021
ex 2934 99 90	24	Flufenacet (ISO) (CAS RN 142459-58-3) with a purity by weight of 95 % or more	0 %	_	31.12.2019
ex 2934 99 90	25	2,4- Diethyl-9 <i>H</i> - thioxanthen-9- one (CAS RN 82799-44-8)	0 %	_	31.12.2020
ex 2934 99 90	26	4- Methylmorpho 4-oxide in an aqueous solution (CAS RN 7529-22-8)	0 % line	_	31.12.2019
ex 2934 99 90	27	2-(4- Hydroxypheny benzothiophen ol (CAS RN 63676-22-2)		_	31.12.2019
ex 2934 99 90	28	11- (Piperazin-1- yl)dibenzo[b,f] [1,4]thiazepine dihydrochlorid (CAS RN 111974-74-4)			31.12.2021
ex 2934 99 90	30	Dibenzo[b,f] [1,4]thiazepin- one (CAS RN 3159-07-7)	0 % 11(10H)-	_	31.12.2019

Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 2934 99 90	31	Uridine 5'- diphospho-N- acetylgalactosa disodium salt (CAS RN 91183-98-1)	0 % imine	_	31.12.2020
ex 2934 99 90	32	Uridine 5'- diphosphogluc acid trisodium salt (CAS RN 63700-19-6)	0 % uronic	_	31.12.2020
ex 2934 99 90	34	7-[4- (Diethylamino ethoxyphenyl]- (1-ethyl-2- methyl-1H- indol-3- yl)furo[3,4- b]pyridin-5(7H) one (CAS RN) 69898-40-4)	7-		31.12.2020
ex 2934 99 90	36	Oxadiazon (ISO) (CAS RN 19666-30-9) with a purity by weight of 95 % or more	0 %	_	31.12.2020
ex 2934 99 90	37	4-Propan-2- ylmorpholine (CAS RN 1004-14-4)	0 %	_	31.12.2022
ex 2934 99 90	39	4-(Oxiran-2- ylmethoxy)-9F carbazole (CAS RN 51997-51-4)	0 % I-	_	31.12.2020
ex 2934 99 90	41	11-[4-(2- Chloro- ethyl)-1- piperazinyl]dib (1,4)thiazepine (CAS RN 352232-17-8)		_	31.12.2020
ex 2934 99 90	42	1- (Morpholin-4- yl)prop-2- en-1-one	0 %	_	31.12.2019

		(CAS RN 5117-12-4)			
ex 2934 99 90	44	Propiconazole (ISO) (CAS RN 60207-90-1) with a purity by weight of 92 % or more	0 %	_	31.12.2020
ex 2934 99 90	46	4-Methoxy-5- (3- morpholin-4- yl- propoxy)-2- nitro- benzonitrile (CAS RN 675126-26-8)	0 %	_	31.12.2021
^g ex 2934 99 90	47	Thidiazuron (ISO) (CAS RN 51707-55-2) with a content by weight of 98 % or more	0 %	_	31.12.2021
ex 2934 99 90	48	Propan-2- ol 2- methyl-4-(4- methylpiperazi yl)-10 <i>H</i> - thieno[2,3-b] [1,5]benzodiaz (1:2) dihydrate (CAS RN 864743-41-9)			31.12.2021
ex 2934 99 90	49	Cytidine 5'- (disodium phosphate) (CAS RN 6757-06-8)	0 %	_	31.12.2021
ex 2934 99 90	50	10-[1,1'-Biphenyl]-4-yl-2-(1-methylethyl)-9oxo-9 <i>H</i> -thioxanthenium hexafluorophor	n		31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		(CAS RN 591773-92-1)			
ex 2934 99 90	52	Epoxiconazole (ISO) (CAS RN 133855-98-8)	0 %		31.12.2022
ex 2934 99 90	53	4-Methoxy-3- (3- morpholin-4- yl-propoxy)- benzonitrile (CAS RN 675126-28-0)	0 %	_	31.12.2021
ex 2934 99 90	54	2-benzyl-2- dimethylamino morpholinobut (CAS RN 119313-12-1)	0 % -4'- yrophenone	_	31.12.2022
ex 2934 99 90	56	1-[5-(2,6- Difluoropheny dihydro-1,2- oxazol-3- yl]ethanone (CAS RN 1173693-36-1)		_	31.12.2022
ex 2934 99 90	57	(6R,7R)-7- Amino-8- oxo-3-(1- propenyl)-5- thia-1 - azabicyclo[4.2 ene-2- carboxylic acid (CAS RN 120709-09-3)	0 % 0]oct-2-		31.12.2022
^g ex 2934 99 90	58	Dimethenamid P (ISO) (CAS RN 163515-14-8)	e0 %		31.12.2023
ex 2934 99 90	59	Dolutegravir (INN) (CAS RN 1051375-16-6) or dolutegravir sodium (CAS RN 1051375-19-9)		_	31.12.2022

^g ex 2934 99 90	60	DL- Homocysteine thiolactone hydrochloride (CAS RN 6038-19-3)	0 %	_	31.12.2023
^e ex 2934 99 90	61	5-(1,2- dithiolan-3- yl)valeric acid (CAS RN 1077-28-7)	0 %	_	31.12.2023
^g ex 2934 99 90	62	(2b,3a,5a,16b, (morpholin-4-yl)-16- (pyrrolidin-1-yl)androstane-diol 17- acetate (CAS RN 119302-24-8)			31.12.2023
gex 2934 99 90	63	(2b,3a,5a,16b, (morpholin-4-yl)-16- (pyrrolidin-1-yl)androstane-diol (CAS RN 119302-20-4)	ŕ	_	31.12.2023
gex 2934 99 90	64	2-Bromo-5- benzoylthiopho (CAS RN 31161-46-3)	0 % ene	_	31.12.2023
^g ex 2934 99 90	66	Tetrahydrothio dioxide (CAS RN 126-33-0)	p0n& ne-1,1-		31.12.2023
ex 2934 99 90	74	2- Isopropylthiox (CAS RN 5495-84-1)	0 % anthone	_	31.12.2022
ex 2934 99 90	75	(4 <i>R-cis</i>)-1,1- Dimethylethyl- [2[2-(4- fluorophenyl)- (1- isopropyl)-3- phenyl-4- [(phenylamino pyrrol-1-			31.12.2021

		yl]ethyl]-2,2- dimethyl-1,3- dioxane-4- acetate (CAS RN 125971-95-1)			
ex 2934 99 90 ex 3204 20 00		2,5- Thiophenediyll butyl-1,3- benzoxazole) (CAS RN 7128-64-5)	0 % bis(5 <i>-tert-</i>	_	31.12.2021
^g ex 2934 99 90	79	Thiophen-2- ethanol (CAS RN 5402-55-1)	0 %	_	31.12.2023
ex 2934 99 90	83	Flumioxazin (ISO) (CAS RN 103361-09-7) of a purity by weight of 96 % or more	0 %		31.12.2019
ex 2934 99 90	84	Etoxazole (ISO) (CAS RN 153233-91-1) of a purity by weight of 94,8 % or more	0 %		31.12.2019
ex 2934 99 90	86	Dithianon (ISO) (CAS RN 3347-22-6)	0 %	_	31.12.2020
ex 2934 99 90	87	2,2'-(1,4- Phenylene)bis(benzoxazin-4- one) (CAS RN 18600-59-4)	0 % 4H-3,1-	_	31.12.2020
ex 2935 90 90	10	Florasulam (ISO) (CAS RN 145701-23-1)	0 %	_	31.12.2019
gex 2935 90 90	15	Flupyrsulfuron methyl- sodium (ISO)	-0 %	_	31.12.2023

		(CAS RN 144740-54-5)			
^g ex 2935 90 90	20	Toluenesulpho	n@r%ides	_	31.12.2023
ex 2935 90 90	23	N-[4-(2- Chloroacetyl)p (CAS RN 64488-52-4)	0 % henyl]methanes	— ulphonamide	31.12.2021
^g ex 2935 90 90	25	Triflusulfuron- methyl (ISO) (CAS RN 126535-15-7)	0 %	_	31.12.2023
ex 2935 90 90	27	Methyl (3R,5S,6E)-7- {4-(4- fluorophenyl)-isopropyl-2- [methyl(methy yl}-3,5- dihydroxyheptenoate (CAS RN 147118-40-9)	lsulfonyl)amino	—]pyrimidin-5-	31.12.2021
^g ex 2935 90 90	28	N- Fluorobenzene (CAS RN 133745-75-2)	0 % sulphonimide		31.12.2023
ex 2935 90 90	30	6- Aminopyridine sulfonamide (CAS RN 75903-58-1)	0 %		31.12.2021
^g ex 2935 90 90	35	Chlorsulfuron (ISO) (CAS RN 64902-72-3)	0 %	_	31.12.2023
ex 2935 90 90	40	Venetoclax (INN) (CAS 1257044-40-8)	0 %		31.12.2022
ex 2935 90 90	42	Penoxsulam (ISO) (CAS RN 219714-96-2)	0 %	_	31.12.2020
ex 2935 90 90	43	Oryzalin (ISO) (CAS RN 19044-88-3)	0 %	_	31.12.2019

^g ex 2935 90 90	45	Rimsulfuron (ISO) (CAS RN 122931-48-0)	0 %	_	31.12.2023
ex 2935 90 90	47	Halosulfuron- methyl (ISO) (CAS RN 100784-20-1) with a purity by weight of 98 % or more	0 %		31.12.2019
ex 2935 90 90	48	(3R,5S,6E)-7- [4-(4- Fluorophenyl)- [methyl(methyl) (propan-2- yl)pyrimidin-5 yl]-3,5- dihydroxyhept enoic acid 1-[(R)-(4- chlorophenyl) (phenyl)methyl (1:1) (CAS RN 1235588-99-4)	-2- Isulfonyl)amino -6- I]piperazine		31.12.2021
gex 2935 90 90	50	4,4'- Oxydi(benzene (CAS RN 80-51-3)	0 % esulphonohydraz	— zide)	31.12.2023
ex 2935 90 90	52	(1 <i>R</i> ,2 <i>R</i>)-1- Amino-2- (difluoromethy N-(1- methylcycloprocyclopropanechydrochloride (CUS) 0143290-2)°	opylsulphonyl)	_	31.12.2020
ex 2935 90 90	53	2,4- Dichloro-5- sulphamoylber acid (CAS RN 2736-23-4)	0 % nzoic	_	31.12.2019
ex 2935 90 90	54	Propoxycarbaz sodium (ISO) (CAS RN 181274-15-7)	cone%	_	31.12.2020

		with a purity by weight of 95 % or more			
^g ex 2935 90 90	55	Thifensulfuron methyl (ISO) (CAS RN 79277-27-3)	-0 %	_	31.12.2023
ex 2935 90 90	56	N-(p- Toluenesulpho N'-(3-(p- toluenesulphor (CAS RN 232938-43-1)	0 % nyl)- nyloxy)phenyl)u	rea	31.12.2020
ex 2935 90 90	57	N-{2- [(phenylcarban (CAS RN 215917-77-4)	0 % noyl)amino]phe	 nyl}benzenesul	31.12.2020 phonamide
ex 2935 90 90	58	1- Methylcyclopr sulphonamide	0 % opane-1- (CAS RN 66900	— 08-26-8)	31.12.2020
ex 2935 90 90	59	Flazasulfuron (ISO) (CAS RN 104040-78-0) with a purity of 94 % by weight or more	0 %	_	31.12.2020
ex 2935 90 90	63	Nicosulphuron (ISO), (CAS RN 111991-09-4) of a purity by weight of 91 % or more	0 %	_	31.12.2019
gex 2935 90 90	65	Tribenuron- methyl (ISO) (CAS RN 101200-48-0)	0 %		31.12.2023
ex 2935 90 90	67	N-(2- phenoxypheny (CAS RN 51765-51-6)	0 % l)methanesulpho	 onamide	31.12.2021
ex 2935 90 90	73	(2S)-2- Benzyl- <i>N</i> , <i>N</i> - dimethylazirid sulfonamide	0 % ine-1-	_	31.12.2022

		(CAS RN 902146-43-4)			
^g ex 2935 90 90	75	Metsulfuron- methyl (ISO) (CAS RN 74223-64-6)	0 %	_	31.12.2023
ex 2935 90 90	77	[[4-[2-[[(3-Ethyl-2,5-dihydro-4-methyl-2-oxo-1 <i>H</i> -pyrrol-1-yl)carbonyl]an ethyl]phenyl]scarbamic acid ethyl ester, (CAS RN 318515-70-7)			31.12.2019
gex 2935 90 90	85	N-[4- (Isopropylamir hydrochloride	0 % noacetyl)phenyl	 methanesulpho	31.12.2019 namide
^g ex 2935 90 90	88	N-(2-(4- Amino-N- ethyl-m- toluidino)ethyl sesquisulphate monohydrate (CAS RN 25646-71-3)	0 %)methanesulpho	— namide	31.12.2023
ex 2935 90 90	89	3-(3- Bromo-6- fluoro-2- methylindol-1- ylsulphonyl)-\(\Lambda\) dimethyl-1,2,4 triazol-1- sulphonamide		 35-87-0)	31.12.2021
ex 2938 90 30	10	Ammonium glycyrrhizate (CAS RN 53956-04-0)	0 %	_	31.12.2020
^g ex 2938 90 90	10	Hesperidin (CAS RN 520-26-3)	0 %		31.12.2023
gex 2938 90 90	20	Ethylvanillin beta-D- glucopyranosio	0 % le	_	31.12.2023

		(CAS RN 122397-96-0)			
ex 2938 90 90	30	Rebaudioside A (CAS RN 58543-16-1)	0 %		31.12.2022
ex 2938 90 90	40	Purified steviol glycoside with a rebaudioside M (CAS RN 1220616-44-3) content of 80 % or more but not more than 90 % by weight for use in the manufacture of non-alcoholic beverages ^b	0 %		31.12.2022
ex 2940 00 00	30	D(+)- Trehalose dihydrate (CAS RN 6138-23-4)	0 %	_	31.12.2021
ex 2941 20 30	10	Dihydrostrepto sulphate (CAS RN 5490-27-7)	my⁄oin		31.12.2021
ex 2942 00 00	10	Sodium triacetoxyborol (CAS RN 56553-60-7)	0 % hydride	_	31.12.2021
g3201 20 00		Wattle extract	0 %	_	31.12.2023
^g ex 3201 90 90	20	Tanning extracts derived from gambier and myrobalan fruits	0 %	_	31.12.2023
ex 3201 90 90 ex 3202 90 00		Reaction product of Acacia mearnsii extract, ammonium	0 %		31.12.2020

		chloride and formaldehyde (CAS RN 85029-52-3)			
^g ex 3204 11 00	15	Colourant C.I. Disperse Blue 360 (CAS RN 70693-64-0) and preparations based thereon with a colourant C.I. Disperse Blue 360 content of 99 % or more by weight	0 %		31.12.2023
ex 3204 11 00	20	Colourant C.I. Disperse Yellow 241 (CAS RN 83249-52-9) and preparations based thereon with a colourant C.I. Disperse Yellow 241 content of 97 % or more by weight	0 %		31.12.2020
ex 3204 11 00	25	N-(2- Chloroethyl)-4 [(2,6- dichloro-4- nitrophenyl)aze N-ethyl-m- toluidine (CAS RN 63741-10-6)		_	31.12.2019
ex 3204 11 00	35	Colourant C.I Disperse Yellow 232 (CAS RN 35773-43-4) and preparations based thereon	0 %		31.12.2022

		with a colourant C.I Disperse Yellow 232 of 50 % or more by weight			
ex 3204 11 00	40	Colourant C.I. Disperse Red 60 (CAS RN 17418-58-5) and preparations based thereon with a colourant C.I. Disperse Red 60 content of 50 % or more by weight	0 %		31.12.2021
ex 3204 11 00	45	Preparation of dispersion dyes, containing: — C.I. Dispersion of the containing: — C.I. Dispersion or Dispersion	ge erse ge erse t ner		31.12.2020
ex 3204 11 00	50	Colourant C.I. Disperse Blue 72	0 %	_	31.12.2021

		(CAS RN 81-48-1) and preparations based thereon with a colourant C.I. Disperse Blue 72 content of 95 % or more by weight		
ex 3204 11 00	60	Colourant C.I. Disperse Blue 359 (CAS RN 62570-50-7) and preparations based thereon with a colourant C.I. Disperse Blue 359 content of 50 % or more by weight	0 %	31.12.2021
ex 3204 12 00	10	Colourant C.I. Acid Blue 9 (CAS RN 2650-18-2) and preparations based thereon with a colourant C.I. Acid Blue 9 content of 50 % or more by weight	0 %	31.12.2021
ex 3204 12 00	15	Colourant C.I. Acid Brown 75 (CAS RN 8011-86-7) and preparations based thereon with a colourant C.I. Acid Brown 75 content of	0 %	31.12.2021

		75 % or more by weight		
ex 3204 12 00	17	Colourant C.I. Acid Brown 355 (CAS RN 84989-26-4 or 60181-77-3) and preparations based thereon with a colourant C.I. Acid Brown 355 content of 75 % or more by weight	0 %	31.12.2021
ex 3204 12 00	25	Colourant C.I. Acid Black 210 (CAS RN 85223-29-6 or 99576-15-5) and preparations based thereon with a colourant C.I. Acid Black 210 content of 50 % or more by weight	0 %	31.12.2021
ex 3204 12 00	27	Colourant C.I. Acid Brown 425 (CAS RN 75234-41-2 or 119509-49-8) and preparations based thereon with a colourant C.I. Acid Brown 425 content of 75	0 %	31.12.2021

		% or more by weight			
ex 3204 12 00	35	Colourant C.I. Acid Black 234 (CAS RN 157577-99-6) and preparations based thereon with a colourant C.I. Acid Black 234 content of 75 % or more by weight	0 %		31.12.2021
ex 3204 12 00	37	Colourant C.I. Acid Black 210 sodium salt (CAS RN 201792-73-6) and preparations based thereon with a colourant C.I. Acid Black 210 sodium salt content of 50 % or more by weight	0 %		31.12.2021
^g ex 3204 12 00	40	Liquid dye preparation containing anionic acid dye C.I. Acid Blue 182 (CAS RN 12219-26-0)	0 %	_	31.12.2023
ex 3204 12 00	45	Colourant C.I. Acid Blue 161/193 (CAS RN 12392-64-2) and preparations based thereon with a colourant	0 %		31.12.2021

		C.I. Acid Blue 161/193 content of 75 % or more by weight		
ex 3204 12 00	47	Colourant C.I. Acid Brown 58 (CAS RN 70210-34-3 or 12269-87-3) and preparations based thereon with a colourant C.I. Acid Brown 58 content of 75 % or more by weight	0 %	31.12.2021
ex 3204 12 00	55	Colourant C.I. Acid Brown 165 (CAS RN 61724-14-9) and preparations based thereon with a colourant C.I. Acid Brown 165 content of 75 % or more by weight	0 %	31.12.2021
ex 3204 12 00	57	Colourant C.I. Acid Brown 282 (CAS RN 70236-60-1 or 12219-65-7) and preparations based thereon with a colourant C.I. Acid Brown 282 content of 75	0 %	31.12.2021

		% or more by weight		
ex 3204 12 00	60	Colourant C.I. Acid Red 52 (CAS RN 3520-42-1) and preparations based thereon with a colourant C.I. Acid Red 52 content of 97 % or more by weight	0 %	31.12.2019
ex 3204 12 00	65	Colourant C.I. Acid Brown 432 (CAS RN 119509-50-1) and preparations based thereon with a colourant C.I. Acid Brown 432 content of 75 % or more by weight	0 %	31.12.2021
ex 3204 12 00	70	Colourant C.I. Acid blue 25 (CAS RN 6408-78-2) and preparations based thereon with a colourant C.I. Acid blue 25 content of 80 % or more by weight	0 %	31.12.2020
ex 3204 13 00	10	Colourant C.I. Basic Red 1 (CAS RN 989-38-8) and preparations based thereon with a	0 %	31.12.2021

ex 3204 13 00	15	colourant C.I. Basic Red 1 content of 50 % or more by weight Colourant C.I. Basic Blue 41 (CAS RN 12270-13-2) and preparations based thereon with a colourant C.I. Basic Blue 41 content of 50	0 %		31.12.2022
		% or more by weight			
ex 3204 13 00	25	Colourant C.I. Basic Red 46 (CAS RN 12221-69-1) and preparations based thereon with a colourant C.I. Basic Red 46 content of 20 % or more by weight	0 %		31.12.2022
^g ex 3204 13 00	30	Colourant C.I. Basic Blue 7 (CAS RN 2390-60-5) and preparations based thereon with a colourant C.I. Basic Blue 7 content of 50 % or more by weight	0 %		31.12.2023
ex 3204 13 00	35	Colourant C.I. Basic Yellow 28 (CAS RN	0 %	_	31.12.2022

		54060-92-3) and preparations based thereon with a colourant C.I. Basic Yellow 28 content of 75 % or more by weight			
ex 3204 13 00	40	Colourant C.I. Basic Violet 1 (CAS RN 603-47-4 or CAS RN 8004-87-3) and preparations based thereon with a colourant C.I. Basic Violet 1 content of 90 % or more by weight	0 %		31.12.2022
ex 3204 13 00	45	Mixture of colourant C.I. Basic Blue 3 (CAS RN 33203-82-6) and colourant C.I. Basic Blue 159 (CAS RN 105953-73-9) with a colourant Basic Blue content of 60 % or more by weight	0 %		31.12.2022
ex 3204 13 00	50	Colourant C.I Basic Violet 11 (CAS RN 2390-63-8) and preparations based thereon with a colourant C.I	0 %	_	31.12.2019

ex 3204 13 00	60	Basic Violet 11 content of 90 % or more by weight Colourant C.I Basic Red 1:1 (CAS RN 3068-39-1) and preparations based thereon with a colourant C.I Basic Red 1:1	0 %	 31.12.2019
		content of 90 % or more by weight		
ex 3204 14 00	10	Colourant C.I. Direct Black 80 (CAS RN 8003-69-8) and preparations based thereon with a colourant C.I. Direct Black 80 content of 90 % or more by weight	0 %	31.12.2019
ex 3204 14 00	20	Colourant C.I. Direct Blue 80 (CAS RN 12222-00-3) and preparations based thereon with a colourant C.I. Direct Blue 80 content of 90 % or more by weight	0 %	31.12.2019
ex 3204 14 00	30	C.I. Colourant Direct Red 23 (CAS RN 3441-14-3) and	0 %	 31.12.2019

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		preparations based thereon with a colourant C.I. Direct Red 23 content of 90 % or more by weight			
ex 3204 14 00	40	Colourant C.I Direct Black 168, in powder form for leather dyeing (CAS RN 85631-88-5) and preparations based thereon with a colourant C.I. Direct Black 168 content by weight of 75 % or more, in powder form for leather dyeing ^b	0 %		31.12.2021
^g ex 3204 15 00	60	Colourant C.I. Vat Blue 4 (CAS RN 81-77-6) and preparations based thereon with a colourant C.I. Vat Blue 4 content of 50 % or more by weight	0 %		31.12.2023
^g ex 3204 15	70	Colourant C.I. Vat Red 1 (CAS RN 2379-74-0)	0 %	_	31.12.2023
ex 3204 16 00	30	Preparations based on Colourant Reactive Black 5 (CAS RN	0 %	_	31.12.2019

		— 1- Naph amino [[4- [[2- (sulpl disod salt (CAS) RN 25063 or — 3,5- diami [[4- [[2- (sulpl [[2- sulfo- [[2- (sulpl acid sodiu salt (CAS) RN	tive w 4-67-5), thalenesulphoni p-3- hooxy)ethyl]sulpium 88-43-8), ino-4- hooxy)ethyl]sulpium 4- hooxy)ethyl]sulpium	phonyl]phenyl]a	o]-2-
ex 3204 16 00	40	Aqueous solution of Colourant C.I. Reactive Red 141 (CAS RN 61931-52-0)	0 %		31.12.2022

		with a colou C.I. React Red 141 conte of 13 % or more by weigh and conta	tive		
^g ex 3204 17 00	10	Colourant C.I. Pigment Yellow 81 (CAS RN 22094-93-5) and preparations based thereon with a colourant C.I. Pigment Yellow 81 content of 50 % or more by weight	rvative 0 %		31.12.2023
ex 3204 17 00	15	Colourant C.I. Pigment Green 7 (CAS RN 1328-53-6) and preparations based thereon with a colourant C.I. Pigment Green 7 content of 40 % or more by weight	0 %		31.12.2021
ex 3204 17 00	16	Colourant C.I. Pigment Red 49:2	0 %	_	31.12.2020

		(CAS RN 1103-39-5) and preparations based thereon with a colourant C.I. Pigment Red 49:2 content of 60 % or more by weight		
ex 3204 17 00	17	Colourant C.I. Pigment Red 12 (CAS RN 6410-32-8) and preparations based thereon with a colourant C.I. Pigment Red 12 content of 35 % or more by weight	0 %	31.12.2019
ex 3204 17 00	18	Colourant C.I. Pigment Orange 16 (CAS RN 6505-28-8) and preparations based thereon with a colourant C.I. Pigment Orange 16 content of 90 % or more by weight	0 %	31.12.2021
gex 3204 17 00	19	Colourant C.I. Pigment Red 48:2 (CAS RN 7023-61-2) and preparations based thereon with a colourant	0 %	31.12.2023

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 3204 17 00	20	C.I. Pigment Red 48:2 content of 85 % or more by weight Colourant C.I. Pigment	0 %	 31.12.2021
		Blue 15:3 (CAS RN 147-14-8) and preparations based thereon with a colourant C.I. Pigment Blue 15:3 content of 35 % or more by weight		
ex 3204 17 00	21	Colourant C.I. Pigment Blue 15:4 (CAS RN 147-14-8) and preparations based thereon with a colourant C.I. Pigment Blue 15:4 content of 35 % or more by weight	0 %	31.12.2019
ex 3204 17 00	22	Colourant C.I. Pigment Red 169 (CAS RN 12237-63-7) and preparations based thereon with a colourant C.I. Pigment Red 169 content of 50 % or more by weight	0 %	31.12.2021
ex 3204 17 00	23	Colourant C.I. Pigment Brown 41	0 %	 31.12.2019

		(CAS RN 211502-16-8 or CAS RN 68516-75-6)			
gex 3204 17 00	24	Colourant C.I. Pigment Red 57:1 (CAS RN 5281-04-9) and preparations based thereon with a Colourant C.I. Pigment Red 57:1 content of 20 % or more by weight	0 %		31.12.2023
ex 3204 17 00	25	Colourant C.I. Pigment Yellow 14 (CAS RN 5468-75-7) and preparations based thereon with a colourant C.I. Pigment Yellow 14 content of 25 % or more by weight	0 %		31.12.2021
ex 3204 17 00	26	Colourant C.I. Pigment Orange 13 (CAS RN 3520-72-7) and preparations based thereon with a colourant C.I. Pigment Orange 13 content of 80 % or more by weight	0 %		31.12.2022
ex 3204 17 00	29	Colourant C.I. Pigment	0 %	_	31.12.2022

		Red 268 (CAS RN 16403-84-2) and preparations based thereon with a Colourant C.I. Pigment Red 268 content of 80 % or more by weight			
ex 3204 17 00	33	Colourant C.I. Pigment Blue 15:1 (CAS RN 147-14-8) and preparations based thereon with a colourant C.I. Pigment Blue 15:1 content of 35 % or more by weight	0 %		31.12.2020
ex 3204 17 00	35	Colourant C.I. Pigment Red 202 (CAS RN 3089-17-6) and preparations based thereon with a colourant C.I. Pigment Red 202 content of 70 % or more by weight	0 %		31.12.2021
gex 3204 17 00	37	Colourant C.I. Pigment Red 81:2 (CAS RN 75627-12-2) and preparations based thereon with a	0 %	_	31.12.2023

		colourant C.I. Pigment Red 81:2 content of 30 % or more by weight		
ex 3204 17 00	40	Colourant C.I. Pigment Yellow 120 (CAS RN 29920-31-8) and preparations based thereon with a colourant C.I. Pigment Yellow 120 content of 50 % or more by weight	0 %	31.12.2019
gex 3204 17 00	45	Colourant C.I. Pigment Yellow 174 (CAS RN 78952-72-4), highly resinated pigment (approx. 35 % disproportional resin), with a purity of 98 % by weight or more, in the form of extruded beads with a moisture content of not more than 1 % by weight	0 %	31.12.2023
ex 3204 17 00	65	Colourant C.I. Pigment Red 53 (CAS RN 2092-56-0) and preparations based thereon with a	0 %	 31.12.2021

ex 3204 17 00		colourant C.I. Pigment Red 53 content of 50 % or more by weight Colourant C.I. Pigment Orange 5 (CAS RN 3468-63-1) and preparations based thereon with a colourant C.I. Pigment Orange 5 content of 80 % or more by weight	0 %		31.12.2022
ex 3204 17 00	80	Colourant C.I. Pigment Red 207 (CAS RN 71819-77-7) and preparations based thereon with a colourant C.I. Pigment Red 207 content of 50 % or more by weight	0 %		31.12.2022
ex 3204 17 00	85	Colourant C.I. Pigment Blue 61 (CAS RN 1324-76-1) and preparations based thereon with a colourant C.I. Pigment Blue 61 content of 35 % or more by weight	0 %		31.12.2022
ex 3204 17 00	88	Colourant C.I. Pigment	0 %	_	31.12.2022

		Violet 3 (CAS RN 1325-82-2 or CAS RN 101357-19-1) and preparations based thereon with a colourant C.I. Pigment Violet 3 content of 90 % or more by weight		
ex 3204 19 00	12	Colourant C.I. Solvent Violet 49 (CAS RN 205057-15-4)	0 %	31.12.2019
ex 3204 19 00	13	Colourant C.I. Sulphur Black 1 (CAS RN 1326-82-5) and preparations based thereon with a colourant C.I. Sulphur Black 1 content of 75 % or more by weight	0 %	31.12.2021
ex 3204 19 00	14	Red colourant preparation, in a form of wet paste, containing by weight: — 35 % or more but not more than 40 %	0 %	31.12.2019

		ol methy deriva (CAS RN	atives	zo]naphthalen-2	-
		more than 3 % of 1- (phen ol (CAS)	ylazo)naphthale	en-2-	
		RN 842-0 not more than 3 % of 1-			
		[(2- methy ol (CAS RN	ylphenyl)azo]na -17-5)	phthalen-2-	
		or more but not more than 65			
		% of water			
ex 3204 19 00	16	Colourant C.I Solvent Yellow 133 (CAS RN 51202-86-9) and preparations	0 %	_	31.12.2022
		1 1		l	I

		based thereon with a colourant C.I. Solvent Yellow 133 content of 97 % or more by weight			
ex 3204 19 00	21	Photochromic dye, 4-(3-(4-butoxyphenyl)methoxy-3-(4-methoxypheny dimethyl-11-(trifluoromethydihydrobenzo[yl)morpholine (CAS RN 1021540-64-6)	-6- 1)-13,13- y1)-3,13- h]indeno[2,1-f]c	— hromen-7-	31.12.2019
gex 3204 19 00	70	Colourant C.I. Solvent Red 49:2 (CAS RN 1103-39-5) and preparations based thereon with a colourant C.I. Solvent Red 49:2 content of 90 % or more by weight	0 %		31.12.2019
ex 3204 19 00	71	Colourant C.I. Solvent Brown 53 (CAS RN 64696-98-6) and preparations based thereon with a colourant C.I. Solvent Brown 53 content of 95 % or more by weight	0 %		31.12.2020

ex 3204 19 00	73	Colourant C.I. Solvent Blue 104 (CAS RN 116-75-6) and preparations based thereon with a colourant C.I. Solvent Blue 104 content of 97 % or more by weight	0 %		31.12.2020
ex 3204 19 00	77	Colourant C.I. Solvent Yellow 98 (CAS RN 27870-92-4 or CAS RN 12671-74-8) and preparations based thereon with a colourant C.I. Solvent Yellow 98 content of 95 % or more by weight	0 %		31.12.2021
ex 3204 19 00	84	Colourant C.I. Solvent Blue 67 (CAS RN 12226-78-7) and preparations based thereon with a colourant C.I. Solvent Blue 67 content of 98 % or more by weight	0 %		31.12.2022
ex 3204 20 00	30	Colourant C.I. Fluorescent Brightener 351 (CAS RN 27344-41-8)	0 %	_	31.12.2021

		and preparations based thereon with a colourant C.I. Fluorescent Brightener 351 content of 90 % or more by weight		
ex 3204 90 00	10	Colourant C.I Solvent Yellow 172 (also known as C.I. Solvent Yellow 135) (CAS RN 68427-35-0) and preparations based thereon with a colourant C.I Solvent Yellow 172 (also known as C.I. Solvent Yellow 135) content of 90 % or more by weight	0 %	31.12.2019
ex 3204 90 00	20	Preparations of colourant C.I. Solvent Red 175 (CAS RN 68411-78-6) in petroleum distillates, hydrotreated light naphthenic (CAS RN 64742-53-6), containing by weight 40 % or more but not more than 60 % of	0 %	31.12.2022

		a colourant C.I. Solvent Red 175		
gex 3205 00 00	10	Aluminium lakes prepared from dyes for use in the manufacture of pigments for the pharmaceutica industry ^b	0 %	31.12.2023
gex 3206 11 00	10	Titanium dioxide coated with isopropoxytitat triisostearate, containing by weight 1,5 % or more but not more than 2,5 % of isopropoxytitat triisostearate		31.12.2023
ex 3206 19 00	10	and 28 % (± 2 %) of titani dioxi (CAS	1-26-2), um de	31.12.2021

^g ex 3206 42 00	10	Lithopone (CAS RN 1345-05-7)	0 %	_	31.12.2023
ex 3206 49 70	20	Colourant C.I. Pigment Blue 27 (CAS RN 14038-43-8)	0 %	_	31.12.2019
ex 3206 49 70	30	Colourant C.I. Pigment Black 12 (CAS RN 68187-02-0) and preparations based thereon with a C.I. Pigment Black 12 content of 50 % or more by weight	0 %		31.12.2022
ex 3206 49 70	40	Colourant C.I. Pigment Blue 27 (CAS RN 25869-00-5) and preparations thereon with a colourant C.I. Pigment Blue 27 content of 85 % or more by weight	0 %		31.12.2022
^g 3206 50 00		Inorganic products of a kind used as luminophores	0 %	_	31.12.2023
ex 3207 30 00	20	Printing paste containing — 30 % by weigh or more but not		_	31.12.2019

		more than 50 % of silver and 8 % by weigh or more but not more than 17 % of pallace	nt		
ex 3207 40 85	40	or iron oxide (CAS RN	d um de 3-67-7)		31.12.2022
ex 3208 10 10	10	Thermoplastic polyester	0 %	_	31.12.2020

		copolymer resin with a solid content of 30 % or more but not more than 50 %, in organic solvents			
gex 3208 20 10	10	Copolymer of <i>N</i> -vinylcaprolacta <i>N</i> -vinyl-2-pyrrolidone and dimethylamino methacrylate, in the form of a solution in ethanol containing by weight 34 % or more but not more than 40 % of copolymer			31.12.2023
^g ex 3208 20 10	20	Immersion topcoat solution containing by weight 0,5 % or more but not more than 15 % of acrylatemethacrylatealkenesulphonacopolymers with fluorinated side chains, in a solution of n-butanol and/or 4-methyl-2-pentanol and/or diisoamylether			31.12.2023
^g ex 3208 90 19	15	Chlorinated polyolefins, in a solution	0 %	_	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 3208 90 19	20	Preparation of 5 % or more but not more than 20 % by weight of propylene maleic anhydride copolymer or a blend of polypropylene and propylene maleic anhydride copolymer in an organic solvent	0 %		31.12.2020
ex 3208 90 19 ex 3904 69 80		Tetrafluoroethy copolymer in butylacetate solution with a content of solvent of 50 % (± 2 %) by weight	/ læfl∕ó		31.12.2022
⁸ ex 3208 90 19	40	Polymer of methylsiloxane in the form of a solution in a mixture of acetone, butanol, ethanol and isopropanol, containing by weight 5 % or more but not more than 11 % of polymer of methylsiloxane			31.12.2023
gex 3208 90 19 ex 3824 99 92	45 63	Polymer consisting of a polycondensate of formaldehyde and naphthalenedic chemically modified		_	31.12.2023

		by reaction with an			
		alkyne halide, dissolved in			
		propylene			
		glycol methyl ether acetate			
ex 3208 90 19	47	Solution	0 %	_	31.12.2021
		containing by weight:			
		— 0,1 %			
		or			
		more but			
		not			
		more	,		
		than 20			
		% %			
		of			
		alkox	ygroups		
		silox	ining		
		polyi			
		with			
		alkyl			
		or aryl			
			ituents		
					
		%			
		or more			
		of			
		an			
		organ			
		solve	ining		
		one			
		or			
		more of			
			leneglycolethyl	ether	
		(CAS			
		RN	02.4		
		1569 propy	-02-4),		
		glyco	ol		
		mono			
		meth	ylether		
		aceta	te		

		propy (CAS RN	55-6) rleneglycol rlether	
^g ex 3208 90 19	50	Solution containing by weight: — (65 ± 10) % of y-	0 %	31.12.2023
			olactone, mide	
		(3,5) ± 1,5) % of	hoquinone	
		(1,5 ± 0,5) % of arylsi acid	licic	
ex 3208 90 19	60	Copolymer of hydroxystyrene with one or more of the following: — styrene alkox — alkyla dissolved in ethyl lactate		31.12.2021

^g ex 3208 90 19	65	Silicones containing 50 % by weight or more of xylene and not more than 25 % by weight of silica, of a kind used for the manufacture of long term surgical implants	0 %		31.12.2019
ex 3208 90 19	75	Acenaphthalen copolymer in ethyl lactate solution	e0 %	_	31.12.2022
gex 3215 11 00 ex 3215 19 00	10 10	Printing ink, liquid, consisting of a dispersion of a vinyl acrylate copolymer and colour pigments in isoparaffins, containing by weight not more than 13 % of vinyl acrylate copolymer and colour pigments	0 %		31.12.2023
ex 3215 19 00	20	of silver (CAS RN	ster ner rsion		31.12.2022

silver	
chloride	
(CAS	
RN	
7783-90-6)	
in	
methyl	
propyl	
ketone	
(CAS	
RN	
107-87-9),	
— with	
a	
total	
solid	
content	
by	
weight	
of	
55	
%	
or	
more,	
but	
not	
more	
than	
57	
%,	
and	
— with	
a	
specific	
density	
of	
1,40	
g/	
cm ³	
or	
more	
but	
not	
more	
than	
1,60	
g/	
cm ³ ,	
for use in the	
manufacture	
of electrodes ^b	

⁸ ex 3215 90 70	10	Ink formulation, for use in the manufacture of ink-jet cartridges ^b	0 %	_	31.12.2023
^g ex 3215 90 70	20	Heat sensitive ink fixed on a plastic film	0 %	_	31.12.2023
^g ex 3215 90 70	30	Disposable cartridge ink, containing by weight: — 1 % or more but not more than 10 % of amore silico dioxi or — 3,8 % or more of dye C.I. Solve Black 7 in organ solve for use in the marking of integrated circuits b	phous n de,		31.12.2023
ex 3215 90 70	40	Dry ink powder with a base of hybrid resin (made from polystyrene acrylic resin and polyester	0 %		31.12.2020

		resin) mixed with: — wax, — a vinyl based polyr and — a color agent for use in the manufacture of toner bottles for photocopie machines, printers and multifunction devices ^b	ner, rring , rs, fax		
g3301 12 10		Essential oil of orange, not deterpenated	0 %	_	31.12.2023
ex 3402 11 90	10	Sodium lauroyl methyl isethionate	0 %	_	31.12.2020
^g ex 3402 13 00	10	Vinyl copolymer surface active agent based on polypropylene glycol	0 %	_	31.12.2023
ex 3402 13 00	20	Surfactant containing 1,4- dimethyl-1,4-b methylpropylbutyne-1,4-diyl ether, polymerised with oxirane, methyl terminated			31.12.2022
ex 3402 90 10	10	Surface- active mixture of methyltri- C8-C10-	0 %	_	31.12.2019

		alkylammonius chlorides	m		
^g ex 3402 90 10	20	Mixture of docusate sodium (INN) and sodium benzoate	0 %	_	31.12.2023
ex 3402 90 10	30	Surface- active preparation, consisting of a mixture of sodium docusate and ethoxylated 2,4,7,9- tetramethyldec yne-4,7-diol (CAS RN 577-11-7 and 9014-85-1)	0 %		31.12.2020
ex 3402 90 10	50	Surface- active preparation, consisting of a mixture of polysiloxane and poly(ethylene glycol)	0 %		31.12.2020
ex 3402 90 10	60	Surface- active preparation, containing 2- ethylhexyloxyr oxirane	0 %	_	31.12.2020
ex 3402 90 10	70	Surface- active preparation, containing ethoxylated 2,4,7,9- tetramethyl-5- decyne-4,7- diol (CAS RN 9014-85-1)	0 %		31.12.2019
^g ex 3501 90 90	10	Non edible sodium caseinate	0 %	_	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		(CAS RN 9005-46-3) in the form of powder with a protein content of more than 88 % by weight for use in the production of thermoplastic granules		
^g ex 3506 91 10 ex 3506 91 90	10 10	Adhesive based on an aqueous dispersion of a mixture of dimerised rosin and a copolymer of ethylene and vinyl acetate (EVA)	0 %	 31.12.2023
gex 3506 91 10 ex 3506 91 90	30 30	Two component microencapsula epoxy adhesive dispersed in a solvent	0 % ated	 31.12.2023
ex 3506 91 10 ex 3506 91 90	40 40	Acrylic pressure sensitive adhesive with a thickness of 0,076 mm or more but not more than 0,127 mm, put up in rolls of a width of 45,7 cm or more but not more than 132 cm supplied on a release liner with an initial peel adhesion release value of not less	0 %	31.12.2019

		than 15 N/25 mm (measured according to ASTM D3330)		
ex 3506 91 10 ex 3506 91 90	50	or styred isoprocopol and 10 % or more but not more than 30 % of piner polyr or penta	ne liene lymers ne ene lymers, diene lymers, yl	31.12.2020

			32-5), ene 38-3) atic nt a	
ex 3506 91 90	60	Temporary wafer-bonding adhesive material in the form of a suspension of a solid polymer in D-limonene (CAS RN 5989-27-5) with a polymeric content by weight of 65 % or more but not more than 75 %	0 %	31.12.2022
ex 3506 91 90	70	Temporary wafer- bonding release in the form of a suspension of a solid polymer in cyclopentanone (CAS RN 120-92-3) with a polymeric content of not	0 %	31.12.2022

		more than 10 % by weight			
ex 3507 90 90	10	Preparation of Achromobacter lyticus protease (CAS RN 123175-82-6) for use in the manufacture of human and analogue insulin products ^b	0 %		31.12.2019
ex 3507 90 90	20	Creatine amidinohydrol (CAS RN 37340-58-2)	0 % ase	_	31.12.2020
ex 3507 90 90	30	of 6,0 U/ ml or more but not more than 7,4 U/ ml, — a conce by weigl of sodiu azide (CAS RN	ne entration entration at		31.12.2021

Changes to legislation:	There are currently no known outstanding effects f	for
the Council Regulation	(EU) 2018/2069. (See end of Document for details	s)

		not more than 0,09 %, and a pH value of 6,5 or more but not more than 8,5		
ex 3601 00 00	10	Pyrotechnical powder in the form of granulate of cylindrical shape, composed of strontium nitrate or copper nitrate in the solution of nitroguanidine binder and additives, used as a component of airbag inflators ^b	0 %	31.12.2021
ex 3603 00 60	10	Igniters for gas generators with an overall maximum length of 20,34 mm or more but not more than 25,25 mm and a pin length of 6,68 mm (± 0,3 mm) or more	0 %	31.12.2022

		but not more than 6,9 mm (± 0,3 mm)		
ex 3701 30 00	20	Photosensitive plate consisting of a photopolymer layer on a polyester foil of a total thickness of more than 0,43 mm but not more than 3,18 mm	0 %	31.12.2019
^g ex 3701 30 00	30	Relief printing plate, of a kind used for printing on newsprint, consisting of a metal substrate coated with a photopolymer layer of a thickness of 0,15 mm or more but not more than 0,8 mm, not covered with a release film, of a total thickness of not more than 1 mm	0 %	31.12.2023
^g ex 3701 99 00	10	Plate of quartz or of glass, covered with a film of chromium and coated with a photosensitive or electronsensitive resin, of a kind used for goods of	0 %	31.12.2023

Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		heading 8541 or 8542			
^g ex 3707 10 00	10	Photosensitive emulsion for the sensitization of silicon discs ^b	0 %	_	31.12.2023
gex 3707 10 00	15	Sensitising emulsion consisting of: — by weight not more than 12 % of diazo acid ester — phenoment of the containing at least 2-methoxy-1-methylethyl acetate or ethyl lactate or ethyl lactate or methyl 3-methoxypropio or 2-heptanone	oxonaphthalene	sulphonic	31.12.2023
gex 3707 10 00	25	Sensitising emulsion containing: — pheno or acryliresins — a maximaximaximaximaximaximaximaximaximaxi	ic 3, mum nt		31.12.2023

acid precursor, in a solution containing 2-methoxy-1-
in a solution containing 2-
containing 2-
methoxy-1-
methylethyl
acetate or
ethyl lactate
gex 3707 10 30 Preparation 0 % — 31.12.2023
ex 3707 10 30 Preparation 0 % — 31.12.2023 31.12.2023
photosensitive
acrylic
containing
polymer,
containing
colour
pigments, 2-
methoxy-1-
methylethylacetate
and
cyclohexanone
and whether
or not
containing
ethyl-3-
ethoxypropionate
ex 3707 10 00 35 Sensitising 0 % — 31.12.2021
emulsion or
preparation
containing
one or more
of:
— acrylate
polymers,
— methacrylate
polymers,
— derivatives
of _
styrene
polymers,
containing
by weight
not more
than 7 % of
photosensitive acid
precursors, dissolved in
an organic solvent
containing
at least 2-

		methoxy-1- methylethyl			
		acetate			
ex 3707 10 00	40	sensitising emulsion, containing: — not more than 10 % by weigh of napht esters 2 % or more but not more than 35	nt hoquinonediazi	de	31.12.2021
		of hydro not more than 7 % by weigh of epoxy conta	lymers exystyrene, nt		
ex 3707 10 00	45	Photosensitive emulsion consisting of cyclized polyisoprene containing:	0 %		31.12.2019

		- 55 % or more but not more than 75 % by weigh of xyler and 12 % or more but not more than 18 % by weigh of ethyl	ht e,	
ex 3707 10 00	50	Photosensitive emulsion containing by weight: — 20 % or more but not more than 45 % of copological copological and/or	0 %	31.12.2019

		deriv 25	oxystyrene atives,	
		% or more		
		but not more		
		than 50 %		
		of organ solve	nt	
		at least		
		ethyl lactat and/ or		
		propy	lmethylether	
		- 5 % or more		
		but not more		
		than 30 %		
		of acryl not more		
		than 12 %		
		of a photo	initiator	
^g ex 3707 10 00	55	Dielectric coating, buffering mechanical stress,	0 %	 31.12.2023
		consisting of a radically photopatternab polyamide-	le	

		precursor with unsaturated carbon in the side-chains which is convertible into a polyimide, in form of a solution from N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone with a polymer content by weight 10 % or more		
ex 3707 10 00	60	Sensitising emulsion, containing by weight: — not more than 5 % of photo gener 2 % or more but not more than 50 % of phenoresins and — not more than 7 % of epoxy contains derive.	ator,	31.12.2022

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		dissolved in heptan-2- one and/or ethyllactate			
⁸ ex 3707 90 29	10	Dry ink powder or toner blend, consisting of a copolymer of styrene and butyl acrylate and either magnetite or carbon black, for use as a developer in the manufacture of cartridges for facsimile machines, computer printers or copiers ^b	0 %		31.12.2023
^g ex 3707 90 29	40	Dry ink powder or toner blend, based on a polyester resin, manufactured by a polymerisation process, for use as a developer in the manufacture of cartridges for facsimile machines, computer printers or copiers ^b	0 %		31.12.2023
ex 3707 90 29	50	Dry ink powder or toner blend, consisting of: styren acryla		_	31.12.2022

		either carbo black or an organ pigm wheth or not conta polyc or amor silica for use as a developer in the manufacturing of ink/toner filled bottles or cartridges for facsimile machines, computer printers and copiers ^b	ymer in ic ent her ining lefin phous	
gex 3801 10 00	10	Artificial graphite in powder form, with: — an avera partic size of 2,5 µm or more but not more than 26,5 µm, — an iron conte of	le	31.12.2022

		less			
		than			
		40			
		ppm,			
		— a			
			ar.		
		coppe			
		conte	III		
		of			
		less			
		than			
		5			
		ppm,			
		— a			
		nicke			
		conte	nt		
		of			
		less			
		than			
		5			
		ppm,			
		— an			
		avera	σe		
		surfa	re		
		area			
		(N ₂ a	tmosphere)		
		(1\2.a	illospiicic)		
		of			
		1,2			
		m^2 /			
		g or			
		more			
		but			
		not			
		more			
		than			
		20,4			
		$m^2/$			
		g, and			
		— a	latia		
		magn	enc		
		metal] 		
		impu	rity		
		of			
		less			
		than			
		3			
		ppm			
ex 3801 90 00	10	Expandable	0 %	_	31.12.2021
VA 3001 70 00	10	graphite	0 /0		31.12.2021
	1	5 aprilic			
		(CAS RN 90387-90-9			
		90387-90-9			

		and CAS RI 12777-87-6			
^g ex 3801 90 00	30	Natural or artificial graphite based powder, pite coated, with	0 %	_	31.12.2023
		— an			
		av	erage		
		pa	rticle		
		siz of			
		2,			
		μn			
		or			
		bu	ore t		
		no			
			ore		
		tha			
		26			
		μn — an			
		iro			
		co	ntent		
		of			
		les			
		40			
			m,		
		— a			
			pper ntent		
		of			
		les	SS		
		tha	an		
		5 pp	m,		
		— a	III.,		
		nie	ckel		
			ntent		
		of les			
		tha			
		5			
			m,		
		— an	erage		
			rface		
		are	ea		
		(N	₂₋ atmosphere)		

		of 1,2 m²/ g or more but not more than 20,4 m²/ g, and a magn metal impu of less than 3 ppm	etic	
ex 3802 10 00	10	Mixture of activated carbon and polyethylene, in form of powder	0 %	 31.12.2020
ex 3802 10 00	20	Chemically activated carbon in granular form with a Butane Working Capacity of 11 g butane/100 ml or more (as determined by the ASTM D 5228 method) used for vapour absorption and desorption in emission control canisters	0 %	31.12.2022

		of motor vehicles ^b			
ex 3802 10 00	30	vehiclesb Chemically activated carbon in pellet (cylindrical) form, with: — a diamond of 2 mm or more but not more than 3 mm, and — a Butar Work Capar of 5 g butan ml or more (as deterriby the ASTI D 5228	ne ing city e/100 mined		31.12.2021
		methoused for vapour	od),		
		absorption and desorption in emission control canisters of motor vehicles ^b			
g3805 90 10		Pine oil	1.7 %	_	31.12.2023

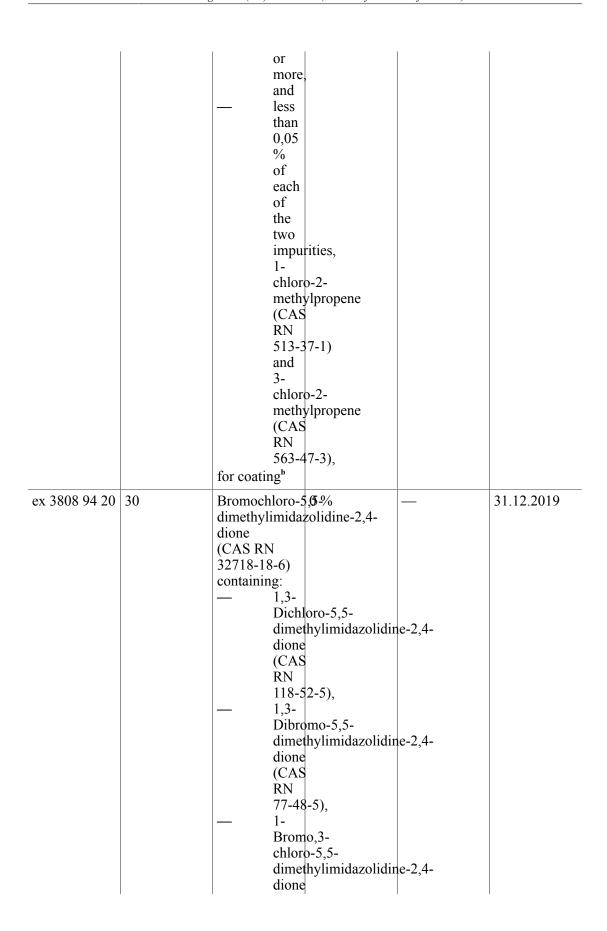
	1		I	T	
ex 3806 90 00 ex 3909 40 00		Phenolic modified derivative of rosin resin, — contaby weights 50 % or more but not more than 75 % of rosin esters — with an acid value of not more than 25, of a kind used in offset printing			31.12.2021
^g ex 3808 91 90	10	Indoxacarb (ISO) and its (R) isomer, fixed on a support of silicon dioxide	0 %	_	31.12.2023
ex 3808 91 90	30	Preparation containing endospores or spores and protein crystals derived from either: — Bacili thurit Berli subsp	ngiensis ner		31.12.2019

		subsp kursta or Bacil thurin subsp israe or Bacil thurin subsp aizam or Bacil thurin subsp	aki, lus ngiensis s. aki, lus ngiensis s. lensis, lus ngiensis tai, tai,		
^g ex 3808 91 90	40	Spinosad (ISO)	0 %	_	31.12.2023
ex 3808 91 90	60	Spinetoram (ISO) (CAS RN 935545-74-7), preparation of two spinosyn components (3'-ethoxy-5,6-dihydro spinosyn J) and (3'-ethoxy-spinosyn L)	0 %		31.12.2022
ex 3808 92 30	10	Mancozeb (ISO) (CAS RN 8018-01-7) imported in immediate packings of a content of 500 kg or more ^a	0 %		31.12.2020

gex 3808 92 90	10	Fungicide in the form of a powder, containing by weight 65 % or more but not more than 75 % of hymexazole (ISO), not put up for retail sale	0 %	_	31.12.2023
gex 3808 92 90	30	Preparation consisting of a suspension of pyrithione zinc (INN) in water, containing by weight: — 24 % or more but not more than 26 % of pyrith zinc (INN) or — 39 % or more but not more than 41 % of pyrith zinc (INN)	nione),		31.12.2023
ex 3808 92 90	50	Preparations	0 %	_	31.12.2019
		based on			

ex 3808 93 23	10	copper pyrithione (CAS RN 14915-37-8) Herbicide containing	0 %	_	31.12.2019
		flazasulfuron (ISO) as an active ingredient			
ex 3808 93 27	40	— (ISO) and not more than 70 % of a petro fracti consi of arom.	leum on sting		31.12.2021
ex 3808 93 90	10	Preparation, in the form of granules, containing by weight: — 38,8 % or more but not more than			31.12.2019

Status: Point in time view as at 20/12/2018.


Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		A3, or 9,5 % or more but not more than 10,5 % of Gibbo A4 and A7	èrellin	
ex 3808 93 90	20	Preparation consisting of benzyl(purin-6 yl)amine in a glycol solution, containing by weight: — 1,88 % or more but not more than 2,00 % of benzy yl)am of a kind used in plant growth regulators	∤l(purin-6-	31.12.2020
ex 3808 93 90	30	Aqueous solution containing by weight: — 1,8	0 %	 31.12.2020

		- 1,2 % of sodiu ortho nitrop - 0,6 % of sodiu 5- nitrog for use in the manufacture of a plant growth	m - henolate,	
		regulator ^b		
ex 3808 93 90	40	Mixed white powder containing by weight: — 3 % or more but not more than 3,6 % of 1- methy with a purity more than 96 %, and — contal less than 0,05 % of each		31.12.2020

ex 3808 93 90	50	and 3- chlor	o-2- ylpropene	31.12.2020
ex 3808 93 90	50	in the form of powder, containing by weight: — 55 % or more of Gibb. A4, — 1 % or more but not more than 35 % of Gibb. A7, — 90 % or more of	erellin	31.12.2020

		A7 comb not not more than 10 % of a comb of water and other natur occur Gibbo of a kind used in plant growth regulators	ination ally ring erellins,	
ex 3808 93 90	60	(1- MCP (CAS RN	-04-7) num	31.12.2022

		and 1- Chlor brom	9-88-2), ro,3- o-5,5- thylimidazolidir	ne-2,4-	
ex 3808 99 90	10	Oxamyl (ISO) (CAS RN 23135-22-0) in a solution of cyclohexanone and water	0 %		31.12.2020
^g ex 3808 99 90	20	Abamectin (ISO) (CAS RN 71751-41-2)	0 %		31.12.2023
^g ex 3809 91 00	10	Mixture of 5-ethyl-2-methyl-2-oxo-1,3,2 λ^5 -dioxaphosphorylmethyl methylphosphorand bis(5-ethyl-2-methyl-2-oxo-1,3,2 λ^5 -dioxaphosphorylmethyl) methylphosphorylmethyl)	onate an-5- onate		31.12.2023
ex 3809 92 00	20	Defoamer, consisting of a mixture of oxydipropanol and 2,5,8,11- tetramethyldod yn-5,8-diol		_	31.12.2019
^g ex 3810 10 00	10	Soldering or welding paste, consisting	0 %	_	31.12.2023

		of a mixture of metals and resin containing by weight: — 70 % or more but not more than 90 % of tin — not more than 10 % of one or more metal of silver coppe bismu zinc, or indiu for use in the electro technical	S ; er, uth,	
ex 3811 19 00	10	industry ^b Solution of more than 61 % but not more than 63 % by weight of methylcyclope manganese tricarbonyl in an aromatic hydrocarbon solvent, containing by	0 %	31.12.2019

		weight not more than: — 4,9 % of 1,2,4 trime benze 4,9 % of napht and — 0,5 % of 1,3,5 trime benze trime tr	thyl- ene, halene, thyl-		
gex 3811 21 00	10	Salts of dinonylnaphtha acid, in the form of a solution in mineral oils	0 % alenesulphonic	_	31.12.2023
ex 3811 21 00	11	(CAS RN	sobutylenepheno 0-13-9), nt	ol	31.12.2021

		mine oils, used in the manufacture of blends of additives for lubricating oils ^b	ral	
ex 3811 21 00	12	succi acid and penta (CAS RN	sobutenyl nic erythritol 50-95-9), ht ral	31.12.2020

		additives for lubricating oils ^b			
gex 3811 21 00	13	(C16- C24) alkyl	benzene onates,		31.12.2019
ex 3811 21 00	14	polyi succi deriv from reacti produ of polye with polyi succi anhyo (CAS RN 1478	on acts thylenepolyami sobutenyl nic dride 80-09-9), ining	nes	31.12.2020

		by weigh of miner oils, with a chloriconte by weigh of not more than 0,05%, havin a total base numb of less than 15,	ral ine nt t	
ex 3811 21 00	16	alkylj (react produ Manr base of	ocarbonyl phenol tion tet tich phenol),	31.12.2020

		but not not more than 60 % by weigh of miner oils, and havin a total base numb more than 120, used in the manufacture of blends of additives for lubricating	nt ral g	
ex 3811 21 00	18	Oils ^b Detergent containing: — long chain alkylicalciu	toluene im onates, ht	31.12.2020

ex 3811 21 00	19		0 % sobutylene nimide ire,		31.12.2019
ex 3811 21 00	20	Additives for lubricating oils, based on complex	0 %	_	31.12.2023

		organic molybdenu compound in the form a solution mineral oil	s, n of in		
^g ex 3811 21 00	25	Additives containing — a			31.12.2019
		a	lkyl oolymethacrylate		
		c	opolymer		
		v	vith		
			V-		
		[.	3- dimethylamino)prop	villmetheerviem	ida
		()	of	yrjinethaeryiani	nue,
			n		
			verage		
			nolecular		
			veight		
		(-	Mw) of		
			nore		
		tl	han		
			0		
			000		
			out lot		
			nore		
		tl	han		
			0		
			000,		
			nd nore		
			han		
		1	5		
			6 ,		
			out		
			nore		
			han		
		3	0		
			6		
			y veight		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	of		
			nineral		
		o	oils,		
		for use in t			
		manufactu	re		

		of lubricating oils ^b			
gex 3811 21 00	27	modi by succi anhyo group reacto with 4- (4- nitrop and 3-	ene- lene ymer ically fied nic dride os ed	æ	31.12.2019
ex 3811 21 00	30	Additives for lubricating oils, containing mineral oils, consisting of calcium salts of reaction products of polyisobutylen substituted phenol with salicylic acid and formaldehyde, used as a	0 % e		31.12.2022

suspending...
Document Generated: 2023-09-19

Status: Point in time view as at 20/12/2018.

		concentrated additive for the manufacture of engine oils through a blending process		
gex 3811 21 00	33	reacti produ with forma (CAS RN	lphenol on icts aldehyde 5-23-2),	31.12.2019
^g ex 3811 21 00	37	Additives containing: — a styrer malei anhyo copol esteri with C4-C20 alcoh modi	c dride ymer fied ols,	31.12.2019

		by amino and — more than 50 % but not more than 75 % by weigh of miner oils, for use in the manufacture of lubricating oils ^b		ine,	
^g ex 3811 21 00	48	(C20- C24) alkyll (CAS RN	esium penzenesulphon 97-75-9),	ates	31.12.2019

		more than 450, for use in the manufacture of lubricating oils ^b			
ex 3811 21 00	50	(CAS RN	um 24 benzenesulphon 4-69-0), ining	ates	31.12.2022
ex 3811 21 00	53	(CAS 6878) with a	im leum onates 3-96-0) onate nt		31.12.2019

		30 %, and by weigh more than 40 % but not more than 60 % of miner oils, having a total base number of 280 or more but not more than 420, for use in the manufacture of lubricating oils ^b			
ex 3811 21 00	55	Additives containing: — low base numb calciu polyp (CAS	ım ropylbenzenesu 5-85-8),	lphonate	31.12.2019

		miner oils, having a total base number of more than 10 but not more than 25, for use in the manufacture of lubricating oils ^b		
ex 3811 21 00	60	subst benze (CAS RN	ropylenyl ituted enesulphonate 5-85-8) nt	31.12.2022

		not more than 320, used as a concentrated additive for the manufacture of engine oils through a blending process			
ex 3811 21 00	63	(CAS RN 61789 and synth calcin alkyll (CAS RN 68589 and CAS RN 70020 with a total	re Im leum onates 9-86-4) etic Im benzenesulphon 4-23-6 4-69-0) onate nt	ates	31.12.2019

		25 %, and by weigh more than 40 % but not more than 60 % of miner oils, having a total base number of 280 or more but not more than 320, for use in the manufacture of lubricating oils ^b		
ex 3811 21 00	65	succi based mixtu (CAS RN	re 10-76-4),	31.12.2019

		miner oils, having a sulphur content of more than 0,7 % but not more than 1,3 % by weight, having a total base number of more than 8, for use in the manufacture	ral		
		of lubricating			
ex 3811 21 00	70	succinderive from reacting production of polyes with polying succinantly (CAS)	sobutylene nimide ed on lects thylenepolyami sobutenyl nic dride 5-20-9), ining ral	nes	31.12.2022

		more than 0,25 %, with a total base numb (TBN of more than 20, used as a concentrated additive for the manufacture of engine oils through a blending process	eer J)		
gex 3811 21 00	73	comp (CAS RN	nimide ounds 58-95-5), ral		31.12.2023
ex 3811 21 00	75	Additives containing:	0 %	_	31.12.2020

		Calci (C10-C14) dialky more than 40 %, but		ates,	
		not more than 60 % by weigh of miner oils, with a total base number			
2011 21 00	77	of not more than 10, for use in the manufacture of blends of additives for lubricating oils ^b	0.0/		21 12 2020
ex 3811 21 00	77	Antifoam additives consisting of: — a copol of 2-ethyll acryla and ethyl acryla and — more than 50 % but not more than 80 %	nexyl ate		31.12.2020

		by weight of miner oils, for use in the manufacture of additive blends for lubricating oils ^b		
ex 3811 21 00	80	arom polya	mine nimide,	31.12.2020
ex 3811 21 00	83	Additives containing: — polyi		31.12.2019

	ı	1 -		1	
		of			
		po	lyethylenepolyami	nes	
		wi			
		po	lyisobutenyl		
		su	ccinic		
		an	hydride		
			AS		
		RN			
		84	605-20-9),		
			ntaining		
			ore		
		tha			
		31			
		%			
		bu			
		no			
			ore		
		tha			
		43			
		%			
		by	.:.14		
		We	eight		
		of			
			ineral		
		oil			
		— no			
			ore		
		tha 0,0			
		%			
		by	night.		
		ch	eight lorine,		
		an			
			ving		
		a	ving		
		tot	tal		
		ba			
			mber		
			BN)		
			eater		
		tha			
		20			
		for use in th	é		
		manufacture			
		of additives			
		blends for			
		lubricating			
		oils ^b			
2041.51.55	0.5		0.07		04.40.000
ex 3811 21 00	85	Additives:	0.%	_	31.12.2022
			ntaining		
		mo	ore		

		sulfid calciu salts, wheth or not carbo of a kind used in the	ral ire hed cylphenol e im	
		manufacture of blends of additives for lubricating oils		
ex 3811 29 00	15	Additives containing: — produ from the reacti of branc hepty pheno with forma carbo disult and hydra	on hed l bl aldehyde, n bhide	31.12.2019

		(CAS RN 9392: and — more than 1 % but not more than 28 % by weigh of light arom: petro napht solve for use in the manufacture of lubricating oils ^b	5-00-9), 5 atic leum	
gex 3811 29 00	18	Additive consisting of dihydroxy butanedioic acid - (mixed C12-16-alkyl and C13-rich C11-14-isoalkyl) diester, of a kind used in the manufacture of automotive engine oils ^b	0 %	31.12.2023
ex 3811 29 00	20	Additives for lubricating oils, consisting of reaction products of bis(2-methylpentan-yl)dithiophosplacid with propylene oxide,	0 % 2- horic	31.12.2022

		phosphorus oxide, and amines with C12-14 alkyl chains, used as a concentrated additive for the manufacture of lubricating oils			
ex 3811 29 00	25	Additives containing at least salts of primary amines and mono- and dialkylphosphori acids, for use in the manufacture of lubricating oils ^b	0 % c		31.12.2019
ex 3811 29 00	30	Additives for lubricating oils, consisting of reaction products of butyl-cyclohex-3-enecarboxylate sulphur and triphenyl phosphite (CAS RN 93925-37-2), used as a concentrated additive for the manufacture of engine oils through a blending process	0 %		31.12.2022
ex 3811 29 00	35	Additives consisting of an imidazoline	0 %	_	31.12.2019

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		based mixture (CAS RN 68784-17-8), for use in the manufacture of lubricating oils ^b		
ex 3811 29 00	40	Additives for lubricating oils, consisting of reaction products of 2-methyl-prop-1-ene with sulphur monochloride and sodium sulphide (CAS RN 68511-50-2), with a chlorine content by weight of 0,01 % or more but not more than 0,5 %, used as a concentrated additive for the manufacture of lubricating oils	0 %	31.12.2022
ex 3811 29 00	45	Additives consisting of a mixture of (C7-C9) dialkyl adipates, in which diisooctyl adipate (CAS RN 1330-86-5) is more than 85 % by weight of the mixture, for use in the manufacture	0 %	31.12.2019

		of lubricating oils ^b		
ex 3811 29 00	50	Additives for lubricating oils, consisting of a mixture of <i>N</i> , <i>N</i> -dialkyl -2-hydroxyacetam with alkyl chain lengths between 12 and 18 carbon atoms (CAS RN 866259-61-2), used as a concentrated additive for the manufacture of engine oils through a blending process	0 %	31.12.2022
ex 3811 29 00	65	Additives consisting of a sulphurised mixture of vegetable oil, long chain α-olefins and tall oil fatty acids, with a sulphur content of 8 % or more but not more than 12 % by weight, for use in the manufacture of blends of additives for lubricating oils ^b	0 %	31.12.2020
gex 3811 29 00	70	Additives consisting of dialkylphosphi (in which the	0 % tes	 31.12.2019

		alkyl groups contain more than 80 % by weight of oleyl, palmityl and stearyl groups), for use in the manufacture of lubricating oils ^b		
ex 3811 29 00	75	Oxidation inhibitor mainly containing a mixture of isomers of 1-(tert-dodecylthio)pr ol (CAS RN 67124-09-8), used in the manufacture of blends of additives for lubricating oils ^b	0 % ^b	31.12.2021
gex 3811 29 00	80	[1,3,4 thiad (CAS RN	ht art- dithio)- - azole - 7-09-1),	31.12.2019

		1,3,4 thiad thion (CAS RN	azole-2(3H)- e		
gex 3811 29 00	85	Additives consisting of a mixture of 3-((C9-11)-isoalkyloxy)tet 1,1-dioxide, C10-rich (CAS RN 398141-87-2), for use in the manufacture of lubricating oils ^b	0 % rahydrothiopher	ne	31.12.2019
^g ex 3811 90 00	10	Dinonylnaphth acid salt, in a mineral oil solution	y0st/aphonic	_	31.12.2023
^g ex 3811 90 00	40	Solution of a quaternary ammonium salt based on polyisobutenyl succinimide, containing by weight 10 % or more but not more than 29,9 % of 2-ethylhexanol	0 %		31.12.2022
ex 3811 90 00	50	Corrosion inhibitor containing: — polyi succi acid, and	0 % sobutenyl nic	_	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		more than 5 % and not more than 20 % by weigh of mine oils, for use in the manufacture of blends of additives for fuels ^b	ht ral	
ex 3812 10 00	10	Rubber accelerator based on diphenyl guanidine granules (CAS RN 102-06-7)	0 %	31.12.2021
gex 3812 20 90	10	benze dicari (CAS) RN 6422- more than 10 % but not more than 60 % by weigh of	hexyl)-1,4- ene boxylate -86-2)	31.12.2023

		RN 1962	75-0)	
ex 3812 39 10	10	4,4'- Isopropylidene C12-15 alcohol phosphite containing by weight 1 % or more but not more than 3 % of bisphenol A (CAS RN 96152-48-6)	0 % diphenol	31.12.2019
gex 3812 39 90	20	Mixture containing predominantly bis(2,2,6,6-tetramethyl-1-octyloxy-4-piperidyl) sebacate	0 %	31.12.2023
gex 3812 39 90	25	yl)-5- (1,1- dimet hydro oxopt ω- hydro ethan (CAS RN 1048 — α- [3- [3- (2H- Benz yl)-5- (1,1- dimet	thylethyl)-4- exyphenyl]-1- ropyl]- exypoly(oxy-1,2 ediyl) 10-48-2),	 31.12.2023

(CAS		-	o- [3- [3- [3- (2H- benze yl)-5- (1,1- dimet hydre oxopt (oxy- ethan (CAS RN 1048 polye glyco of a weigl avera molee weigl (Mw) of 300 (CAS RN 25322 bis (1,2,2 penta	thylethyl)-4- exyphenyl]-1- ropoxy]poly 1,2- ediyl) 10-47-1), thylene l ttylene l 2-68-3), 2,6,6- methyl-4-	
ex 3812 39 90 30 Compound stabilisers containing by weight 15 % or more but not more than 40 %	ex 3812 39 90	S C B O	penta piper (CAS RN 41556 and methy penta piper sebac (CAS RN 82919 Compound stabilisers containing by weight 15 % or more but not more	methyl-4- idyl)sebacate 6-26-7), yl-1,2,2,6,6- methyl-4- idyl ate 9-37-7)	31.12.2019

		perchlorate and not more than 70 % of 2-(2- methoxyethoxy	y)ethanol		
^g ex 3812 39 90	35	esters (CAS RN	ire 18 nethylpiperidiny	·1	31.12.2023
		 not more than 20 % of other orgar comp on a carrie of polyp (CAS RN) 	nic Jounds er Propylene		
^g ex 3812 39 90	40	Mixture of: 80 % (± 10 %) by weigh	0 %	_	31.12.2023

		10 etil di ox ox ox di stra an	hylhexyl hyl-4,4- methyl-7- xo-8- xa-3,5- thia-4- annatetradecanoate hylhexyl hylhexyl hyl-4- 2-		
ex 3812 39 90	55	bi di tri yl (o ph (C Rl 27 an ei N '- bi pe	,6- s(2,4- methylphenyl)-1,3, azih-2-)-5- ctyloxy)- nenøl CAS N 725-22-6),	5-	31.12.2021

		morp triazi (CAS RN 1930 or N,N '- bis(2 tetrar piper hexar polyr with 2,4-dichl (4-morp triazi (CAS RN	oro-6- holinyl)-1,3,5- ne 98-40-7), 2,6,6- nethyl-4- idinyl)-1,6- nediamine, ner oro-6- holinyl)-1,3,5- ne	
ex 3812 39 90	65	Stabiliser for plastic material containing: — 2- ethyl 10- ethyl dime oxo-8 oxa-3 dithia stann (CAS RN 5758 — 2- ethyl 10- ethyl [[2- [(2- ethyl [2- ethyl] [2- ethyl] [2- ethyl] [2- ethyl] [2- ethyl]	thyl-7- 3- 4,5- 1-4- atetradecanoate 3-35-4), hexyl 4- hexyl)oxy]-2- thyl]thio]-4-	31.12.2021

		(CAS RN 5758: and — 2- ethyll merca (CAS RN 7659-	,5- 1-4- atetradecanoate 3-34-3), hexyl aptoacetate -86-1)		
ex 3812 39 90	70	(1,1-dimer hydro acid (CAS RN 1275 and	htriazolyl)-5- thylethyl)-4- exybenzeneprop 19-17-9), oxy-2- el	anoic	31.12.2021
ex 3812 39 90	80	penta piper	red e: 2,2,6,6- methyl-4- idinyl)-1,6- nediamine,		31.12.2022

		(4-morp triazi (CAS RN 1930 and either an o-hydro triazi UV light absor or a chem modi pheno	98-40-7), exyphenyl ne ber, ically fied olic	
gex 3814 00 20 90 20	Mixture containi weight:		ound 0 %	 31.12.2023
	— Weight.	69 % or		
		more but not		
		more than 71		
		% of		
		ol,	oxypropan-2-	
	_	29 % or		
		more but not		
		more than		
		31 %		

^g ex 3814 00 90	40		0 %	 31.12.2023
	10	nonafluorobuty ethyl ether		21 12 2022
^e ex 3815 12 00	10	Catalyst, in the form of granules or rings of a diameter of 3 mm or more but not more than 10 mm, consisting of silver on an aluminium oxide support and containing by weight 8 % or more but not more than 40 % of silver	0 %	31.12.2023
ex 3815 19 90	10	Catalysts consisting of chromium trioxide, dichromium trioxide or organometallic compounds of chromium, fixed on a silicon dioxide support with a pore volume of 2 cm³/g or more (as determined by the nitrogen	0 %	31.12.2021

		absorption method)			
ex 3815 19 90	13	— dichr trioxi (CAS RN	de -82-0), omium de		31.12.2021
gex 3815 19 90	15	Catalyst, in the form of a powder, consisting of a mixture of metal oxides fixed on a support of silicon dioxide, containing by weight 20 % or more but not more than 40 % of molybdenum, bismuth and iron evaluated together, for use in the manufacture of acrylonitrile ^b	0 %		31.12.2023
^g ex 3815 19 90	20	Catalyst, — in the form of solid spher of a diame		_	31.12.2023

		oxide and other metal oxide suppo on silico dioxi and/ or	sting are bdenum s, orted n de	
^g ex 3815 19 90	25	Catalyst in the form of spheres of a diameter of 4,2 mm or more but not more than 9 mm, consisting of a mixture of metal oxides containing predominantly oxides of molybdenum, nickel, cobalt and iron, on a support of aluminium	0 %	31.12.2023

		oxide, for use in the manufacture of acrylic aldehyde ^b			
gex 3815 19 90	30	Catalyst containing titanium tetrachloride supported on magnesium dichloride, for use in the manufacture of polypropylene	0 %		31.12.2023
gex 3815 19 90	35	Catalyst consisting of tungstosilicic acid hydrate (CAS RN 12027-43-9) impregnated on a support of silicon dioxide in the form of a powder	0 %		31.12.2023
gex 3815 19 90	65	Catalyst consisting of phosphoric acid chemically bonded to a support of silicon dioxide	0 %	_	31.12.2023
gex 3815 19 90	70	Catalyst consisting of organo- metallic compounds of aluminium and zirconium, fixed on a support of silicon dioxide	0 %		31.12.2023

gex 3815 19 90	75	Catalyst consisting of organometallic compounds of aluminium and chromium, fixed on a support of silicon dioxide	0 %	31.12.2023
gex 3815 19 90	80	Catalyst consisting of organometallic compounds of magnesium and titanium, fixed on a support of silicon dioxide, in the form of a suspension in mineral oil	0 %	31.12.2023
^g ex 3815 19 90	85	Catalyst consisting of organometallic compounds of aluminium, magnesium and titanium, fixed on a support of silicon dioxide, in the form of powder	0 %	31.12.2023
gex 3815 19 90	86	Catalyst containing titanium tetrachloride supported on magnesium dichloride, for use in the manufacture of polyolefins ^b	0 %	31.12.2023

	T			1	
gex 3815 19 90 ex 8506 90 00	87 10	Cathode, in rolls, for air zinc button cell batteries (hearing aid batteries) ^b	0 %	_	31.12.2023
ex 3815 90 90	16	Initiator based on dimethylamino urea	0 % propyl		31.12.2022
ex 3815 90 90	18	Oxidation catalyst with an active ingredient of di[manganese (1+)], 1,2-bis(octahydrodimethyl-1 <i>H</i> -1 triazonine-1-yl- <i>k</i> N ¹ , <i>k</i> N ⁴ , <i>k</i> N ⁷)ethanedi- <i>µ</i> -oxo- <i>µ</i> -(ethanoato- <i>k</i> O, <i>k</i> O')-, di[chloride(1-)(CAS RN 1217890-37-3) used to accelerate chemical oxidation or bleaching]		31.12.2022
ex 3815 90 90	22	Catalyst in powder form consisting by weight of 95 % (± 1 %) titanium dioxide and 5 % (± 1 %) silicon dioxide	0 %	_	31.12.2022
gex 3815 90 90	25	Catalyst consisting by weight of: — 30 % or more but	0 %	_	31.12.2023

		bis(he (CAS) RN 7422' and 24 % or more but not more than 27 % of dipher pheny hexat (CAS) RN	enylsulphonio)pexafluorophospl 7-35-3), nyl(4- ylthio)phenylsup	nate) phonium	
ex 3815 90 90	30	comp of magn chlor and titani chlor and silico dioxi	um(III) ide, n		31.12.2020

			% (± 0,6 %) by weigh of magn and conta 2,3 % (± 0,2 %) by weigh of titanin	esium, ining nt um		
⁴ ex 3815 90 90	35	Catalyst containing weight:	25 % or more but not more than 27,5 % of bis[4-(diph bis(he (CAS RN 8945) and 20 % or more but not more than 22,5 % of	enylsuphonio)pl exafluoroantimo	nenyl]sulphide mate)	31.12.2023

		hexat (CAS RN	ylthio)phenylsuf luoroantimonato 9-78-0),	onium e	
gex 3815 90 90	40	oxide and other metal oxide in a silico dioxi matri — in the form of hollo	bdenum s s n de x, w drical		31.12.2023
gex 3815 90 90	50	Catalyst containing titanium trichloride, in the form of a suspension in hexane or heptane	0 %	_	31.12.2023

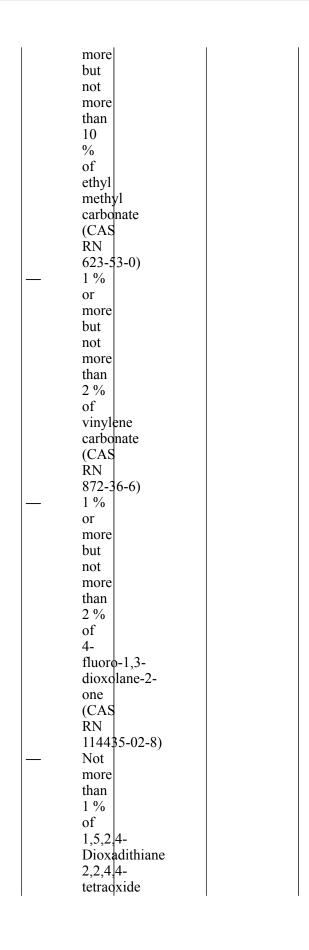
		containing by weight, in the hexane- or heptane- free material, 9 % or more but not more than 30 % of titanium			
ex 3815 90 90	70	Catalyst, consisting of a mixture of (2- hydroxypropyl formate and dipropylene glycols	0 %)trimethylammo	mium	31.12.2019
ex 3815 90 90	80	Catalyst consisting predominantly of dinonylnaphtha acid in the form of a solution in isobutanol	0 % alenedisulphonic		31.12.2020
gex 3815 90 90	81	Catalyst, containing by weight 69 % or more but not more than 79 % of (2- hydroxy-1- methylethyl)tri 2- ethylhexanoate	0 % methylammoniu		31.12.2023
ex 3815 90 90	85	Catalyst based on aluminosilicate (zeolite), for the alkylation of aromatic hydrocarbons, for the transalkylation of alkylaromatic hydrocarbons or for the			31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		oligomerization of olefins ^b	h	
gex 3815 90 90	86	Catalyst, in the form of rodlets, consisting of an aluminosilicate (zeolite), containing by weight 2 % or more but not more than 3 % of rareearth metal oxides and less than 1 % of disodium oxide	0 %	31.12.2023
⁸ ex 3815 90 90	88	Catalyst, consisting of titanium tetrachloride and magnesium chloride, containing by weight on an oil- and hexane-free basis: — 4 % or more but not more than 10 % of titanii and — 10 % or more but not more than 20	um,	31.12.2023

		% magn	esium	
ex 3815 90 90	89	Rhodococcus rhodocrous J1 bacteria, containing enzymes, suspended in a polyacrylamide gel or in water, for use as a catalyst in the production of acrylamide by the hydration of acrylonitrile ^b	0 %	31.12.2021
gex 3817 00 50	10	- 25 % or more but not more than 50 % of	ylbenzene, sylbenzene,	31.12.2023


Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

gex 3817 00 80	10	Mixture of alkylnaphthale containing by weight: — 88 % or more but not more than	osylbenzene 0 % nes,		31.12.2023
		- 2 % or more but not more than 12 % of			
^g ex 3817 00 80	20	Mixture of branched alkyl benzenes mainly containing dodecyl benzenes	0 %		31.12.2023
ex 3817 00 80	30	Mixed alkylnaphthale modified with aliphatic chains, of a chain-length varying from 12 to 56 carbon atoms	0 % nes,	_	31.12.2021

^g ex 3819 00 00	20	Fire resistant hydraulic fluid based on phosphate ester	0 %	_	31.12.2023
gex 3823 19 30 ex 3823 19 30		fatty acids of headi 3823 — steari acid of headi 3823 — steari acid of headi 2915 — palm acid of headi 2915 or — anima feed prepa of headi 2309	ng ng c ng tic ng al		31.12.2023
^g ex 3823 19 90 ex 3823 19 90	30	Palm acid oils from refining for use in the manufacture of:	0 %	_	31.12.2023

		mor fatty acid of head acid of	ding 3, ric ding 3, ric ding 5, nitic ding 5, nal l coarations ding	
gex 3824 99 15	10	Acid aluminosilica (artificial zeolite of the Y type) in the sodium form, containing by weight not more than 11 % of sodium evaluated as sodium oxide in the form of rodlets		31.12.2023
ex 3824 99 92	23	Butylphospha complexes of titanium(IV) (CAS RN 109037-78-7) dissolved in ethanol and propan-2-ol		31.12.2020

ex 3824 99 92	25	Preparation containing by	0 %	 31.12.2021
		weight:		
		_ 25		
		%		
		or		
		more		
		but		
		not		
		more		
		than		
		50		
		% of		
		dieth	J ₇ 1	
		carbo		
		(CAS		
		RN	1	
			8-8)	
		25		
		%		
		or		
		more		
		but		
		not		
		more		
		than		
		50		
		%		
		of othy.l	ona	
		ethyl carbo	nate	
		(CAS		
		RN	1	
		96-49	9-1)	
		_ 10		
		%		
		or		
		more		
		but		
		not		
		more		
		than		
		20		
		%		
		of		
		lithiu	m Ayaranbaanbata	
		nexa	fluorophosphate	
		(CAS		
		2122	4-40-3)	
		_ 5 %	T-10-3)	
		or		

CAS RN 99591-74-9)						
RN 99591-74-9) ex 3824 99 92 26 Preparation containing by weight: — 60 % or more but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of of 4-(4-nitrophenylazo)-2,6-disecbutyll-phenol (CAS RN 111850-24-9), and — 10 % or more			(CAS			
ex 3824 99 92 26 Preparation containing by weight: — 60 — 60 — 60 — 60 — 60 — 60 — 60 — 6			RN			
ex 3824 99 92 26				1_71_9)		
containing by weight:						
containing by weight: — 60 % or more but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not mot more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more	ex 3824 99 92	26	Preparation	0 %	_	31.12.2022
weight:			containing by			
— 60 % or more but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			weight:			
% or more but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4-(4-nitrophenylazo)-2,6-di-sec-butyl-phenol (CAS RN 111850-24-9), and — 10 % or more			- 60			
or more but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
more but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disecbutyl-phenol (CAS RN 111850-24-9), and — 10 % or more						
but not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5),						
not more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disecbutyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
more than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
than 75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
75 % of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
% of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- (4- nitrophenylazo)-2,6- disecbutyl-phenol (CAS RN 111850-24-9), and — 10 % or more						
of Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
Solvent naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
naphtha (petroleum), heavy aromatic (CAS RN 64742-94-5), 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and 10 % or more						
(petróleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
(petróleum), heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			napht	ha		
heavy aromatic (CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			(petro	leum),		
(CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			heavy	7		
(CAS RN 64742-94-5), — 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			arom	atic		
RN 64742-94-5), 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disecbutyl- phenol (CAS RN 111850-24-9), and			(CAS			
- 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and - 10 % or more			ŘN			
- 15 % or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and - 10 % or more				2-94-5).		
% or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more				,,		
or more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disecbutyl-phenol (CAS RN 111850-24-9), and — 10 % or more						
more but not more than 25 % of 4- (4- nitrophenylazo)-2,6- disec-butyl-phenol (CAS RN 111850-24-9), and — 10 % or more						
but not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
not more than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
more than 25 % of 4- (4- nitrophenylazo)-2,6- disec-butyl-phenol (CAS RN 111850-24-9), and — 10 % or more						
than 25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
25 % of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
% of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
of 4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
4- (4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more						
(4- nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			01 Λ_			
nitrophenylazo)-2,6- di- sec- butyl- phenol (CAS RN 111850-24-9), and 10 % or more			π- (Λ-			
di- sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			nitro:	henvlazo) 2.6		
sec- butyl- phenol (CAS RN 111850-24-9), and — 10 % or more			di			
butyl- phenøl (CAS RN 111850-24-9), and — 10 % or more						
phenol (CAS RN 111850-24-9), and — 10 % or more						
(CAS RN 111850-24-9), and — 10 % or more			phon	1		
RN 111850-24-9), and — 10 % or more			(CAS	01		
111850-24-9), and						
and 10 % or more				50.24.0)		
10 % or more)U-24-9 <i>)</i> ,		
or more						
or more						
more						
but						
			but			

		not more than 15 % of 2- sec- butyl (CAS RN 89-72	phenol		
ex 3824 99 92	27	4-Methoxy-3- (3- morpholin-4- yl-propoxy)- benzonitrile (CAS RN 675126-28-0) in an organic solvent	0 %		31.12.2021
ex 3824 99 92	28	yl)eth (CAS RN	oromethyl)pyri ianamine 66-44-5),	din-2-	31.12.2020

		25 % of sulph acid (CAS) RN 7664 and 0,5 % or more but not more than 2,9 % of meth (CAS) RN 67-56	-93-9), anol	
ex 3824 99 92	29	glyco ether of butyl 2- cyand 3- (4- hydro	othylene	31.12.2020

		— 1 % or more but not more than 15 % of polyo (20) sorbit triole	xyethylene	
ex 3824 99 92	30	Aqueous solution of caesium formate and potassium formate containing by weight: — 1 % or more but not more than 84 % of caesiu forma (CAS RN 3495- — 1 % or more but not more than 76 % of potas forma (CAS RN	um nte -36-1), sium nte	31.12.2021

		— wheth or not contain not more than 9 % of additi	ining	
ex 3824 99 92	32	Mixture of divinylbenzene isomers and ethylvinylbenz isomers, containing by weight 56 % or more but not more than 85 % of divinylbenzene (CAS RN 1321-74-0)	ene-	31.12.2019
ex 3824 99 92 ex 3824 99 93 ex 3824 99 96	33 40 40	Anti- corrosion preparations consisting of salts of dinonylnaphtha acid, either: — on a suppo of miner wax, whetl or not modi chem or — in the form of a soluti in an	ort ral her fied ically,	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		organ solve			
gex 3824 99 92	35	Preparations containing not less than 92 % or more but not more than 96,5 % by weight of 1,3:2,4-bis-O-(4-methylbenzylic glucitol and also containing carboxylic acid derivatives and an alkyl sulphate	0 % dene)- <i>D</i> -		31.12.2023
ex 3824 99 92	36	Calcium phosphonate phenate, dissolved in mineral oil	0 %	_	31.12.2021
^g ex 3824 99 92	37	Mixture of acetates of 3-butylene-1,2-diol with a content by weight of 65 % or more but not more than 90 %	0 %		31.12.2023
^g ex 3824 99 92	39	Preparation containing not less than 47 % by weight of 1,3:2,4-bis-Obenzylidene-D-glucitol	0 %	_	31.12.2023
ex 3824 99 92	40	Solution of 2-chloro-5- (chloromethyl) pyridine (CAS RN 70258-18-3) in organic	0 %	_	31.12.2020

diluent

^g ex 3824 99 92	42	Preparation of tetrahydro-α-(1-naphthylmethy propionic acid (CAS RN 25379-26-4) in toluene	0 % l)furan-2-		31.12.2023
^g ex 3824 99 92	45	Preparation consisting predominantly of γ -butyrolactone and quaternary ammonium salts, for the manufacture of electrolytic capacitors ^b	0 %		31.12.2023
ex 3824 99 92	46	Diethylmethox (CAS RN 7397-46-8) in the form of a solution in tetrahydrofurar		_	31.12.2020
ex 3824 99 92	47	oxide (CAS) RN 78-50 diocty oxide (CAS) RN 31160 octyle oxide (CAS) RN 31160 and trihex oxide (CAS) RN	0-2), ylhexylphosphir 0-66-4), dihexylphosphir 0-64-2), xylphosphine		31.12.2022

ex 3824 99 92	49	Preparation based on 2,5,8,11- tetramethyl-6- dodecyn-5,8- diol ethoxylate (CAS RN 169117-72-0)	0 %	31.12.2022
ex 3824 99 92	50	Alkyl carbonate-based preparation, also containing a UV absorber, for use in the manufacture of spectacle lenses ^b	0 %	31.12.2022
^g ex 3824 99 92	51	Mixture containing by weight 40 % or more but not more than 50 % of 2-hydroxyethyl methacrylate and 40 % or more but not more than 50 % of glycerol ester of boric acid	0 %	31.12.2023
gex 3824 99 92	53	glyco dode acid and amm water — or N,N-	ylene ll, candioic	31.12.2023

		 or silico oxide or ammon hydro azelar or ammon hydro azelar and silico oxide or 	onium ogen te, onium ogen te onium ogen te te onia	
ex 3824 99 92	54	Poly(tetrameth glycol) bis[(9-oxo-9H-thioxanthen-1-yloxy)acetate] with an average polymer chain length of less than 5 monomer units (CAS RN	yOctic	31.12.2021
^g ex 3824 99 92	55	Additives for paints and coatings, containing: — a mixtu of esters of		31.12.2023

21, 2924 00 02		acid obtain from the reacti of phosp anhyo with 4- (1,1-dimet pheno and copol of styrer allyl alcoh (CAS RN 8460: and 30 % or more but not more than 35 % by weigh of isobu alcoh	on phoric dride chylpropyl) pl ymers ne- ol 5-27-6), ttyl ol	21.12.2010
ex 3824 99 92	56	Poly(tetrameth glycol) bis[(2-benzoyl-phenoxy)acetat with an average polymer chain length of less than 5 monomer units		31.12.2019

ex 3824 99 92	57	Poly(ethylene glycol) bis(p-dimethyl)amin with an average polymer chain length of less than 5 monomer units	0 % obenzoate	 31.12.2019
gex 3824 99 92	59	Potassium tert- butanolate (CAS RN 865-47-4) in the form of a solution in tetrahydrofurar	0 %	31.12.2023
ex 3824 99 92	60	N2-[1-(S)- Ethoxycarbony phenylpropyl]- N6- trifluoroacetyl- L-lysyl-N2- carboxy anhydride in a solution of dichloromethan at 37 %		31.12.2020
ex 3824 99 92	61	3',4',5'- Trifluorobipher amine, in the form of a solution in toluene containing by weight 80 % or more but not more than 90 % of 3',4',5'-trifluorobiphen amine		31.12.2020
ex 3824 99 92	64	Preparation containing by weight: — 89 % or more	0 %	31.12.2021

		but not			
		more than			
		98,9			
		%			
		of			
		1,2,3-	VV 16.57		
		bis-	xy-4,6:5,7-		
		O-			
		[(4-			
		propy	lphenyl)methyl	ene]-	
		nonit	ol		
		% or			
		or more			
		but			
		not			
		more			
		than			
		1 % of			
		colou	rants		
		1 %			
		or			
		more			
		but			
		not			
		more than			
		10			
		%			
		of			
		fluoro	polymers		
ex 3824 99 92	65	Mixture of	0 %	_	31.12.2019
		primary tert-			
		alkylamines			
ex 3824 99 92	68	Preparation	0 %	_	31.12.2020
		containing by			
		weight:			
		(± 1			
		%)			
		((3-			
		(sec-			
		butyl)-4-	41 4 1	
		(decy	loxy)phenyl)me nzene	unanetriyi)	
		(CAS			
	I	(5715)	I	I	I

		Dissolved in: — 10 % (± 5 %) 2- sec- Butyl (CAS RN 89-72 — 64 % (± 7 %) Solve napht (petro heavy arom (CAS RN 6474 and — 6 % (± 1,0 %)	ent tha oleum), vatic 2-94-5),	
ex 3824 99 92	69	A bis(d		31.12.2020

		- 7 % or more but not more than 20 % oligo of Bisph A bis(d:	mers nenol- iphenyl phate),		
ex 3824 99 92	70	Mixture of 80 % (± 10 %) of 1-[2-(2-aminobutoxy)e ylamine and 20 % (± 10 %) of 1-({[2-(2-aminobutoxy)e propoxy)but-2-ylamine	thoxy]methyl}		31.12.2019
^g ex 3824 99 92	72	N-(2- Phenylethyl)-1 benzenedimeth derivatives (CAS RN 404362-22-7)	0 % ,3- anamine		31.12.2023
^g ex 3824 99 92	76	Preparation containing: — 74 % or more	0 %	_	31.12.2023

		pheno benze (CAS RN	ht oxy-3- oxy- eneacetonitrile 6-76-4),		
gex 3824 99 92	78	Preparation containing by weight either 10 % or more but not more than 20 % of lithiumfluorop or 5 % or more but not more than 10 % of lithium perchlorate in mixtures of organic solvents	0 % hosphate		31.12.2023
ex 3824 99 92	80	Diethylene glycol	0 %	_	31.12.2022

		propylene glycol triethanolamine titanate complexes (CAS RN 68784-48-5) dissolved in diethylene glycol (CAS RN 111-46-6)	e	
ex 3824 99 92	82	T- butylchloride dimethylsilane (CAS RN 18162-48-6) solution in toluene	0 %	31.12.2019
gex 3824 99 92	84	alkyl	ene, inium- ound, iic ilex ten,	31.12.2023

		of			
			odenum		
ex 3824 99 92	88	2,4,7,9- Tetramethylded yne-4,7-diol, hydroxyethylat		_	31.12.2020
⁸ ex 3824 99 93	30	Powder Mixture containing by weight: — 85 % or more of zinc diacr; (CAS RN 1464: — not more than 5 % of 2,6- di- tert- butyl alpha dimer p- creso (CAS RN 88-27 and — not more than 10 % of zinc steara (CAS RN 88-27 and S557-0	0 % ylate 3-87-9), hylamino- 1 7-7),		31.12.2019
ex 3824 99 93	35	Paraffin with a level of chlorination	0 %		31.12.2019

		of 70 % or more			
ex 3824 99 93	38	(CAS RN 1478-61-1) and 4,4'-	0 % opylidene)diphe opylidene)diphe		31.12.2022
^g ex 3824 99 93	42	Mixture of bis {4-(3-(3-phenoxycarbor diphenyltoluen dicarbamate and 1-[4-(4-aminobenzenes phenyl]-3-(3-phenoxycarbor tolyl)-urea	sulphonyl)-	— nreido}phenylsu	31.12.2023 lphone,
ex 3824 99 93	45	Sodium hydrogen 3- aminonaphthal disulphonate (CAS RN 4681-22-5) containing by weight: — not more than 20 % of disod sulph and — not more than 10 % of sodiu chlor	ium ate,		31.12.2021
ex 3824 99 93	50	Preparation, consisting of	0 %	_	31.12.2021

		acesulfame potassium (CAS RN 55589-62-3) and potassium hydroxide (CAS RN 1310-58-3)		
gex 3824 99 93	53	Zinc dimethacrylate (CAS RN 13189-00-9), containing not more than 2,5 % by weight of 2,6-di-tert-butyl-alphadimethyl amino-p-cresol (CAS RN 88-27-7), in the form of powder	0 %	31.12.2023
ex 3824 99 93	55	carbo acid (CAS RN	ine-2- xylic 5-20-6),	31.12.2021

		acid (CAS RN	ocinnamic	
gex 3824 99 93	60	Mixture of phytosterols (CAS RN 949109-75-5) in powder form containing by weight: — 40 % or more but not more than 88 % of sitost — 20 % or more but not more than 63 % of	erols,	31.12.2023

		mot more than 13 %		
ex 3824 99 93	63	Mixture of phytosterols, not in the form of powder, containing by weight: — 75 % or more of sterol — not more than 25 % of stano for use in the manufacture of stanols/ sterols or stanol/sterol esters ^b		31.12.2022
⁸ ex 3824 99 93	65	Reaction mass of 1,1'- (isopropylidene dibromo-4- (2,3- dibromo-2- methylpropoxy (CAS RN 97416-84-7) and 1,3-		31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		dibromo-2- (2,3- dibromo-2- methylpropoxy {2-[3,5- dibromo-4- (2,3,3- tribromo-2- methylpropoxy yl}benzene)-5-)phenyl]propan	-2-	
ex 3824 99 93	70	Oligomeric reaction product, consisting of bis(4-hydroxyphenyl sulfone and 1,1'-oxybis(2-chloroethane)	0 %		31.12.2019
ex 3824 99 93	75	Mixture of phytosterols, in the form of flakes and balls, containing by weight 80 % or more of sterols and not more than 4 % of stanols	0 %		31.12.2019
ex 3824 99 93 ex 3824 99 96	80 67	Film containing oxides of barium or calcium combined with either oxides of titanium or zirconium, in an acrylic binding material	0 %		31.12.2019
gex 3824 99 93 ex 3824 99 96	83 85	Preparation containing: — C,C		_	31.12.2023

		oxide (CAS) RN 1309- and zinc bis(p- toluer sulph (CAS) RN	48-4), ne inate) 5-02-6),	
^g ex 3824 99 93 ex 3824 99 96	85 57	Particles of silicon dioxide on which are covalently bonded organic compounds, for use in the manufacture of high performance liquid chromatograph columns (HPLC) and sample preparation cartridges ^b	у у	31.12.2023
gex 3824 99 93	88	Mixture of phytosterols containing by weight: — 60 % or more but not more than 80 %		31.12.2022

			of sitost less	erols,	
		_	than		
			% of	antonolo	
		_	less than	esterols,	
			5 % of	asterols,	
		_	and less	asiciois,	
			than 15 %		
			of	itostanols	
ex 3824 99 96	30	Rare-ear	th	0 %	 31.12.2022
CA 302 1 99 90	30	concentra		0 70	
		containir			
		weight:	-6 0)		
		_	20		
			%		
			or		
			more		
			but		
			not		
			more		
			than		
			30		
			% of		
			ceriui	m	
			oxide		
			(CAS		
			RN		
			1306-	38-3),	
		—	2 %		
			or		
			more		
			but		
			not more		
			than		
			10		
			%		
			of		
			lantha	anum	
			oxide		I

		— 10 % or more but not more than 15 % of yttriu oxide (CAS RN 1314 and not more than 65 % of zirco oxide (CAS RN	m36-9), -23-4) ding al tring um		
gex 3824 99 96	35	Calcined bauxite (refractory grade)	0 %	_	31.12.2023
ex 3824 99 96	37	Structured silica alumina phosphate	0 %		31.12.2019
ex 3824 99 96	45	Lithium nickel cobalt aluminum oxide powder (CAS RN 177997-13-6) with:	0 %		31.12.2022

		 a particular size of less than 10 μm, a purity by weigh of more than 98 % 	/ nt	
ex 3824 99 96	46	- 13 % or more but not more than 42 % of	III)oxide, anese	31.12.2020

		not			
		more			
		than			
		22			
		%			
		of			
		zinc			
		oxide			
^g ex 3824 99	47		0 %	_	31.12.2023
96		oxides, in the form			
		of powder,			
		containing by			
		weight:			
		— either			
		5 %			
		or			
		more			
		of			
		bariur	n,		
		neody	mium		
		or			
		magn	esium		
		and			
		15			
		%			
		or			
		more			
		of			
		titaniı	ım,		
		or	,		
		30			
		%			
		or			
		more			
		of			
		lead			
		and			
		5 %			
		or			
		more			
		of			
		niobit	ım		
		for use in the	A111,		
		manufacture			
		of dielectric			
		films or			
		for use as			
		dielectric			
		materials			
		in the			
		manufacture			

		of multilayer ceramic capacitors ^b		
ex 3824 99 96	48	Zirconium oxide (ZrO ₂), calcium oxide stabilised (CAS RN 68937-53-1) with a zirconium oxide content by weight of 92 % or more but not more than 97 %	0 %	31.12.2020
ex 3824 99 96	50	Nickel hydroxide, doped with 12 % or more but not more than 18 % by weight of zinc hydroxide and cobalt hydroxide, of a kind used to produce positive electrodes for accumulators	0 %	31.12.2022
gex 3824 99 96	55	mang oxide (CAS RN 1344 magn oxide (CAS RN	-37-1) anese -43-0) esium	31.12.2023

ex 3824 99 96	60	— styrer acryla copol to be mixed with the toner powder, in the manufacturing of ink/toner filled bottles or cartridges for facsimile machines, computer printers and copiers ^b	ate ymer	31.12.2021
ex 3824 99 90	60	magnesia containing by weight 15 % or more of dichromium trioxide	U 70	31.12.2021
⁸ ex 3824 99 96	65	Aluminium sodium silicate, in the form of spheres of a diameter of: — either 1,6mm or more but not more than 3,4 mm, — or 4mm or more but not more than 6 mm	m	31.12.2023

ex 3824 99 96	70	Powder	0 %	31.12.2021
		containing by weight:		
		— 28		
		%		
		or		
		more		
		but		
		not		
		more		
		than 51		
		%		
		of		
		talc		
		(CAS		
		RN		
		1480	7-96-6)	
		30,5		
		% or		
		more		
		but		
		not		
		more		
		than		
		48		
		% of		
		silico	n	
		dioxi		
		(quar		
		(CAS		
		RN		
			8-60-7)	
		— 17 _{0/}		
		% or		
		more		
		but		
		not		
		more		
		than		
		26 %		
		of		
			nium	
		oxide		
		(CAS		
		RN		
		1344-	28-1)	

ex 3824 99 96	73	Reaction	0 %	_	31.12.2019
		product,			
		containing by			
		weight:			
		<u> </u>			
		or			
		more			
		but			
		not			
		more			
		than			
		40			
		%			
		of			
		moly	bdenum		
		oxide — 10	,		
		— 10 %			
		or			
		more			
		but			
		not			
		more			
		than			
		50			
		%			
		of			
		nicke	1		
		oxide	,		
		30			
		%			
		or			
		more			
		but			
		not			
		more than			
		70			
		%			
		of			
		tungs	ten		
		oxide			
ex 3824 99 96	74	Mixture	0 %		31.12.2021
CA 3024 99 90	/ ' 	with a non-	0 /0		31.14.4041
		stoichiometric			
		composition:			
		— with			
		a			
		crysta	alline		
		struct	ure,		
		— with			
		a			
	•	1	'	1	1

		conte	nt	
		of		
		fused		
		magn	esia-	
		alum	na	
		spine		
		and		
		with		
			ktures	
		of		
		silica	te	
		phase		
		and		
			nates,	
		at	mates,	
		least		
		75		
		%		
		by		
		weigl	nt.	
		of	11	
		which		
		consi		
		of	515	
		fracti	ong	
		with	OHS	
		a		
		grain		
		size		
		of		
		1-3		
		mm		
		and		
		at		
		most		
		25		
		% .		
		consi	sts	
		of		
		fracti	ons	
		with		
		a .		
		grain		
		size		
		of		
		0-1		
		mm		
ex 3824 99 96	77	Preparation,	0 %	 31.12.2019
VA 302 T 77 70	, ,	consisting	0 /0	51.12.2017
		consisting of 2,4,7,9-		
		tetramethyldec	_5_	
		tetramethyldec yne-4,7-diol		
		y110- 4 , / -0101		

		and silicon dioxide			
ex 3824 99 96	80	silica (CAS) RN 7631- 25 % or more but not more than 35 % by weigl of butan (CAS) RN 78-93 and not more than 1 % by weigl of 3- (2,3-	one 3-3),	ltrimethoxysilar	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

*ex 3824 99		I	DNI	I	I	I
"ex 3824 99 83			RN 2530-	83-8)		
oxide (CAS RN 12035-82-4) fixed on a porous support of aluminium oxide (CAS RN 1344-28-1), containing by weight:		83	Cubic Boron nitride (CAS RN 10043-11-5) coated with nickel and/or nickelphosphic (CAS RN	0 %		31.12.2023
than 5 % of ethylaluminium dichloride (CAS RN 563-43-9)	ex 3824 99 96	87	oxide (CAS RN 12035-82-4) fixed on a porous support of aluminium oxide (CAS RN 1344-28-1), containing by weight:	aluminium oride		31.12.2022

gex 3826 00 10 ex 3826 00 10	20 29	Mixture of fatty acid methyl esters containing by weight at least: — 65 % or more but not more than 75 % of C12			31.12.2023
		FAM 21 % or more but not more than			
		28 % of C14 FAM — 4 % or more but			
		not more than 8 % of C16 FAM			
		for use in the manufacture of detergents and home and personal care products ^b			
^g ex 3826 00 10 ex 3826 00 10	50 59	Mixture of fatty acid methyl esters	0 %	_	31.12.2023

		containing by weight at least: — 50 % or more but not more than 58 % of C8-FAM — 35 % or more but not more than 50 % of C10-FAM for the manufacturing of high purity C8 or C10 fatty acid or fatty acid mixtures thereof or of high purity methylester of C8 or C10 fatty acid fat	E		
gex 3901 10 10 ex 3901 40 00	20 10	High flow linear low density polyethylene-1 butene / LLDPE (CAS RN 25087-34-7) in form of powder, with	0 %	m^3	31.12.2019

		190 °C, kg) of 16 or	ew e e		
		— and der (A	t tore an l 0 min, d l 0 min, STM		
		0,9 g/ cm or mo but not tha	ore, t t tore		
		g/ cm and a vic sof ten of mi 94 °C	d cat ftening nperature n.		
ex 3901 10 90	30	Polyethylend granules, containing by weight 10 % or more but not more	0	_	31.12.2021

		than 25 % of copper			
gex 3901 40 00	20	Octene linear low-density polyethylene (LLDPE) in the form of pellets of a kind used in the co-extrusion processing of films for flexible food packaging with: — 10 % or more but not more than 20 % by weigh of octen— a melt flow ratio of 9,0 or more but not more than 10,0 (using ASTI D123 10,0/2— a melt index (190 °C/2,	g M 8 2,16),	m^3	31.12.2020

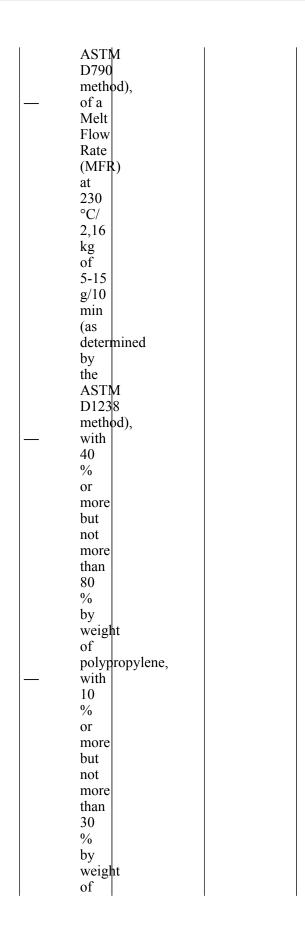
	kg)	
	of	
	0,4	
	g/	
	10	
	min	
	or	
	more	
	but	
	not	
	more	
	than	
	0,6	
	g/10 min,	
	a	
	density	
	of	
	0,909	
	g/	
	cm ³	
	or	
	more,	
	but	
	not	
	more	
	than	
	0,913	
	g/	
	cm ³	
	using ASTM	
	ASTM	
	D4703,	
_	a	
	gel	
	area	
	per	
	24,6	
	cm ³	
	of	
	not	
	more	
	than	
	20	
	mm ² ,	
	and	
	an	
	anti-	
	oxidant	
	level	
	of	
	not	
	more	
,	ı	

		than			
		240			
		ppm			
gex 3901 40 00	30	ppm Octene linear low-density polyethylene (LLDPE) produced by a Ziegler-Natta catalyst method in the form of pellets with: — more than 10 % but not more than 20 % by weigl of copol— a melt flow rate (MFF 190 °C/2, kg) of	ty	m ³	31.12.2020
		D470 of	7		
		01	l		

		0,91	1		
		g/			
		cm ³			
		or			
		more	,		
		but			
		not			
		more			
		than			
		0,913			
		g/			
		cm ³ ,			
		for use in the			
		co-extrusion			
		processing of films for			
		flexible food			
		packaging ^b			
^g ex 3901 40	40	Block	0 %		31.12.2020
00		copolymer			
		of ethylene			
		with octene			
		in the form of			
		pellets:			
		with			
		a			
		speci	ific		
		gravi			
		of			
		0,862	2		
		or			
		more	,		
		but			
		not			
		more			
		than			
		0,863			
		— able			
		to			
		streto	ch		
		to at			
		least			
		200			
		%			
		its			
		origi	nal		
		lengt	h,		
		— with			
		a			
			eresis		
		of			
		50			
	I		1	I	I

		% (± 10 %), with permanent deformatio of not more than 20 %, for use in the	n	
		manufacture of napkin liners for babies ^b		
ex 3901 90 80	53	Copolymer of ethylene and acrylic acid (CAS RN 9010-77-9) with ————————————————————————————————————	m ³	31.12.2020

		125 °	C/2,16 kg,	
		ASTI	М	
		D123	8)	
		or		
		more		
ex 3901 90 80	55	Zinc or	0 %	31.12.2020
ex 3901 90 80	33	sodium	0 70	 31.12.2020
		salt of an		
		ethylene and		
		acrylic acid		
		copolymer,		
		with:		
		— an		
		acryli		
		acid	n.t	
		conte of 6	IIIL	
		%		
		or		
		more		
		but		
		not		
		more than		
		50		
		%		
		by		
		weigl	ht.	
		and	,	
		a		
		melt		
		flow		
		rate		
		of		
		1g/10)	
		min		
		or		
		more		
		at		
		190		
		°C/2,	16	
		kg		
		(meas	sured	
		using		
		using ASTI	М	
		D123	8)	
ex 3901 90 80	67	Copolymer	0 %	31.12.2020
CA 3701 70 00		made	0 /0	31.12.2020
		exclusively		
		from		
		ethylene and		
		methacrylic		
		inculact yill	l	


Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		acid monomers in which the methacrylic acid content is 11 % by weight or more		
ex 3901 90 80	70	Ethylene maleic anhydride copolymer, whether or not containing another olefin comonomer, with a melt flow rate of 1,3 g/10 min or more at 190 °C/2,16 kg (measured using ASTM D1238)	0 %	31.12.2020
ex 3901 90 80	73	polye (CAS RN	inated thylene 4-90-1),	31.12.2021

		(CAS RN 2713	ic lymer 6-15-8)		
gex 3901 90 80	91	Ionomer resin consisting of a salt of a copolymer of ethylene with methacrylic acid	0 %		31.12.2023
^g ex 3901 90 80	92	Chlorosulphon polyethylene	atte&6	_	31.12.2023
gex 3901 90 80	93	Copolymer of ethylene, vinyl acetate and carbon monoxide, for use as a plasticiser in the manufacture of roof sheets ^b	0 %	_	31.12.2023
gex 3901 90 80	94	Mixtures of A-B block copolymer of polystyrene and ethylene-butylene copolymer and A-B-A block copolymer of polystyrene, ethylene-butylene copolymer and polystyrene, containing by weight not more than 35 % of styrene	0 %		31.12.2023

^g ex 3901 90 80	97	Chlorinated polyethylene, in the form of powder	0 %	31.12.2023
gex 3902 10 00	20	Polypropylene, containing no plasticiser: — of a meltir point of more than 150 °C (as determent by the ASTN D 3417 method of a heat of fusion of 15 J/g or more but not more than 70 J/g, — of an elong at break of 1 000 % or more (as determent by the state of the st	nined A od),	31.12.2023

	 	ASTIM		I
		D		
		638		
		method), — of a		
		tensile		
		modulus		
		of		
		69 MDs		
		MPa or		
		more		
		but		
		not		
		more than		
		379		
		MPa		
		(as		
		determined by		
		the		
		ASTM		
		D		
		638 method)		
		memoa)		
2002 10 00	40	D 1 1 0.0/		21 12 2010
ex 3902 10 00	40	Polypropylene, 0 %		31.12.2019
ex 3902 10 00	40	containing no	_	31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a		31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile	_	31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile strength:	_	31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile		31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile strength: of 32-60 MPa		31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile strength: of 32-60 MPa (as		31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile strength: of 32-60 MPa (as determined		31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile strength: of 32-60 MPa (as determined by the		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638		31.12.2019
ex 3902 10 00	40	containing no plasticiser: of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method),		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural strength		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural strength of		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural strength of 50-90		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural strength of 50-90 MPa (as		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural strength of 50-90 MPa (as determined		31.12.2019
ex 3902 10 00	40	containing no plasticiser: — of a tensile strength: of 32-60 MPa (as determined by the ASTM D638 method), — of a flexural strength of 50-90 MPa (as		31.12.2019

		glass fibre, with 10 % or more but not more than 30 % by weigl of mica	ht	
^g ex 3902 20 00	10	Polyisobutylen of a number average molecular weight (Mn) of 700 or more but not more than 800	e) %	31.12.2023
gex 3902 20 00	20	Hydrogenated polyisobutene, in liquid form		 31.12.2023
^g ex 3902 30 00	91	A-B Block copolymer of polystyrene and an ethylene-propylene copolymer, containing by weight 40 % or less of styrene, in one of the forms mentioned in note 6 (b) to Chapter 39	0 %	31.12.2023
ex 3902 30 00	95	A-B-A block copolymer, consisting of: a copol of	0 % ymer	31.12.2021

		propy and ethyl and 21 % (± 3 %) by weigh of polys	ene,		
ex 3902 30 00	97	Liquid ethylene-propylene-copolymer with: — a flash of 250 °C or more — a visco index of 150 or more — of a numb avera mole weigl (Mn) of 650 or more	sity eer ge cular ht		31.12.2021
gex 3902 90 90	52	Amorphous poly-alpha- olefin copolymer blend of poly(propylene co-1- butene) and petroleum	0 %	_	31.12.2023

		hydrocarbon resin		
gex 3902 90 90	55	Thermoplastic elastomer, with an A-B-A block copolymer structure of polystyrene, polyisobutylene and polystyrene containing by weight 10 % or more but not more than 35 % of polystyrene	%	31.12.2023
ex 3902 90 90	60	Non-hydrogenated 100 % aliphatic resin (polymer), with the following characteristics: — liquid at room temperate obtained by cationic polymer of C-5 alkenes monome with a number average molecula weight (Mn) of 370 (± 50) with	ture I isation	31.12.2019

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		avera moled weigh (Mw) of 500 (± 100)	cular nt		
^g ex 3902 90 90	92	Polymers of 4- methylpent-1- ene	0 %	_	31.12.2023
gex 3902 90 90	94	Chlorinated polyolefins, whether or not in a solution or dispersion	0 %		31.12.2023
ex 3902 90 90	98	Synthetic poly-alpha-olefin with a viscosity at 100 °Celsius (measured according to method ASTM D 445) ranging from 3 centistokes to 9 centistokes and obtained by polymerization of a mixture of dodecene and tetradecene, containing a maximum of 40 % of tetradecene			31.12.2021
ex 3903 19 00	40	Crystalline polystyrene with: a melti point of 268 °C			31.12.2021

		or more but not more than 272 °C, a setting point of 232 °C or more but not more than 247 °C, whether or not contain additive and filling materia	ing es	
gex 3903 90 90	15	Copolymer in the form of granules containing by weight: — 78 (± 4 %) of styrene — 9 (± 2 %) of n- butyl acrylate — 11 (± 3 %) of n-		31.12.2023

		— 1,; (± 0, % of more according to the cordinate cordina	ethacrylic sid, ad 01 core at ot ore an 5 colyolefinic ax	
ex 3903 90 90	20	- 3 sty - 7 = 2 9 n- bu ac - 9 = 2 9 n- bu mo an - 0, % or mo bu no mo thi	by 3 ± % yrene, ± % atyl crylate, ± % atyl ethacrylate, nd 01 core at ore an %	31.12.2021

		polyc wax	lefinic	
ex 3903 90 90	25	acid, and 0,01 % or more but not more than 8,5 % of	ate, acrylic	31.12.2021
gex 3903 90 90 ex 3911 90 99	35 43	Copolymer of α-methylstyrene and styrene, having a softening point of more than 113 °C	0 %	31.12.2023
ex 3903 90 90 ex 3904 69 80		Polytetrafluoro (CAS RN 9002-84-0) encapsulated with an acrylonitrile- styrene copolymer	ct lf%ilene	31.12.2022

		(CAS RN 9003-54-7), with a content by weight of each polymer of 50 % (± 1 %)			
ex 3903 90 90	45	Preparation, in form of powder, containing by weight: — 86 % or more but not more than 90 % of styrer acrylic copol and — 9 % or more but not more than 11 % of fatty acid ethox (CAS RN	ymer,	m^3	31.12.2019
ex 3903 90 90	46	Copolymer in the form of granules containing by weight: — 74 % (± 4	0 %	m ³	31.12.2020

		and 0,01 % or more but not more than 2 % meth acid	acrylate,	
ex 3903 90 90	55	Preparation, in form of an aqueous suspension, containing by weight: — 25 % or more but not more than 26 % of styres acryl copol and — 5 % or more but not more than 6 % of glyco	ne- ic- lymer,	31.12.2019

ex 3903 90 90 ex 3911 90 99		Copolymer of styrene with maleic anhydride, either partially esterified or completely chemically modified, of an average molecular weight (Mn) of not more than 4 500, in flake or powder form	0 %		31.12.2021
ex 3903 90 90	65	Copolymer of styrene with 2, 5-furandione and (1-methylethyl)be in the form of flakes or powder (CAS RN 26762-29-8)	0 %	_	31.12.2020
ex 3903 90 90	70	Copolymer in the form of granules containing by weight: — 75 % (± 7 %) styres and — 25 % (± 7 %) methy	0 % ne, ylmethacrylate	m ³	31.12.2020
^g ex 3903 90 90	80	Granules of copolymer of styrene and divinylbenzene of a minimum diameter of 150 µm and	0 %	_	31.12.2023

		a maximum diameter of 800 µm and containing by weight: — minin 65 % styres — maximum diameter of ion exchange resins by maximum diameter of some and some since the manufacture of ion exchange resins by maximum diameter of some some some some some some some some	ne, mum ylbenzene,	
gex 3903 90 90	86	Mixture containing by weight: — 45 % or more but not more than 65 % of polyr of styrer — 35 % or more but not more than 45 % of poly(ether not more than 10	ners ne phenylene	31.12.2023

	%	
	of	
	other	
	additives	
and with	one	
or more	of	
the follo		
special c		
effects:	, oloui	
Circus.	metallic	
	or	
	*-	
	pearlescent	
	with	
	a l	
	visual	
	angular	
	metamerism	
	caused	
	by	
	at	
	least	
	0,3	
	%	
	flake-	
	based	
	pigment	
_	fluorescent,	
	as	
	characterized	
	by	
	emitting	
	light	
	during	
	absorption	
	of	
	ultraviolet	
	radiation	
	bright	
	white,	
	as	
	characterized	
	by	
	Ľ*	
	not	
	less	
	than	
	92	
	and	
	b*	
	not	
	more	
1	than	
	2	

		and			
		a*			
		betw	reen		
		- 5			
		and			
		7 on			
		the			
		CIE			
		colo	ur		
		scale			
ex 3904 10 00	20	Poly(vinyl	0 %	_	31.12.2019
0.1250.1000		chloride)			01.12.2019
		powder, not			
		mixed with			
		any other			
		substances			
		or containing			
		any vinyl			
		acetate			
		monomers,			
		with:			
		— a			
		degr	ee		
		of			
		poly	merisation		
		of 1			
		000			
		(±			
		300)			
		mon	omer		
		units			
		— a			
		coef	ficient		
		of			
		heat			
			mission		
		(K-			
		valu	e)		
		of			
		60			
		or			
		more	<u> </u>		
		but			
		not			
		more	<u></u>		
		than			
		70,			
		— a	H10		
		vola			
		mate			
		cont	ent		
		of			

		less than 2,00 % by weight, — a sieve non- passing fraction at a mesh width of 120 µm of not more than 1 % by weight, for use in the manufacture of battery separators ^b	
gex 3904 30 00 ex 3904 40 00	30 91	Copolymer of vinyl chloride with vinyl acetate and vinyl alcohol, containing by weight: — 87 % or more but not more than 92 % of vinyl chloride, — 2% or more but not or more than of vinyl chloride, — 2% or more but not	31.12.2023

		more than 9 % of vinyl acetar and 1 % or more but not more than 8 % of vinyl alcoh in one of the forms mentioned in note 6 (a) or (b) to Chapter 39, for the manufacture of goods of headings 3215 or 8523 or for use in the manufacture of coatings for containers and closures of a kind used for preserving food and drink ^b			
ex 3904 50 90	92	Vinylidene- chloride methacrylate co-polymer for use in the manufacture of monofilaments	0 %	_	31.12.2019
^g ex 3904 61 00	20	Copolymer of tetrafluoroethy and trifluoro(heptaticontaining		thylene,	31.12.2023

		3,2 % or more but not more than 4,6 % by weight of trifluoro(hepta and less than 1 mg/kg of extractable fluoride ions	fluoropropoxy)e	thylene	
ex 3904 69 80	81	Poly(vinyliden fluoride) (CAS RN 24937-79-9)	e0 %	_	31.12.2020
ex 3904 69 80	85	Copolymer of ethylene with chlorotrifluoro whether or not modified with hexafluoroisob in powder form, whether or not with fillers	ethylene,		31.12.2022
^g ex 3904 69 80	94	Copolymer of ethylene and tetrafluoroethy		_	31.12.2023
^g ex 3904 69 80	96	Polychlorotrifl in one of the forms mentioned in note 6 (a) and (b) to Chapter 39	uortxiethylene,	_	31.12.2023
^g ex 3904 69 80	97	Copolymer of chlorotrifluoro and vinylidene difluoride		_	31.12.2019
ex 3905 30 00	10	Viscous preparation, essentially consisting of poly(vinyl alcohol) (CAS RN 9002-89-5), an organic solvent and	0 %	_	31.12.2022

		water for use as protective coating of wafers during the manufacturing of semiconductors		
ex 3905 91 00	40	Water soluble copolymer of ethylene and vinyl alcohol (CAS RN 26221-27-2), containing by weight not more than 38 % of the monomer unit ethylene	0 %	31.12.2022
^g ex 3905 99 90	95	Hexadecylated or eicosylated polyvinylpyrro		 31.12.2023
⁸ ex 3905 99 90	96	Polymer of vinyl formal, in one of the forms mentioned in note 6 (b) to Chapter 39, of a weight average molecular weight (Mw) of 25 000 or more but not more than 150 000 and containing by weight: — 9,5 % or more but not more than 13 % of	0 %	31.12.2023

		acety group evalu as vinyl aceta and 5 % or more but not more than 6,5 % of hydro group evalu as vinyl alcoh	os ated te, oxy os ated		
^g ex 3905 99 90	97	Povidone (INN)-iodine (CAS RN 25655-41-8)	0 %	_	31.12.2023
gex 3905 99 90	98	Poly(vinyl pyrrolidone) partially substituted by triacontyl groups, containing by weight 78 % or more but not more than 82 % of triacontyl groups	0 %		31.12.2023
^g 3906 90 60		Copolymer of methyl acrylate with ethylene and a monomer containing a non-terminal carboxy group as a substituent, containing	0 %		31.12.2023

		by weight 50 % or more of methyl acrylate, whether or not mixed with silicon dioxide		
^g ex 3906 90 90	10	Polymerization product of acrylic acid with small quantities of a polyunsaturate monomer, for the manufacture of medicaments of heading 3003 or 3004b		31.12.2023
ex 3906 90 90	23	Copolymer of methylmethacr butylacrylate, glycidylmethac and styrene (CAS RN 37953-21-2), with an epoxy equivalent weight of not more than 500, in form of ground flakes with a particle size of not more than 1 cm	ylate,	31.12.2022
ex 3906 90 90	27	Copolymer of stearyl methacrylate, isooctyl acrylate and acrylic acid, dissolved in isopropyl palmitate	0 %	 31.12.2022
ex 3906 90 90	33	Core shell copolymer of butyl acrylate and alkyl	0 %	 31.12.2020

ex 3906 90 90	37	methacrylate, with a particle size of 5 µm or more but not more than 10 µm Copolymer of trimethylolprot trimethacrylate and methyl methacrylate (CAS RN 28931-67-1), in microsphere form with an average diameter of 3 µm	pane	31.12.2020
ex 3906 90 90	40	Transparent acrylic polymer in packages of not more than 1 kg, and not for retail sale with: — a visco of not more than 50 000 Pa s at 120 °C as	mined od M	31.12.2020

			ding eation matography al		
ex 3906 90 90	41	Poly(alkyl acrylate) with an ester alkyl chain of C10 to C30	0 %	_	31.12.2019
ex 3906 90 90	43	Copolymer of methacrylic esters, butylacrylate and cyclic dimethylsiloxa (CAS RN 143106-82-5)			31.12.2021
^g ex 3906 90 90	50	Polymers of esters of acrylic acid with one or more of the following	0 %		31.12.2023

	1			I
		monomers in		
		the chain:		
		— chloromethyl		
		vinyl		
		ether,		
		— chloroethyl		
		vinyl		
		ether,		
		— chloromethylstyrene,		
		— vinyl		
		chloroacetate,		
		— methacrylic		
		acid, — butenedioic		
		acid		
		monobutyl		
		ester,		
		containing by weight		
		not more		
		than 5 % of		
		each of the		
		monomeric		
		units, in one		
		of the forms		
		mentioned in		
		note 6 (b) to		
		11016 0 111 10		
a. 2006 00 00	52	Chapter 39		21 12 2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 %	_	31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder	_	31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder having an		31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder having an average		31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder having an average particle size		31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder having an average particle size of less than		31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder having an average particle size of less than 2 microns		31.12.2021
ex 3906 90 90	53	Chapter 39 Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C,		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight:		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: — 75		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: 75 %		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: 75 % or		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: 75 % or more		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: 75 % or more but		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: — 75 % or more but not		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: 75 % or more but		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: — 75 % or more but not more		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: — 75 % or more but not more than		31.12.2021
ex 3906 90 90	53	Polyacrylamide0 % powder having an average particle size of less than 2 microns and a melting point of more than 260 °C, containing by weight: 75 % or more but not more than 85		31.12.2021

		and 15 % or more but not more than 25 % of polyee glyco	thylene l		
gex 3906 90 90	60	co-	on ict epoxyalkylmeth ylbenzene) rol	acrylate-	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 3906 90 90	73	- metha acid	acrylate acrylic ymer,	31.12.2019
ex 3907 10 00	10	Mixture of a trioxan- oxirane- copolymer and polytetrafluoro	0 % ethylene	 31.12.2020

ex 3907 10 00	20	Polyoxymethy with acetyl endcaps, containing polydimethylsi and fibers of a copolymer of terephthalic acid and 1,4-phenyldiamine	iloxane		31.12.2020
^g ex 3907 20 11	10	Poly(ethylene oxide) of a number average molecular weight (Mn) of 100 000 or more	0 %		31.12.2023
^g ex 3907 20 11	20	Bis[Methoxypomaleimidoproper chemically modified with lysine, of a number average molecular weight (Mn) of 40 000	oßy¦∕ethyleneglyo pionamide,	:01)]-	31.12.2023
ex 3907 20 11	60	yl)-5- (1,1- dime hydro oxop ω- hydro ethan (CAS RN	thylethyl)-4- oxyphenyl]-1- ropyl]- oxypoly(oxy-1,2 ediyl)	_	31.12.2021

		yl)-5- (1,1- dimet hydro oxopi ω- [3- [3- (2H- benzo yl)-5- (1,1- dimet hydro oxopi ethan (CAS RN 1048	chylethyl)-4- oxyphenyl]-1- otriazol-2- chylethyl)-4- oxyphenyl]-1- opoxy]poly(oxyediyl)	y-1,2-	
ex 3907 20 20	20	Polytetramethy ether glycol with a weight average molecular weight (Mw) of 2 700 or more but not more than 3 100 (CAS RN 25190-06-1)	1⊕196		31.12.2022
ex 3907 20 20	25	Copolymer of propylene oxide and butylene oxide, monododecyler containing by weight: — 48 % or more but not more than 52 % of propy			31.12.2021

		oxide and 48 % or more but not more than 52 % of butyloxide	ene	
^g ex 3907 20 20	30	Mixture, containing by weight 70 % or more but not more than 80 % of a polymer of glycerol and 1,2-epoxypropane and 20 % or more but not more than 30 % of a copolymer of dibutyl maleate and N-vinyl-2-pyrrolidone	0 %	31.12.2023
^g ex 3907 20 20	35	Mixture containing by weight: — 5 % or more but not more than 15 % of a copol of glyce propy oxide	ymer rol, ∤lene	31.12.2023

		and 85 % or more but not more than 95 % of a copol of sucro propy oxide and ethyle oxide (CAS) RN	ymer se, ylene		
gex 3907 20 20	40	Copolymer of tetrahydrofurar and tetrahydro-3-methylfuran with a number average molecular weight (Mn) of 3 500 (± 100)	0 %		31.12.2023
ex 3907 20 20 ex 3907 20 99		Poly(p- phenylene oxide) in the form of powder with a glassi of 210 °C,	0 %	rature	31.12.2019

	I		I	I	I
		with a			
		weigl	 nt		
		avera			
		mole	cular		
		weigl			
		(Mw)			
		of			
		35			
		000			
		or			
		more			
		but			
		not			
		more than			
		80			
		000,			
		— with			
		an			
		inher	ent		
		visco	sity		
		of			
		0,2			
		or			
		more			
		but			
		not more			
		than			
		0,6			
		dl/			
		gram			
2007.20.20	60	_			21 12 2022
ex 3907 20 20	60	Polypropylene	0 %		31.12.2022
		glycol			
		monobutyl ether			
		(CAS RN			
		9003-13-8) of			
		an alkalinity			
		of not more			
		than 1 ppm of			
		sodium			
g 2007 20	15		16,00		31.12.2023
^g ex 3907 20	13	Poly(oxypropy having	1011(0)		31.12.2023
99		alkoxysilyl			
		end-groups			
^g ex 3907 20	20	2,3-	0 %		31.12.2023
99		Bis(methylpoly	oxyethylene-		
		oxy)-1-[(3-			
		maleimido-1-			

		oxopropyl)ami propane (CAS RN 697278-30-1) with a number average molecular weight (Mn) of at least 20 kDa whether or not modified with a chemical entity enabling a linkage between the PEG and a protein or a peptide	no]propyloxy		
^g ex 3907 20 99	30	Homopolymer of 1-chloro-2,3-epoxypropane (epichlorohydr		_	31.12.2023
gex 3907 20 99	40	N- (methoxypoly (ethylene glycol) -N- (1-acetyl- (2- methoxypoly (ethylene glycol)) -glycine (CAS RN 600169-00-4) with a number average molecular weight (Mn) for polyethylene glycol of 40 kDa	0 %		31.12.2023
^g ex 3907 20 99	45	Copolymer of ethylene oxide and propylene oxide, having	0 %	_	31.12.2023

gex 3907 20 99	50	aminopropyl and methoxy end-groups Vinyl-silyl terminated perfluoropolye polymer or an assortment of two components consisting of the same type of vinyl-silyl terminated perfluoropolye polymer as the main ingredient			31.12.2023
^g ex 3907 20 99	55	Succinimidyl ester of methoxy poly(ethylene glycol)propion acid, of a number average molecular weight (Mn) of 5 000	0 % ic		31.12.2023
ex 3907 20 99	60	Polytetramethy oxide di-p-aminobenzoate		_	31.12.2021
ex 3907 20 99	70	α-[3-(3- Maleimido-1- oxopropyl)ami ω-methoxy, polyoxyethyler (CAS RN 883993-35-9)		_	31.12.2019
ex 3907 30 00	15	by weigl more than 2 %	phoros		31.12.2020

		on the solid content, chemically bound in the epoxide resin, not containing any hydrolysable chloride or containing less than 300 ppm hydrolysable chloride, and containing solvents, for use in the manufacture of prepreg sheets or rolls of a kind used for the production of printed	
		circuits ^b	
ex 3907 30 00	25	Epoxide resin 0 % — containing by weight 21 % or more of brome, — not containing any hydrolysable chloride or containing	31.12.2020

		less than 500 ppm hydro chlor and conta	ining		
^g ex 3907 30 00 ex 3926 90 97	40 70	Epoxide resin, containing by weight 70 % or more of silicon dioxide, for the encapsulation of goods of headings 8533, 8535, 8536, 8541, 8542 or 8548 ^b	0 %		31.12.2023
ex 3907 30 00	60	Polyglycerol polyglycidyl ether resin (CAS RN 118549-88-5)	0 %	_	31.12.2022
ex 3907 30 00	70	Preparation of epoxy resin (CAS RN 29690-82-2) and phenolic resin (CAS RN 9003-35-4) containing by weight: — 65 % or more but not more than 75 % of silico dioxid	n		31.12.2022

		and none or not more than 0,5 % of carbo black (CAS	6-86-0), on	
^g ex 3907 40 00	35	α- Phenoxycarbor ω- phenoxypoly[α dibromo-1,4- phenylene) isopropylidene dibromo-1,4- phenylene)oxy (CAS RN 94334-64-2)	xy(2,6- (3,5-	31.12.2023
^g ex 3907 40 00	45	dibromo-1,4-	xy)poly[oxy(2,6 propylidene(3,5-	31.12.2023
ex 3907 40 00	70	Polycarbonate of phosgene and bisphenol A: — conta by weigh 12 % or more but not	ining	31.12.2019

		of isoph chlor terepl chlor and resore with p-	ymer thaloyl ide, hthaloyl ide cinol, lphenol ips, at ge cular ht		
ex 3907 40 00	80	Polycarbonate of carbonic dichloride, 4,4'-(1-methylethylide dibromopheno and 4,4'-(1-methylethylide with 4-(1-methyl-1-phenylethyl)phendcaps	ne)bis[2,6- l] ne)bis[phenol]		31.12.2019
^g ex 3907 69 00	10	Copolymer of terephthalic acid and isophthalic	0 %	_	31.12.2023

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		acid with ethylene glycol, butane-1,4- diol and hexane-1,6- diol			
ex 3907 69 00	40	Poly(ethylene terephthalate) pellets or granules: — with a speci gravi of 1,23 or more but not more than 1,27 at 23 °C, and — contanot more than 10 % by weigh of other modi or addit	ining ht	m^3	31.12.2021
g3907 70 00		Poly(lactic acid)	0 %	_	31.12.2023
ex 3907 91 90	10	Diallyl phthalate prepolymer, in powder form	0 %	_	31.12.2019
^g ex 3907 99 05	20	Liquid crystal copolyester with a	0 %	_	31.12.2023

gex 3907 99 80	10	melting point of not less than 270 °C, whether or not containing fillers Poly(oxy-1,4- phenylenecarb			31.12.2023
		(CAS RN 26099-71-8), in the form of powder	ony i		
ex 3907 99 80	25	Copolymer, containing 72 % by weight or more of terephthalic acid and/ or isomers thereof and cyclohexanedin	0 %		31.12.2022
ex 3907 99 80 ex 3913 90 00		Poly(hydroxya predominantly consisting of poly(3- hydroxybutyra		_	31.12.2020
gex 3907 99 80	35	Copolymer in form of a clear, pale yellow liquid, consisting of: — phthat acid isome and/or aliph dicar acids — aliph diols, and — fatty acid end-caps, with: — a hydronumb	ers atic boxylic , atic		31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

	<u> </u>	of		1
		120		
		mg		
		KOH		
		or		
		more		
		but		
		not		
		more		
		than		
		350		
		mg		
		КОН,		
		— a .		
		viscosity		
		at		
		25		
		°C of 2		
		000		
		cPs		
		or		
		more		
		but		
		not		
		more		
		than		
		8		
		000		
		cPs,		
		and		
		— an		
		acid		
		value		
		less		
		than 10		
		mg		
		KOH/		
		g		
2007.00.00	40			21.12.2012
ex 3907 99 80	40	Polycarbonate 0 %) <u> </u>	31.12.2019
		of phosgene,		
		bisphenol A, resorcinol,		
		isophthaloyl		
		chloride,		
		terephthaloyl		
		chloride		
		andpolysiloxane,		
		with <i>p</i> -		
		cumylphenolendcap	os,	
		and a weight		
	•	•		

		average molecular weight (Mw) of 24 100 or more but not more than 25 900			
ex 3907 99 80	70	Copolymer of poly(ethylene terephthalate) and cyclohexane dimethanol, containing more than 10 % by weight of cyclohexane dimethanol	3.5 %		31.12.2019
ex 3907 99 80	80	Copolymer, consisting of 72 % by weight or more of terephthalic acid and/ or derivatives thereof and cyclohexanedic completed with linear and/ or cyclic dioles	0 % methanol,		31.12.2020
^g ex 3908 90 00	10	Poly(iminomet phenylenemeth in one of the forms mentioned in note 6 (b) to Chapter 39	hy Ráne-1,3- iyleneiminoadip	oyl),	31.12.2023
gex 3908 90 00	30	Reaction product of mixtures of octadecanecard acids polymerised with an aliphatic polyetherdiam			31.12.2023

ex 3908 90 00	55	1,4-Benzenedicarb acid polymer with 2- methyl-1,8- octanediamine and 1,9- nonanediamine (CAS RN 169284-22-4)		_	31.12.2020
ex 3908 90 00	70	(CAS RN	-55-0),	ine	31.12.2019
ex 3909 20 00	10	Polymer mixture, containing by weight: — 60 % or more but not more than 75 % of melair resin (CAS RN 9003-15 %			31.12.2022

		or 6067 5 % or more but not more than 15 % of cellul (CAS) RN 9004 and 1 % or more but not more than 15 % of gheno resin (CAS) RN	on de 8-60-7 6-86-0),	
ex 3909 40 00	20		7-04-8)	 31.12.2020

		distributed, for use in the manufacture of ink for photocopiers, fax machines, printers and multifunction devices ^b		
ex 3909 50 90	10	oligor and 30 % (± 8 %) of monor funct: and trifunct: (method acryla and 10 % (± 3 %) of hydro	ated rethane mers, conal conal a) ates, conalized conal conal	31.12.2019

ex 3909 50 90	20	Preparation containing by weight: — 14	0 %		31.12.2019
		%			
		or			
		more	;		
		but			
		not			
		more	;		
		than 18			
		%			
		of			
		ethox	ylated		
		poly	rethane		
		modi			
		with			
			ophobic		
		grouj — 3 %	μs,		
		or			
		more			
		but			
		not			
		more			
		than 5 %			
		of			
			matically		
		modi	fied		
		starc	h,		
		and			
		— 77			
		%			
		or more			
		but			
		not			
		more	;		
		than			
		83			
		%			
		of wate	r		
					04.49.205.
ex 3909 50 90	30	Preparation	0 %	_	31.12.2019
		containing by weight:			
		— 16			
		%			
		or			
		more	;		

		polyumodi: with hydro group 19 % or more but not more than 23 % of diethy glyco butyl ether, and 60 % or more but not more than 64 % of water	ylated rethane fied phobic os,	
ex 3909 50 90	40	Preparation containing by weight: — 34 % or more but not more than	0 %	31.12.2019

		36 % of ethoxylated polyurethane modified with hydrophobic groups, 37 % or more but not more than 39 % of propylene glycol, and 26 % or more but not more than 28 % of water	
ex 3910 00 00	15	Dimethyl, 0 % methyl(propyl(polypropylene oxide)) siloxane (CAS RN 68957-00-6), trimethylsiloxy-terminated	 31.12.2020
^g ex 3910 00 00	20	Block 0 % copolymer of poly(methyl-3,3,3-trifluoropropylsiloxane) and poly[methyl(vinyl)siloxane]	 31.12.2023

ex 3910 00 00	25	Preparations containing by weight: — 10 % or more	0 %		31.12.2021
		2-			
		[3- [1,3,3] tetrar [(trim disilo propo propo methy	nethyl-1- ethylsilyl)oxy] xanyl] oxy] rl-2- yl-2- enoate		
		RN			
		10	1-02-5)and		
		% or			
		more	,		
		α- Butyl	dimethylsilyl-		
		ω	difficulty is fig.		
		-3- [(2-			
		meth			
		oxo-2 prope			
		yl)ox	y]propyl-		
		termi silico			
		polyn	ner		
		(CAS RN			
			32-07-7)		
ex 3910 00 00	35	Preparations containing by	0 %	_	31.12.2021
		weight: — 30			
		%			
		or more			
		α -			
		Butyl ω -	dimethylsilyl-		
		(3-			
		metha	acryloxy-2-		

		polyd (CAS) RN 66214 and — 10 % or more N,N — Dime (CAS) RN	imethylsiloxane 48-59-6), thylacrylamide	opyldimethylsil	yl-
ex 3910 00 00	40	Silicones of a kind used in the manufacture of long term surgical implants	0 %		31.12.2021
ex 3910 00 00	45	Dimethyl Siloxane, hydroxy- terminated polymer with a viscosity of 38-45 MPa s (CAS RN 70131-67-8)	0 %		31.12.2021
ex 3910 00 00	50	Silicone based pressure sensitive adhesive in solvent containing copoly(dimethy diphenylsiloxa gum	0 % ylsiloxane/ ne)		31.12.2022
ex 3910 00 00	55	Preparation containing by weight: — 55 % or more but not	0 %		31.12.2021

	more
	than
	65
	%
	of
	vinyl
	terminated
	polydimethylsiloxane
	(CAS
	RN
	68083-19-2),
	30
_	%
	or
	more
	but
	not
	more
	than
	40
	%
	of
	dimethylvinylated
	and
	trimethylated
	silica
	(CAS
	RN
	68988-89-6),
	and
	1 %
	or
	more
	but
	not
	more
	than
	5 %
	of
	silici¢
	acid,
	sodium
	salt,
	reaction
	products
	with
	chlorotrimethylsilane
	and
	isopropyl
	alcohol
	(CAS
	RN
	68988-56-7)

ex 3910 00 00	60	Polydimethylsi	l0xane	_	31.12.2019
CK 3310 00 00		whether or not polyethylene glycol and trifluoropropyl substituted, with methacrylate end groups			31.12.2019
gex 3910 00 00	70	Passivating silicon coating in primary form, to protect edges and prevent short circuits in semiconductor devices	0 %		31.12.2023
ex 3910 00 00	80	Monomethacry poly(dimethyls	lo x∕øpropylterm iloxane)	i na ted	31.12.2019
^g ex 3911 10 00	81	Non-hydrogenated hydrocarbon resin, obtained by polymerization of more than 75 % by weight C-5 to C-12 cycloaliphatic alkenes and more than 10 % but not more than 25 % by weight aromatic alkenes yielding a hydrocarbon resin with: — an iodin value of more than 120, and	e		31.12.2023

ı		ı	I		
		— a Gard	nor		
		Color			
		of	#1 		
		more			
		than			
		10			
		for			
		the			
		pure			
		produ	l ict		
		or	,		
		— a			
		Gard	ner		
		Color			
		of			
		more			
		than			
		8			
		for			
		a 50			
		%			
		soluti	on		
		by			
		weigl	ht		
		in			
		tolue	he		
		(as			
			mined		
		by			
		the	_		
		ASTI			
		meth			
		D616	0)		
^g ex 3911 90	20	Set of two	0 %	_	31.12.2023
19		components,			
		in a volume			
		ratio of 1:1,			
		intended to			
		produce a			
		thermosetting			
		polydicycloper	itadiene		
		after			
		mixing, both			
		components			
		containing:			
		— 83			
		%			
		or			
		more			
		by			
		weigl	ht		

			of 3a,4,7,7a- tetrahydro-4,7- methanoindene (dicyclopentadiene),	
			synthetic rubber,	
			whether or not	
			containing by weight	
			7 % or	
			more of tricyclopentadiene	
		and each separate		
		componer		
			an aluminium- alkyl	
			compound, or an	
			organic complex of	
			tungsten, or an	
			organic complex of molybdenum	
ex 3911 90 19	30	ethylenein and ethylenein dithiocart in an aque solution of sodium	mine pamate, eous	31.12.2022
		hydroxide	e	

ex 3911 90 19	40	m-Xylene formaldehyde resin	0 %	_	31.12.2021
ex 3911 90 19	50	Polycarboxylat sodium salt of 2,5- furandione and 2,4,4- trimethylpenter in powder form			31.12.2019
ex 3911 90 19	60	Formaldehyde, polymer with 1,3-dimethylbenze and tert-butyl-phenol (CAS RN 60806-48-6)		_	31.12.2019
ex 3911 90 19	70	pheny ester, homo (CAS) RN 25722 1,3-Bis(4 cyano (CAS) RN	ylethylidene)di- ylene) polymer 2-66-1), phenyl)propane 51-0), on one		31.12.2019

		than 50 % by weigl			
gex 3911 90 99	25	Copolymer of vinyltoluene and α-methylstyrene	0 %		31.12.2023
ex 3911 90 99	30	1,4:5,8- Dimethanonap ethylidene-1,2, octahydro-, polymer with 3a,4,7,7a- tetrahydro- 4,7- methano-1H- indene, hydrogenated			31.12.2020
ex 3911 90 99	35	Alternated copolymer of ethylene and maleic anhydride (EMA)	0 %	_	31.12.2020
gex 3911 90 99	40	Mixed calcium and sodium salt of a copolymer of maleic acid and methyl vinyl ether, having a calcium content of 9 % or more but not more than 16 % by weight	0 %		31.12.2023
^g ex 3911 90 99	45	Copolymer of maleic acid and methyl vinyl ether	0 %		31.12.2023
ex 3911 90 99	53	Hydrogenated polymer of 1,2,3,4,4a,5,8,8 octahydro-1,4: dimethanonaph with	3a- 5,8-		31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		3a,4,7,7a- tetrahydro-4,7- methano-1H- indene and 4,4a,9,9a- tetrahydro-1,4- methano-1H- fluorene (CAS RN 503442-46-4)			
ex 3911 90 99	57	Hydrogenated polymer of 1,2,3,4,4a,5,8,8 octahydro-1,4: dimethanonaph with 4,4a,9,9a-tetrahydro-1,4-methano-1H-fluorene (CAS RN 503298-02-0)	3a- 5,8- thalene		31.12.2022
^g ex 3911 90 99	65	Calcium zinc salt of a copolymer of maleic acid and methyl vinyl ether	0 %		31.12.2023
ex 3911 90 99	86	Copolymer of methyl vinyl ether and maleic acid anhydride (CAS RN 9011-16-9)	0 %	_	31.12.2021
ex 3912 11 00	30	Cellulose triacetate (CAS RN 9012-09-3)	0 %	_	31.12.2021
ex 3912 11 00	40	Cellulose diacetate powder	0 %	_	31.12.2020
^g ex 3912 39 85	10	Ethylcellulose, not plasticized	0 %	_	31.12.2023
^g ex 3912 39 85	20	Ethylcellulose, in the form of an aqueous dispersion	0 %	_	31.12.2023

		containing hexadecan-1- ol and sodium dodecyl sulphate, containing by weight 27 (± 3) % of ethylcellulose			
^g ex 3912 39 85	30	Cellulose, both hydroxyethylar and alkylated with alkyl chain-lengths of 3 or more carbon atoms	0 % ted		31.12.2023
ex 3912 39 85	40	Hypromellose (INN) (CAS RN 9004-65-3)	0 %	_	31.12.2021
ex 3912 39 85	50	Polyquaterniur 10 (CAS RN 68610-92-4)	n0 %	_	31.12.2020
gex 3912 90 10	20	Hydroxypropy methylcellulos phthalate		_	31.12.2023
^g ex 3913 90 00	30	Protein, chemically or enzymatically modified by carboxylation and/or phthalic acid addition, whether or not hydrolysed, having a weight average molecular weight (Mw) of less than 350 000	0 %		31.12.2023
gex 3913 90 00	85	Sterile sodium hyaluronate	0 %	_	31.12.2023

		(CAS RN 9067-32-7)			
^g ex 3913 90 00	95	Chondroitinsul acid, sodium salt (CAS RN 9082-07-9)	pՈnθείc	_	31.12.2023
ex 3916 20 00	91		de methyl acrylate) im nate ng		31.12.2019
gex 3916 90 10	10	or poly(anhyo 7 % or more but not more than 9 % of		e	31.12.2023

		but not more than 25 % of inorg fillers	anic		
ex 3917 40 00	91	Plastic connectors containing O-rings, a retainer clip and a release system for insertion into car fuel hoses	0 %		31.12.2019
gex 3919 10 19 ex 3919 10 80 ex 3919 90 80	10 25 31	Reflecting film, consisting of a layer of polyurethane, with, on one side, security imprints against counterfeiting, alteration or substitution of data or duplication, or an official mark for an intended use, and embedded glass beads and, on the other side, an adhesive layer, covered on one side or on both sides with a release film	0 %		31.12.2023
ex 3919 10 80 ex 3919 90 80	27 20	Polyester film: — coate on one	0 % d	_	31.12.2019

e		
2		
,		
turas		
itures		
er		
e		
e		
-		
•		
4		
itures		
	ere s atures	e e re e re e re e re e re s

		90 °C or more but not more than 200 °C, and a polyee	ster		
gex 3919 10 80	35	Reflecting film, consisting of a layer of poly(vinyl chloride), a layer of alkyd polyester, with, on one side, security imprints against counterfeiting, alteration or substitution of data or duplication, or an official mark for an intended use, only visible by means of a retroreflecting lighting, and embedded glass beads and, on the other side, an adhesive layer, covered on one side or on both sides with a release film	0 %		31.12.2023
ex 3919 10 80	37	Polytetrafluoro film: with a	€Alf%ilene	_	31.12.2020

			thickr	ness		
			of			
			100			
			μm			
			or			
			more,			
			an			
			elong	ation		
			at			
			break			
			of			
			not			
			more			
			than			
			100			
			%,	1		
			coate	1		
			on			
			one			
			side			
			with			
			a			
			pressi	ire		
			sensit			
			silico			
			adhes	ive		
			udifics	1 V C		
ev 3010 10 80	40					31 12 2022
ex 3919 10 80		Black		0 %	_	31.12.2022
ex 3919 10 80 ex 3919 90 80		Black poly(viny	/l		_	31.12.2022
		Black poly(viny chloride)	/l		_	31.12.2022
		Black poly(viny chloride) film:	/l		_	31.12.2022
		Black poly(viny chloride) film:	yl with			31.12.2022
		Black poly(viny chloride) film:	vl with a			31.12.2022
		Black poly(viny chloride) film:	with a gloss			31.12.2022
		Black poly(viny chloride) film:	with a gloss of		_	31.12.2022
		Black poly(viny chloride) film:	with a gloss of more			31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than			31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30	0 %		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree	0 % es		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree according to the second secon	0 % es		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to	0 % es ding		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTA	0 % es ding		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245	es ding M		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth	es ding M		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or	es ding M		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or not	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or not	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or not cover.	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or not cover on one	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTN D245 wheth or not cover on one side	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTM D245 wheth or not cover on one side with	es ding M 7,		31.12.2022
		Black poly(viny chloride) film:	with a gloss of more than 30 degree accord to ASTN D245 wheth or not cover on one side	es ding M 7, her		31.12.2022

	poly(film, and on the other side with a press sensit adhes with chan and a releas liner	ure iive iive nels	nalate)	
ex 3919 10 80 ex 3919 90 80	Ethylene vinyl acetate film: — of a thicks of 100 µm or more coate on one side with an acryli press sensit or UV- sensit adhes and a polye or polyp liner	c ure iive		31.12.2020
ex 3919 10 80 ex 3919 90 80	Reinforced polyethylene foam tape, coated on both sides	0 %		31.12.2022

		with an acrylic micro channelled pressure sensitive adhesive and on one side a liner, with an application thickness of 0,38 mm or more but not more than 1,53 mm		
^g ex 3919 10 80 ex 3919 90 80 ex 3920 10 89	50 41 25	Adhesive film consisting of a base of a copolymer of ethylene and vinyl acetate (EVA) of a thickness of 70 µm or more and an adhesive part of acrylic type of a thickness of 5 µm or more, for use in the grinding and/or dicing process of silicon discs ^b	0 %	31.12.2023
ex 3919 10 80 ex 3919 90 80	55 53	Acrylic foam tape, covered on one side with a heat activatable adhesive or an acrylic pressure sensitive adhesive and on the other side with an acrylic pressure sensitive adhesive adhesive and a release sheet, of a	0 %	31.12.2022

		peel adhesion at an angle of 90° of more than 25 N/cm (as determined by the ASTM D 3330 method)		
gex 3919 10 80 ex 3919 90 80 ex 3920 61 00	57 30 30	or acryling polyments film embors on one side in a regular shape patter cover on one or both sides with one or more layers of plasting or	ssed ar ad an, ed lisation, her	31.12.2023

			layer		
			and		
			a		
			releas	se.	
			sheet		
ex 3919 10 80	63	Reflecting	g	0 %	 31.12.2020
		film			
		consisting	gof		
			a		
			layer		
			of		
			an		
			acryli	c	
			resin		
			with		
			impri	nto	
			again	ot.	
			again	orfoiting	
			altera	erfeiting,	
				uon	
			or	., ,.	
				itution	
			of		
			data		
			or		
				cation,	
			or		
			an		
			offici	al	
			mark		
			for		
			an		
			intend	ded	
			use,		
			a		
			layer		
			of		
			an		
			acryli	c	
			resin		
			havin	g	
			havin embe	dded	
			glass		
			beads		
			a		
			layer		
			of		
			an		
			acryli	$ _{\mathbf{c}}$	
			resin	-	
			harde	ned	
			by a		
			melar	mine	
	I	I	moiai	111110	

		cross linkin agent a meta layer an acryl adhes and a releas film	ic sive,	
ex 3919 10 80 ex 3919 90 80	70 75	Rolls of polyethylene foil: — self-adhes on one side, of a total thick of 0,025 mm or more but not more than 0,09 mm, — of a total width of 60 mm or more but not more than 1 110 mm, of a kind used for the	ness	31.12.2021

		protection of the surface of products of headings 8521 or 8528			
gex 3919 10 80 ex 3919 90 80	73 50	Self-adhesive reflecting sheet whether or not in segmented pieces:	0 %	_	31.12.2023
		— whet	her ining		
			mark, out		
		an appli tape coate on	cation d		
		one side with an			
		adher the reflective sheet consists of:	sive,		
		— a layer of acryl or vinyl	ic		
		polyr — a layer of	ner,		
		meth or polyc conta	methyl acrylate) carbonate ining pprisms,		
		— a layer			

		of metallisation, an adhesive layer, and a release sheet, whether or not containing an additional layer of polyester	
2010 10 00	7.5		21 12 2021
ex 3919 10 80 ex 3919 90 80		Self-adhesive reflecting film, consisting of several layers including: — a copolymer of acrylic resin, — polyurethane, — a metallised layer with, on one side, laser imprints against counterfeiting, alteration or substitution of data or duplications, or an official mark	31.12.2021

	ı		ı	1	ı
		for an intend	ded		
		use,			
		— glass			
			spheres,		
		and			
		— an			
		adhes			
		layer, with			
		a			
		releas	se se		
		liner			
		on			
		one			
		or			
		both			
		sides			
ex 3919 10 80		Poly(vinyl	0 %	_	31.12.2019
ex 3919 90 80	28	chloride),			
		poly(ethylenete	rephthalate),		
		polyethylene			
		or any other			
		polyolefin film:			
		— coate	d		
		on			
		one			
		side			
		with			
		an	_		
		acryli UV-	ic 		
		sensi	tive		
		adhes			
		and			
		a			
		liner			
		— of a			
		total			
		thicks of	ness		
		65			
		μm			
		or			
		more			
		witho			
		releas	e		
		liner			
^g ex 3919 90	19	Transparent	0 %		31.12.2023
80		poly(ethylene			

terephth	nalate)	
self-adh		
	icsive	
film:		
I —	free	
	from	
	impurities	
	or	
	faults,	
	coated	
	on	
	one	
	side	
	with	
	an	
	acrylic	
	pressure	
	sensitive	
	adhesive	
	and	
	a	
	protective	
	liner,	
	and	
	on	
	the	
	other	
	side	
	with	
	an	
	antistatic	
	layer	
	of	
	ionic	
	organic	
	choline	
	compound,	
	whether	
	or	
	not	
	with	
	a	
	printable	
	dust-	
	proof	
	layer	
	of	
	modified	
	long	
	chain	
	alkyl	
	organic	
	compound,	

		— with			
		a			
		total			
		thick	ness		
		with	2114		
			Jui		
		the			
		liner			
		of			
		54			
		μm			
		or			
		more			
		but			
		not			
		more			
		than			
		64			
		μm,			
		and			
		— a			
		widt	h		
		of			
		more			
		than			
		1			
		295			
		mm			
		but			
		not			
		more			
		than			
		1			
		305			
		mm			
ex 3919 90 80	21	Polytetrafluor	oenhydene	_	31.12.2022
		film,			
		— with			
		a			
		thick	ness		
		of			
		50			
		μm			
		or			
		more	7		
		but			
		not			
		more			
		than			
		155			
		μm,			
		— with			
		a			
		u	I	I	I

		width		
		of		
		6,30		
		mm		
		or		
		more		
		but		
		not		
		more		
		than		
		585		
		mm,		
		— an '		
		elong	ation	
		at		
		break		
		of		
		not		
		more		
		than		
		200		
		%,		
		and		
		— coate	d	
		on	u	
		one		
		side		
		with		
		a		
		press	ure	
		sensi	tive	
		silico	ne	
		adhes		
		with		
		a		
		thick	2000	
			1035	
		of		
		not		
		more		
		than		
		40		
		μm		
2010.00.00	22		0.0/	21 12 2010
ex 3919 90 80	22	Polyester,	0 %	 31.12.2019
		polyethylene		
		or		
		polypropylene		
		film coated		
		on one or		
		both sides		
		with an		
		acrylic and/		
		or rubber		
		oi iuddei		

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

	pressure sensitive adhesive, whether or not supplied with a release liner, put up in rolls of a width of 45,7 cm or more but not more than 160 cm			
23	Film consisting of 1 to 3 laminated layers of poly(ethylene terephthalate) and a copolymer of terephthalic acid, sebacic acid and ethylene glycol, coated on one side with an acrylic abrasion resistant coating and on the other side with an acrylic pressure sensitive adhesive, a water soluble methylcellulos coating and a poly(ethylene terephthalate) protective liner	0 %		31.12.2023
24	Reflecting laminated sheet: — consi of an	0 %		31.12.2019
		sensitive adhesive, whether or not supplied with a release liner, put up in rolls of a width of 45,7 cm or more but not more than 160 cm 23 Film consisting of 1 to 3 laminated layers of poly(ethylene terephthalate) and a copolymer of terephthalic acid, sebacic acid and ethylene glycol, coated on one side with an acrylic abrasion resistant coating and on the other side with an acrylic pressure sensitive adhesive, a water soluble methylcellulos coating and a poly(ethylene terephthalate) protective liner 24 Reflecting laminated sheet: — consi of an	sensitive adhesive, whether or not supplied with a release liner, put up in rolls of a width of 45,7 cm or more but not more than 160 cm 23 Film consisting of 1 to 3 laminated layers of poly(ethylene terephthalate) and a copolymer of terephthalic acid, sebacic acid and ethylene glycol, coated on one side with an acrylic abrasion resistant coating and on the other side with an acrylic pressure sensitive adhesive, a water soluble methylcellulose coating and a poly(ethylene terephthalate) protective liner 24 Reflecting laminated sheet: — consisting of	sensitive adhesive, whether or not supplied with a release liner, put up in rolls of a width of 45,7 cm or more but not more than 160 cm 23 Film 0 % — 23 Film 0 % — 23 consisting of 1 to 3 laminated layers of poly(ethylene terephthalate) and a copolymer of terephthalic acid, sebacic acid and ethylene glycol, coated on one side with an acrylic abrasion resistant coating and on the other side with an acrylic pressure sensitive adhesive, a water soluble methylcellulose coating and a poly(ethylene terephthalate) protective liner 24 Reflecting 0 % —

		acryla layer embo on one side in a regula shape patter cover on both sides with one or more layers of plasti mater and cover on one side with an adhes layer and a releas sheet	ssed ar ad tn, red crial, red		
gex 3919 90 80	27	Poly(ethylene terephthalate) film, with an adhesive strength of not more than 0,147 N/25 mm and an electrostatic discharge of not more than 500 V	0 %		31.12.2019
^g ex 3919 90 80	33	Transparent poly(ethylene) self-adhesive film, free from	0 %	_	31.12.2023

		impurities or faults, coated on one side with an acrylic pressure sensitive adhesive, with a thickness of 60 µm or more, but not more than 70 µm, and with a width of more than 1 245 mm but not more than 1 255 mm		
^g ex 3919 90 80	35	conta glass micro beads — a layer of	ethylene te),	31.12.2023

*ex 3919 90 80 37 Polyethylene or polyearbonate film, cut into ready to use forms. — one side partly printed whereby part of the printing either gives information about the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with an				
*ex 3919 90 37 Polyethylene or polyearbonate film, cut into ready to use forms, — one side partly printed whereby part of the printing either gives information about the meaning of LED 's visible at the unprinted areas; or marks those points which must be touched to operate the system, — the other side partly covered with				
Fex 3919 90 80 Polyethylene or polycarbonate film, cut into ready to use forms. — one side partly printed whereby part of the printing either gives information about the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with				
or polycarbonate film, cut into ready to use forms, one side partly printed whereby part of the printing either gives information about the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, the other side partly covered with		sheet		
either gives information about the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with	37	Polyethylene or polycarbonate film, cut into ready to use forms, — one side partly print where part of the	0 % ed eby	31.12.2023
information about the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, the other side partly covered with		eithe	r	
about the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with		gives		
the meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with				
meaning of LED 's visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with			t	
of LED 's visible at the unprinted areas or marks those points which must be touched to operate the system, the other side partly covered with			l ning	
visible at the unprinted areas. or marks those points which must be touched to operate the system, — the other side partly covered with				
visible at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with				
at the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with				
the unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with			le	
unprinted areas, or marks those points which must be touched to operate the system, — the other side partly covered with				
areas, or marks those points which must be touched to operate the system, — the other side partly covered with			inted	
marks those points which must be touched to operate the system, — the other side partly covered with				
those points which must be touched to operate the system, the other side partly covered with				
points which must be touched to operate the system, — the other side partly covered with				
which must be touched to operate the system, — the other side partly covered with				
must be touched to operate the system, — the other side partly covered with		whic	h	
touched to operate the system, — the other side partly covered with		must		
to operate the system, — the other side partly covered with			,	
operate the system, — the other side partly covered with			ned	
the system, — the other side partly covered with			ate	
system, — the other side partly covered with				
other side partly covered with		syste	m,	
side partly covered with				
partly covered with				
covered with			↓	
with		cove	red	
an		with		
		an		

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		adhes layer, both sides cover with a releast liner, and with dimes of not more than 14 cm × 2,5 cm, for use in the manufacture of pushbutton switches for mechatronic system adjustable furniture b	ed se nsions		
gex 3919 90 80	49	Reflecting laminated sheet consisting of a film of poly(methyl methacrylate) embossed on one side in a regular shaped pattern, a film of a polymer containing glass microspheres, an adhesive layer and a release sheet	0 %		31.12.2023
^g ex 3919 90 80	51	Biaxially- oriented film of	0 %	_	31.12.2023

		poly(methyl methacrylate), of a thickness of 50 μm or more but not exceeding 90 μm, covered on one side with an adhesive layer and a release sheet		
ex 3919 90 80	52	White polyolefin tape consisting of: — an adhes layer based on synth rubbe with a thick of 8 µm or more but not more than 17 µm — a polyolayer with a thick of 28 µm or more but or more but not more with a thick of 28 µm or more but	etic er ness n, slefin	31.12.2020
		not more than 40		

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		μm, and a non- silico releas layer with a thicks below 1 μm	se ness	
ex 3919 90 80	54	Poly(vinyl chloride) film, on one side covered with ————————————————————————————————————	sive se ssed, ining e	31.12.2019
ex 3919 90 80	63	a mixtu of polyp and	ining	31.12.2020

		1 1 1	containot more than 3 % by	ining	
			weigh of other polym wheth or	ners,	
		1 1 1 1	not contai titanit dioxic in the core	ım	
			layer, coated with an acryli pressu	d c	
		S	sensit adhes and with a releas	ive ive,	
		0 3 0 1	liner, of an overa thickr of not		
		1	more than 110 µm		
ex 3919 90 80	65	Self-adhes film with thickness of 40 µm more, but not more than 400 µ consisting one or mo layers of	or um,	0 %	31.12.2020

		transparent, metallised or dyed poly(ethylene terephthalate), covered on one side with a scratch resistant coating and on the other side with a pressure sensitive adhesive and a release liner		
ex 3919 90 80	70	Self-adhesive polishing discs of microporous polyurethane, whether or not coated with a pad	0 %	31.12.2020
ex 3919 90 80	82	layer, a glass micro layer, a metal	ospheres llised inium sive, ed	31.12.2020

	chlor layer a layer wheth or not incor secur impri again count altera or subst of data or	her porating ity ints st terfeiting, ition itution	
ex 3919 90 80 ex 9001 90 00	Reflector or diffuser sheets, in rolls: for prote again ultrav or infra- red heat radia to be affixe to wind or	st violet tion,	31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

	20	and distri of light inten for LCD mode	mission ibution ded		21.12.2022
^g ex 3920 10 25	20	Film of polyethylene, of a kind used for typewriter ribbon		_	31.12.2023
ex 3920 10 28	30	grapl cons of two diffe alter desig whos	ene ng aty ness anent nics isting rent nating gns se ridual		31.12.2019

		is			
		525 n	nm		
		or			
		more			
^g ex 3920 10 28	91	Poly(ethylene) film printed with a	0 %	_	31.12.2023
		graphic			
		design, which is achieved			
		by using four base colours			
		in ink plus			
		specialist			
		colours,			
		to achieve			
		multiple			
		colours in			
		ink on one			
		side of the film, and one			
		colour on the			
		opposite side,			
		the graphic			
		design also			
		has the			
		following			
		characteristics:			
		— is	4:		
		repeti and	llive		
		equal	lv		
		space			
		along			
		the			
		lengt	h		
		of			
		the			
		film is			
		equal	lv		
		and	ı y		
		visibl	ly		
		aligno			
		when			
		viewe	¢ d		
		from			
		the			
		back or			
		front			
		of			
	I	01	ı İ		I

		the			
		film			
ex 3920 10 40	40	Tubular	0 %		31.12.2020
CX 3920 10 40	40	layered film	0 /0	_	31.12.2020
		predominately			
		of			
		polyethylene:			
		— consi	ctina		
		of a	Stillg		
		tri-			
		layer			
		barrie			
		with	J1		
		a			
		core			
		layer			
		of			
		ethyl	eno		
		vinyl			
		alcoh	01		
		cover			
		on	Cu		
		eithe	-		
		side			
		with			
		a			
		layer			
		of			
			mide,		
		covei	ed		
		on			
		eithe	t l		
		side			
		with			
		at			
		least			
		one			
		layer			
		of			
		polye	thylene,		
		— havin	g		
		a			
		total			
		thick	ness		
		of 55			
		μm			
		or more			
		— havir			
		a navn	5		
		diam	 eter		
	I	Giain	Y COI		

405

Status: Point in time view as at 20/12/2018.

		of 500 mm or more but not more than 600 mm			
ex 3920 10 89	30	Ethylene vinyl acetate (EVA) film with: — a raisec relief surfac with embo undu and — a thicke of more than 0,125 mm	ce ssed lations, ness		31.12.2021
ex 3920 10 89	40	Composite sheet containing an acrylic coating and laminated to a high-density polyethylene layer, of a total thickness of 0,8 mm or more but not more than 1,2 mm	0 %		31.12.2021
ex 3920 20 21	40	Sheets of biaxially - oriented polypropylene film:	0 %	_	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		coatii to allow banki secur printi	alised ngs note ity ng	
gex 3920 20 29	60	Mono-axial oriented film, of a total thickness of not more than 75µm, consisting of three or four layers, each layer containing a mixture of polypropylene and polyethylene, with a core layer whether or not containing titanium dioxide, having: — a tensil streng in the mach direct of 120 M	gth ine tion	31.12.2023

		or more but not more than 270 MPa, and — a tensil streng in the transv direct of 10 M or more but not more than 40 MPa, as determined by test method ASTM D882/ISO 527-3	e gth verse tion Pa	
ex 3920 20 29	70	Mono-axial oriented film, consisting of three layers, each layer consisting of a mixture of polypropylene and a copolymer of ethylene and vinyl acetate, with a core layer whether or not containing titanium dioxide, having: — a thicks		31.12.2019

		of			
		55			
		μm			
		or			
		more but			
		not			
		more			
		than			
		97 μr	 n.		
		— a	,		
		tensil	e		
		modu			
		in			
		the			
		mach			
		direct	tion		
		of	CD		
		0,30	GPa		
		or			
		more but			
		not			
		more			
		than			
		1,45			
		GPa,			
		and			
		— a			
		tensil			
		modu	llus		
		in			
		the			
		transv			
		direct of	11011		
		0,20	GPa		
		or	G1 a		
		more			
		but			
		not			
		more			
		than			
		0,70			
		GPa			
ex 3920 20 29	94	Co-extruded	0 %	_	31.12.2022
- -		trilayer film,			
		— each			
		layer			
			ining		
		a			
		mixtu	ire		

		and polye	propylene thylene, ining	
		more than 3 % by weig of other polyr whet	nt ners,	
		or not	ining um	
		layer of an overa thick of not more than	ill ness	
		70 μm		
^g ex 3920 43 10	92	Sheeting of poly(vinyl chloride), stabilized against ultraviolet rays, without any holes, even microscopic, of a thickness of 60 µm or more but not more than 80 µm, containing 30 or more but not more	0 %	31.12.2023

than 40 parts of plasticiser to 100 parts of poly(vinyl chloride) *ex 3920 43 10 ex 3920 49 10 *specular gloss of 70 or more, measured at an angle of 60° using a glossmeter (as determined by the ISO 2813:2000 method), consisting of one or two layers of poly(vinyl chloride) coated on both sides with a layer of plastic, of a thickness of 0,26 mm or more but not more than 1,0 mm, covered on the gloss surface with a protective film of polyethylene, in rolls of a width of 1 000 mm or more but not more than 1,450 mm, for use in the manufacture of goods of heading						
Film of a specular gloss of 70 or more, measured at an angle of 60° using a glossmeter (as determined by the ISO 2813:2000 method), consisting of one or two layers of poly(vinyl chloride) coated on both sides with a layer of plastic, of a thickness of 0,26 mm or more but not more than 1,0 mm, covered on the gloss surface with a protective film of polyethylene, in rolls of a width of 1 000 mm or more but not more than 1,450 mm, for use in the manufacture of goods of heading			of plasticiser to 100 parts of poly(vinyl			
9403 ^b	10		specular gloss of 70 or more, measured at an angle of 60° using a glossmeter (as determined by the ISO 2813:2000 method), consisting of one or two layers of poly(vinyl chloride) coated on both sides with a layer of plastic, of a thickness of 0,26 mm or more but not more than 1,0 mm, covered on the gloss surface with a protective film of polyethylene, in rolls of a width of 1 000 mm or more but not more than 1,450 mm, for use in the manufacture of goods of heading	0 %		31.12.2023
gex 3920 43 95 Reflecting laminated sheet, consisting 0 % — 31.12.2023		95	Reflecting laminated sheet,	0 %	_	31.12.2023

		of a film of poly(vinyl chloride) and a film of an other plastic totally embossed in a regular pyramidal pattern, covered on one side with a release sheet			
^g ex 3920 49 10	30	Film of a (polyvinyl)chlocopolymer: — contaby weigh 45 % or more of filler: — on a suppo	ining ht		31.12.2023
^g ex 3920 51 00	20	Plate of poly(methyl methacrylate) containing aluminium trihydroxide, of a thickness of 3,5 mm or more but not more than 19 mm	0 %		31.12.2023
gex 3920 51 00	30	Biaxially- oriented film of poly(methyl methacrylate), of a thickness of 50 µm or more but not exceeding 90 µm	0 %		31.12.2023
^g ex 3920 51 00	40	Sheets of polymethylmet	0 % thacrylate	_	31.12.2023

		conforming to standard EN 4366 (MIL- PRF-25690)		
ex 3920 62 19 ex 3920 62 90	10	Poly(ethylene terephthalate) film in rolls: — with a thicks of 0,335 mm or more but not more than 0,365 mm, and coate with a gold layer with a thicks of 0,03 µm or more but not more than 0,06 µm	d	31.12.2022
gex 3920 62 19	08	Poly(ethylene terephthalate) film, not coated with an adhesive, of a thickness of not more than 25 µm, either: — only dyed	0 %	31.12.2023

		in the mass or dyed in the mass and metal on one side		
gex 3920 62 19	12	Film of poly(ethylene terephthalate) only, of a total thickness of not more than 120 µm, consisting of one or two layers each containing a colouring and/or UV-absorbing material throughout the mass, uncoated with an adhesive or any other material	0 %	31.12.2023
gex 3920 62 19	18	Laminated film of poly(ethylene terephthalate) only, of a total thickness of not more than 120 µm, consisting of one layer which is metallised only and one or two layers each containing	0 %	31.12.2023

		a colouring and/or UV- absorbing material throughout the mass, uncoated with an adhesive or any other material		
gex 3920 62 19	20	Reflecting polyester sheeting embossed in a pyramidal pattern, for the manufacture of safety stickers and badges, safety clothing and accessories thereof, or of school satchels, bags or similar containers ^b	0 %	31.12.2023
^g ex 3920 62 19	38	Poly(ethylene terephthalate) film, of a thickness of not more than 12 µm, coated on one side with a layer of aluminium oxide of a thickness of not more than 35 nm	0 %	31.12.2023
ex 3920 62 19	48	Sheets or rolls of poly(ethylene terephthalate): — coate on both sides with a		31.12.2020

		layer of epoxy acryling resin, of a total thicks of 37 µm (± 3 µm)	y ic		
gex 3920 62 19	52	Film of poly(ethylene terephthalate), poly(ethylene naphthalate) or similar polyester, coated on one side with metal and/or metal oxides, containing by weight less than 0,1 % of aluminium, of a thickness of not more than 300 µm and having a surface resistivity of not more than 10 000 ohms (per square) (as determined by the ASTM D 257-99 method)	0 %		31.12.2023
ex 3920 62 19	60	Poly(ethylene terephthalate) film: — of a thicks of not more than		_	31.12.2022

		20 μm, coated on at least one side with a gas barried layer consist of a polyn matrix in which silica or alumi oxide has been disperand of a thickrof not more than 2μm	er sting neric x n nium	
gex 3920 62 19	76	Transparent poly(ethylene terephthalate) film: — coated on both sides with layers of organ substation the basis of acryl	ic	31.12.2023

	of a
	thickness
	of 7
	nm
	or
	more
	but
	not
	more
	than
	80
	nm,
-	with
	a
	surface
	tension
	of
	36
	Dyne/
	cm
	or
	more
	but
	not
	more
	than
	39
	Dyne
	cm,
	with
	a
	light
	transmission
	of
	more
	than
	93
	0/0,
_	with
	a
	haze
	value
	of
	not
	more
	than
	1,3
	0%,
_	with
	a
	total
	thickness
	of
1	01

		10 μm or more but not more than 350 μm, with a width of 800 mm or more but not more than 1 600 mm			
^g ex 3920 69 00	20	Film of poly(ethylene naphthalene-2, dicarboxylate)	0 %	_	31.12.2023
ex 3920 69 00	50	Monolayer, biaxially oriented film: — comp of more than 85 % by weigh of poly(acid) and not more than 10,50 % by weigh of	nt lactic		31.12.2019

]	1:	r. d	1	1
		modi poly(ned lactic		
		acid) based			
		polyr			
		poly-			
		glyco	1		
		ester			
		and talc,			
		— havin	σ		
		a	15		
		thick	ness		
		of			
		20			
		μm or			
		more			
		but			
		not			
		more			
		than 120			
		μm,			
		— biode	gradable		
		and			
		comp	ostable		
		(as deter	mined		
		by			
		the			
		meth	od		
		EN 1343			
ex 3920 69 00	60	Monolayer,	0 %		31.12.2019
		transverse oriented,			
		shrink film:			
		— comp	osed		
		of			
		more			
		than 80			
		%			
		by			
		weigl	ht		
		of	 actic		
		acid)	lactic		
		and			
		not			
		more			

		acid) havin a thick of 45 µm or more but not more than 50 µm, biode and comp (as	ives fied lactic g ness ostable mined		
ex 3920 79 10	10	Sheets of painted vulcanised fibre-board with a thickness of not more than 1,5 mm	0 %	p/st	31.12.2019
ex 3920 91 00	51	Poly(vinyl butyral) film containing by weight 25 % or more but not more than 28 % of tri-isobutyl	0 %	_	31.12.2019

		phosphate as a plasticiser			
ex 3920 91 00	52	bis(2- ethyl	yleneglycol noate) ciser,		31.12.2019
^g ex 3920 91 00	91	Poly(vinyl butyral) film having a graduated coloured band	3 %	_	31.12.2023
ex 3920 91 00	93	Film of poly(ethylene terephthalate), whether or not metallised on one or both sides, or laminated	0 %	_	31.12.2019

film of]
poly(ethylene	
terephthalate)	
films,	
metallised on	
the external	
sides only,	
and having	
the following	
characteristics:	
a	
visible	
light	
transmission	
of	
50	
%	
or	
more	
— coated	
on	
one	
or	
both	
sides	
with	
a lavor	
layer	
of	
poly(vinyl	
butyral)	
but	
not	
coated	
with	
an	
adhesive	
or	
any	
other	
material	
except	
poly(vinyl	
butyral),	
a	
total	
thickness	
of	
not	
more	
than	
0,2	
mm	
1 1	I

		withoutaking the prese of poly(butyrinto accountant a thickrof poly(butyrof more than 0,2 mm	nce vinyl al) int ness		
^g ex 3920 91 00	95	Co-extruded trilayer poly(vinyl butyral) film with a graduated colour band containing by weight 29 % or more but not more than 31 % of 2,2'-ethylenedioxydbis(2-ethylhexanoate as a plasticiser			31.12.2023
^g ex 3920 99 28	40	ether glyco bis (4-	l), anotocyclohexy ane,	1)	31.12.2023

		1,3-butan with a thick of 0,25 mm or more but not more than 5,0 mm, — embo with a regular patter on one surfar and — cover with a release	essed ar tn ce,	
^g ex 3920 99 28	45	Transparent polyurethane film metallised on one side: — with a gloss of more than 90 degree accord to ASTI D245 — cover on the metal side	ees ding M 7	31.12.2019

		polyr copol cover on the other side with a prote poly(terep film with a total thick of more than 204 µm but not more than	sting thylene/ propylene ymer ed ctive ethylene hthalate)		
ex 3920 99 28	50	244 µm Thermoplastic	0.9/		31.12.2021
CA 3720 77 20		polyurethane film, of a thickness of 250 µm or more but not more than 350 µm, covered on one side with a removable protective film			31.12.2021
ex 3920 99 28	65	Matt, thermoplastic	0 %	m^2	31.12.2019

polyure	hane	
foil in re		
with:	7115	
willi.		
	a	
	width	
	of 1	
	640	
	mm	
	(±	
	10	
	mm),	
	a	
	gloss	
	of	
	3,3	
	degrees	
	or	
	more	
	but	
	not	
	more	
	than	
	3,8	
	(as	
	determined	
	by	
	the	
	method	
	ASTIM	
	D2457),	
_	a	
	surface	
	roughness	
	of	
	1,9	
	Ra	
	or	
	more	
	but	
	not	
	more	
	than	
	2,8	
	Ra	
	(as	
	determined	
	by	
	the	
	method	
	ISO	
	4287),	
	a	1
_	thickness	

		by the methor Shore A (AST D224 an elong to break of 470 % (as determined by the methor shore the method sho	mined od: M o)), ation	
			od:	
ex 3920 99 28	70	Sheets on rolls, consisting of epoxy resin, with conducting properties, containing: micro with a	0 %	31.12.2021

	coating	
	of	
	metal,	
	whether	
	or	
	not	
	alloyed	
	with	
	gold,	
	an	
	adhesive	
	layer, with	
	a	
	protective	
	layer	
	of	
	silicone	
	or	
	poly(ethylene	
	terephthalate)	
	on	
	one	
	side,	
_	with	
	a	
	protective	
	layer	
	of	
	poly(ethylene	
	terephthalate)	
	on	
	the	
	other	
	side,	
	and	
	with	
	a	
	width	
	of 5	
	cm	
	or	
	more	
	but	
	not	
	more	
	than	
	100	
	cm,	
	with	
	a	
	length	
	of	
	·	

			not			
			more			
			than			
			2			
			000			
			m			
ex 3920 99 28	75	Thermop	loctio	0.0/	2	31.12.2019
CX 3720 77 20	13	1 11011110p	nastic	0 70	m^2	31.12.2019
		polyuretl	nane			
		foil in ro	IIS			
		with:				
		_	a			
			width			
			of			
			more			
			than			
			900			
			mm			
			but			
			not			
			more			
			than			
			1			
			016			
			mm,			
			a			
			matt			
			finish	,		
			a			
			thicki	ness		
			of			
			0,43			
			mm			
			(±			
			0,03			
			mm),			
			an			
			elong	ation		
			to	ation		
			break			
			of			
			420			
			420			
			%			
			or			
			more			
			but			
			not			
			more			
			than			
			520			
			%,			
			a tensil			
			tensil	C		

2020.00	25	by the methor EN ISO 527) — a hardrof 90 (± 4) (as determined by the methor Shore A [AST D224 wrink inside (wave of 6,35 mm, — a flatner of 0,025 mm	mined od ess mined od: M o]), de ess)		21 12 2022
gex 3920 99 59	25	Poly(1- chlorotrifluoro film	0 % ethylene)	_	31.12.2023
^g ex 3920 99 59	55	Ion-exchange membranes of fluorinated plastic material	0 %	_	31.12.2023
^g ex 3920 99 59	65	Film of a vinyl alcohol	0 %	_	31.12.2023

		copolymer, soluble in cold water, of a thickness of 34 µm or more but not more than 90 µm, a tensile strength at break of 20 MPa or more but not more than 55 MPa and an elongation at break of 250 % or more but not more than 900 %		
ex 3920 99 59	70	Tetrafluoroethy film, put up in rolls, with: — a thick of 50 µm, — a meltipoint of 260 °C, and — a specingravit of 1,75 (AST D792) for use in the manufacture of semiconductor devices b	ness fic ty M (),	31.12.2021
^g ex 3920 99 59	75	Film of fluorinated ethylene propylene resin	0 %	31.12.2023

		(CAS RN 25067-11-2) with: — a thickrof 0,010 mm or more but not more than 0,80 mm, — a width of 1 219 mm or more but not more than 1 575 mm, and — a melting point of 252 °C (meas accord ASTN D-34	ng sured ding M	
^g ex 3920 99 90	20	Anisotropic conductive film, in rolls, of a width of 1,2 mm or more but not more than 3,15 mm and a maximum length of 300 m, used	0 %	31.12.2023

		for joining electronic components in the production of LCD or plasma displays			
^g ex 3921 13 10	10	Sheet of polyurethane foam, of a thickness of 3 mm (± 15%) and of a specific gravity of 0,09435 or more but not more than 0,10092	0 %	m ³	31.12.2019
ex 3921 13 10	20	Rolls of open-cell polyurethane foam: — with a thickly of 2,29 mm (± 0,25 mm), — surfact treate with a foram adhes prom and — lamin to a polye film and a layer of textile mater	ce- d ninous sion oter, nated		31.12.2022

gex 3921 19 00	30	or poly(anhyo 7 % or more but not more than 9 % of polyt if prese — 10 % or more but not more than 25 % of inorg	etrafluorethylen nt anic	e	31.12.2023
		fillers			
ex 3921 19 00	35	Multilayer film consisting of: — 30 % or more but not more than 60 % of a micro polyp layer (CAS	pporous propylene		31.12.2022

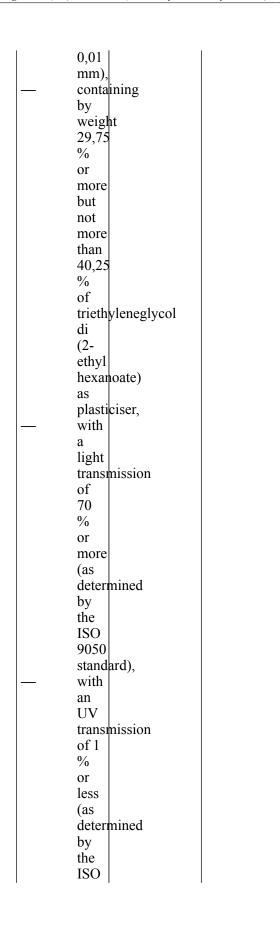
		polyed layer (CAS) RN 9002- and 20 % or more but not more than 40 % of a boehid layer coatin (CAS) RN 1318- for use in the manufacture of lithium-ion batteries b	pporous thylene -88-4),	
ex 3921 19 00	40	Transparent, microporous, acrylic acid grafted polyethylene film, in the form of rolls, with: — a width	0 %	31.12.2020

		of 98 mm or more but not more than 170 r a thick of 15 µm or more but not more than 36 µr of a kind used for the manufacture of alkaline battery separators	nm, ness	
ex 3921 19 00	50	Porous membrane of polytetrafluore (PTFE) laminated to a polyester spunbonded non-woven cloth with: — a total thick of more than 0,05 mm but not more than 0,20 mm,	ness	31.12.2021

		— a water entry press between two stands and 200 kPa according to ISO 811, and an air permof 0,08 cm ³ /cm ² /s or more according to ISO ISO	ure een ding		
ex 3921 19 00	60	polyer layer betwoe micro polyper layers and wheth or not contar a coatin of	o % pporous een porous propylene ining inium	m ²	31.12.2022

		both			
		sides, — a width			
		of 65			
		mm or more			
		but not more			
		than 170 n	nm,		
		— a total thicks	ness		
		of 0,01 mm			
		or more			
		but not more			
		than 0,03 mm,			
		— a poros	ity		
		of 0,25 or			
		more but not			
		more than 0,65			
ex 3921 19 00	70	Microporous membranes of expanded	0 %	_	31.12.2022
		Polytetrafluoro (ePTFE) in rolls, having:	ethylene		
		— a width			
		of 1 600 mm			
		or more			

		but not more than 1 730 mm, and — a member thicker of 15 µm or more, but not more than 50 µm, for use in the manufacture of a bicomponent ePTFE membrane ^b	ness	
ex 3921 19 00	80	Microporous monolayer film of polypropylene or a microporous trilayer film of polypropylene, polyethylene and polypropylene, each film with: zero transy produ direct (TD) shrink a total thickr of	versal ction ion kage,	31.12.2022


^g ex 3921 19 00	93	Strip of microporo polytetrafl on a suppo of a non-	0 % bus uoroethylene ort	31.12.2023
	93	Strip of	width of	31.12.2023
			um or more out not more han 50 um,	

		woven, for use in the manufacture of filters for kidney dialysis equipment ^b			
gex 3921 19 00	95	Film of polyethersulfor of a thickness of not more than 200 µm	0 % ne,		31.12.2023
gex 3921 90 10	10	Composite plate of poly(ethylene terephthalate) or of poly(butylene terephthalate), reinforced with glass fibres	0 %		31.12.2023
^g ex 3921 90 10	20	Poly(ethylene terephthalate) film, laminated on one side or on both sides with a layer of unidirectional nonwoven poly(ethylene terephthalate) and impregnated with polyurethane or epoxide resin	0 %		31.12.2023
^g ex 3921 90 10	30		0 % ethylene hthalate) ness	m ²	31.12.2023

than 100 µm but not more than 150 µm, a primer of phenolic material with a thickness of more than 8 µm but not more than 15 µm, an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and	1	1
100 μm but not more than 150 μm, a primer of phenolic material with a thickness of more than 8 μm but not more than 15 μm, an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 30 μm, — and		more
μm but not more than 150 μm, — a primer of phenolic material with a thickness of more than 8 μm but not more than 15 μm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 20 μm but not more than 20 μm but not more than 30 μm, — and		
but not more than 150 µm, a primer of phenolic material with a thickness of more than 8 µm but not more than 1.5 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 2.0 µm but not more than 2.0 µm but not more than 3.0 µm, — and		
not more than 150 µm, a primer of phenolic material with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 20 µm but not more than 30 µm, and		
more than 150 µm, — a primer of phenolic material with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 1 — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 20 µm but not more than 30 µm, and		
than 150 µm, a primer of phenolic material with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		I
150 μm, a primer of phenolic material with a thickness of more than 8 μm but not more than 15 μm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 20 μm but not more than 30 μm, — and		
mum, a primer of phenolic material with a thickness of more than 8 μm but not more than 15 μm, an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 20 μm but not more than 30 μm, — and		
— a primer of phenolic material with a thickness of more than 8 μm but not more than 15 μm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 20 μm but not more than 30 μm, and		
primer of phenolic material with a thickness of more than 8 µm but not more than 15 µm, an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, and		
of phenolic material with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, and	_	
phenolic material with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
material with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
with a thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		phenone
a thickness of more than 8 µm but not more than 15 µm, an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, and		
thickness of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
of more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
more than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
than 8 µm but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		I
8 μm but not more than 15 μm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 30 μm, — and		
μm but not more than 15 μm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 30 μm, — and		
but not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
not more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
more than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
than 15 µm, — an adhesive layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		I
15 μm, an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 30 μm, — and		
μm, an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 30 μm, and		
— an adhesive layer of a synthetic rubber with a thickness of more than 20 μm but not more than 30 μm, — and		
layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and	_	· ·
layer of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		adhesive
of a synthetic rubber with a thickness of more than 20 µm but not more than 30 µm, — and		
rubber with a thickness of more than 20 µm but not more than 30 µm, — and		of a
with a thickness of more than 20 µm but not more than 30 µm, — and		synthetic
a thickness of more than 20 µm but not more than 30 µm, — and		rubber
thickness of more than 20 µm but not more than 30 µm, — and		with
of more than 20 µm but not more than 30 µm, — and		
more than 20 µm but not more than 30 µm, — and		
than 20 µm but not more than 30 µm, — and		
20 μm but not more than 30 μm, — and		
μm but not more than 30 μm, — and		
but not not more than 30 µm, — and		I
not more than 30 µm, — and		
more than 30 μm, — and		
than 30 μm, — and		
30 μm, — and		
μm, — and		
— and		I
	-	
a transparent		
poly(ethylene		
por (parytone	Ţ	porj (purj rono

		terepliner with a thick of more than 35 µm but not more than 40 µm			
ex 3921 90 55 ex 7019 40 00 ex 7019 40 00	21	Prepreg sheets or rolls containing polyimide resin	0 %	_	31.12.2019
gex 3921 90 55	35	Glass fiber impregnated with epoxy resin for use in the manufacture of smart cards ^b	0 %	m ²	31.12.2023
ex 3921 90 55	40	Three layered fabric sheet, in rolls: — compa core layer of 100 % Nylor Taffe or Nylor Polye blend Taffe coate on both sides	n ta n/ ester led ta, d		31.12.2020

		with polya of a total thicknot more than 135 µm, of a total weigh not more than 80 g/m²			
ex 3921 90 55	50	Glass fiber- reinforced sheets of reactive, halogen- free epoxid resin with hardener, additives and inorganic fillers for use in encapsulating semiconductor systems ^b	0 %	m ²	31.12.2020
ex 3921 90 60	30	Heat-, infra- and UV insulating poly(vinyl butyral) film: — lamin with a metal layer with a thicks of 0,05 t (±	ness	m ²	31.12.2019

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		9050 stand with a total thick of 0,43 mm (± 0,043 mm)	ard), ness	
^g ex 3921 90 60 ex 5407 71 00 ex 5903 90 99	35 30 30	Ion-exchange membranes based on a fabric coated on both sides with fluorinated plastic material, for use in chlor-alkali electrolytic cells ^b	0 %	31.12.2023
ex 3923 10 90	10	provi speci electr disch (ESD and outga	atic rials ed toplastics ng al tostatic arge ssing erties, g as, ion ant	31.12.2021

		surface proper fitted with a special design retain system that protect the photo or wafer from surface or cosmedama and — with or without a gasket seal, of a kind used in the photolithographor other semiconductor production to house photomasks or wafers	ally ned er m ets mask es ee etic ge, ut		
ex 3926 30 00	20	Plastic logo of the automobile manufacturer with mounting brackets on the back side, whether or not chromed, for use in the manufacture of goods of Chapter 87 ^b	0 %		31.12.2021
ex 3926 30 00 ex 3926 90 97		Electroplated interior or	0 %	p/st	31.12.2022

		of acryl butac styre (ABS whet or not mixe with polyc layer of copp nicke and	d carbonate, s er, l	
^g ex 3926 90 92	20	heading 8701 to 8705 ^b Reflecting sheeting or tape, consisting of a facing-strip of poly(vinyl chloride) embossed in a regular pyramidal pattern, heat- sealed in parallel lines or in a grid- pattern to a backing-strip of plastic material, or of knitted or woven fabric covered on one side	0 %	31.12.2023

		with plastic material			
ex 3926 90 92	30	Silicone shell for breast implant	0 %	_	31.12.2021
⁸ ex 3926 90 97	10	Microspheres of a polymer of divinylbenzene of a diameter of 4,5 µm or more but not more than 80 µm	0 %		31.12.2023
⁸ ex 3926 90 97	15	Glass fibre reinforced plastic traverse leaf spring for use in the manufacture of motor vehicle suspension systems ^b	0 %		31.12.2023
^g ex 3926 90 97	23	Plastic cover with clips for the exterior rear- view mirror of motor vehicles	0 %	p/st	31.12.2020
⁸ ex 3926 90 97	25	Unexpansible microspheres of a copolymer of acrylonitrile, methacrylonitr and isobornyl methacrylate, of a diameter of 3 µm or more but not more than 4,6 µm	0 %		31.12.2023
^g ex 3926 90 97	27	Gasket of polyethylene foam, intended	0 %	_	31.12.2023

		to fill-up the space between the body of a motor vehicle and the base of a rear-view mirror			
ex 3926 90 97	30	butad styred with or with	ne put carbonate, d		31.12.2021
ex 3926 90 97	33	Housings, housing parts, drums, setting wheels,	0 %	p/st	31.12.2019

		frames, covers and other parts of acrylonitrile- butadiene- styrene or polycarbonate, of a kind used for the manufacture of remote controls			
^g ex 3926 90 97	50	Knob of car radio front panel, made of Bisphenol A-based polycarbonate, in immediate packings of not less than 300 pieces	0 %	p/st	31.12.2023
^g ex 3926 90 97	77	Silicone decoupling ring with an inner diameter of 14,7 mm or more but no more than 16,0 mm, in immediate packings of 2 500 pieces or more, of a kind used in car parking aid sensor systems	0 %	p/st	31.12.2021
gex 4007 00 00	10	Siliconated vulcanised rubber thread and cord	0 %	_	31.12.2023
ex 4009 42 00	20	Rubber brake hose with: — textil string — a wall thick of	3 S,		31.12.2020

		3,2 mm, a metal hollo termi press on both ends, and — one or more mour brack of kind used in the manufacture of goods of Chapter 87	w nal ed	
ex 4010 31 00 ex 4010 33 00 ex 4010 39 00	10	Vulcanized rubber endless transmission belt of trapezoidal cross-section (V-belts) with longitudinal V-ribbed pattern on the inner side for use in the manufacture of goods of Chapter 87b	0 %	31.12.2021
ex 4016 93 00	20	Gasket made of vulcanised rubber (ethylene-propylene-diene monomers), with permissible outflow of the material in the place of mold split of not more than 0,25 mm, in	0 %	31.12.2020

		the shape of a rectangle: — with a lengtl of 72 mm or more but	h		
		not more than 825 mm;			
		with a width of 18 mm			
		or more but not more			
		than 155 mm			
ex 4016 99 57	10	Air intake hose for air supply to the combustion part of the engine comprising at least: — one flexib rubbe hose, one plasti hose, and metal clips,	c	p/st	31.12.2021
		- wheth or not	ner		

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		a reson for use in the manufacture of goods of Chapter 87 ^b	ator,		
ex 4016 99 57	20	Rubber bumper strip with a silicone coating of a length not more than 1 200 mm and with at least five plastic clips for use in the manufacture of goods of Chapter 87b	0 %	p/st	31.12.2021
ex 4016 99 57	30	Pin boot of a brake calliper made of vulcanized rubber with: — an inner diame of not less than 5 mm and an outer diame of not more than 35 mm, — a heigh of 15 mm or more	eter eter		31.12.2022

		but not not more than 40 m and a ribbe desig for use in the manufacture of goods of Chapter 87 ^b	m, d		
ex 4016 99 97	30	Tyre moulding bladder	0 %	_	31.12.2021
ex 4104 41 19	10	Buffalo leather, split, chrome tanned synthetic retanned ('crust'), dry	0 %		31.12.2022
^g 4105 10 00 4105 30 90		Sheep or lamb skin leather, without wool on, tanned or retanned but not further prepared, whether or not split, other than leather of heading 4114	0 %		31.12.2023
^g 4106 21 00 4106 22 90		Goat or kid skin leather, without hair on, tanned or retanned but not further prepared, whether or not split, other than leather of heading 4114	0 %		31.12.2023
g4106 31 00 4106 32 00		Leather of other animals,	0 %	_	31.12.2023

4106 40 90 4106 92 00		without hair on, not further prepared than tanned, other than leather of heading 4114		
gex 4408 39 30	10	Okoume veneer sheets: — of a lengti of 1 270 mm or more but not more than 3 200 mm, — of a width of 150 mm or more but not more than 2 000 mm, — of a thick of 0,5 mm or more but not more than 4 mm,	ness	31.12.2023

		— not			
		sande	d,		
		and			
		— not			
		plane	d		
ex 4412 99 40	10	Laminated	0 %	_	31.12.2021
ex 4412 99 50		wood			
ex 4412 99 85		consisting of			
		two layers			
		of sheets for			
		veneering:			
		a			
		width	1		
		of			
		210			
		mm			
		or			
		more			
		but			
		not			
		more			
		than			
		320 r	nm,		
		— a			
		lengt	h		
		of			
		297			
		mm			
		or			
		more but			
		not			
		more			
		than			
		450 r	nm		
		_ a	,		
		thick	ness		
		or			
		0,45			
		mm			
		or			
		more			
		but			
		not			
		more			
		than			
		0,8			
		mm,			
		for use in the			
		manufacture			
		of products			
		falling within			

		heading 4420, 4421, 4820, 4909 or 4911 ^b			
ex 5004 00 10	10	Silk yarn (other than yarn spun from silk waste) not put up for retail sale, unbleached, scoured or bleached, entirely of silk	0 %		31.12.2021
gex 5005 00 10 ex 5005 00 90	10	Yarn spun entirely from silk waste (noil), not put up for retail sale	0 %	_	31.12.2023
g5208 11 10		Fabrics for the manufacture of bandages, dressings and medical gauzes	5.2 %	_	31.12.2023
ex 5311 00 90	10	Plain-woven fabric of paper yarns glued on a tissue paper layer: — with a weight of 230 g/m² or more but not more than 280 g/			31.12.2022

		m², and cut into rectar with a side lengtl of 40 cm or more but not more than 140 cm	n	
gex 5311 00 90	20	Sisal cloth in rolls with: — a lengtl of 20 metre or more but not more than 30 me and — a maxim width of 2,5 metre for use in the production of Stainless Steel Kitchenw	etres, mum	31.12.2023
ex 5402 47 00	20	Bicomponent monofilament yarn of not more than 30 dtex, consisting of:	0 %	31.12.2020

		terep core, and an outer layer of a copol of poly(and			
^g ex 5402 49 00	30	Yarn of a copolymer of glycollic acid with lactic acid, for the manufacture of surgical sutures ^b	0 %		31.12.2023
gex 5402 49 00	50	Non-textured filament yarn of poly(vinyl alcohol)	0 %	_	31.12.2023
^g ex 5402 49 00	70	Synthetic filament yarn, single, containing by weight 85 % or more of acrylonitrile, in the form of a wick containing 1 000 continuous filaments or more but not more than 25 000 continuous filaments, of a weight per metre of 0,12 g or more but	0 %	m	31.12.2023

		not more than 3,75 g and of a length of 100 m or more, for the manufacture of carbon-fibre yarn ^b			
ex 5403 39 00	10	Biodegradable (norm EN 14995) monofilament of not more than 33 dtex, containing at least 98 % by weight polylactide (PLA), for use in the manufacture of filtration fabrics for the food industry ^b	0 %		31.12.2020
gex 5404 19 00	50	Monofilaments of polyester or poly(butylene terephthalate), with cross-sectional dimension of 0,5 mm or more but not more than 1 mm, for use in the manufacture of zippers ^b	0 %		31.12.2023
^g ex 5404 90 90	20	Strip of polyimide	0 %		31.12.2023
ex 5407 10 00	10	Textile fabric, consisting of warp filament yarns of polyamide-6,6 and weft filament yarns of polyamide-6,6, polyamide-6,6,	0 %	_	31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		polyurethane and a copolymer of terephthalic acid, <i>p</i> -phenylenediam and 3,4'—oxybis (phenyleneami			
gex 5503 11 00 ex 5601 30 00	10 40	Synthetic staple fibres of a copolymer of terephthalic acid, <i>p</i> -phenylenediam and 3,4'-oxybis(phenyle of a length of not more than 7 mm			31.12.2023
gex 5503 90 00 ex 5506 90 00 ex 5601 30 00	20 10 10	Poly(vinyl alcohol) fibres, whether or not acetalized	0 %	_	31.12.2023
ex 5503 90 00	30	Trilobal poly(thio-1,4- phenylene) fibres	0 %	_	31.12.2019
gex 5603 11 10 ex 5603 11 90 ex 5603 12 10 ex 5603 12 90 ex 5603 91 10 ex 5603 92 10 ex 5603 92 90	10	Poly(vinyl alcohol) non-wovens, in the piece or cut into rectangles: — of a thick of 200 µm or more but not more than 280 µm, and	0 %	m ²	31.12.2023

		of a weight of 20 g/ m² or more but not more than 50 g/ m²	nt		
ex 5603 12 90 ex 5603 13 90 ex 5603 14 90 ex 5603 92 90 ex 5603 93 90 ex 5603 94 90	60 40	Non-wovens of aromatic polyamide fibres obtained by polycondensation of <i>m</i> -phenylenediam and isophthalic acid, in the piece or cut into rectangles			31.12.2023
ex 5603 12 90	50	or of polyp and	ining	m ²	31.12.2022

- whether or not printed, with: - on one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated unbonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and - on other side		
not printed, with: on one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on other		whether
printed, with: on one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on on other		or
with: on one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on on other		
— on one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated unbonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		printed,
one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
one side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		on
side, 65 % of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated unbonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		one
of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
of the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
the total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated unbonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
total surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
surface area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
area having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
having circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
circular bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
bobbles of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
of 4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
4mm in diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on other		
in diameter, consisting of anchored, elevated unbonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35% of the surface area being bonded, and on other		
diameter, consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on other		
consisting of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on other		
of anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		1 7
anchored, elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
elevated un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
un- bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
bonded curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
curly fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
fibres, suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on other		
suitable for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and on other		
for the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
the engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
engagement of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
of extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
extruded hook materials, and the remaining 35 % of the surface area being bonded, and — on other		
hook materials, and the remaining 35 % of the surface area being bonded, and on other		
materials, and the remaining 35 % of the surface area being bonded, and on other		
and the remaining 35 % of the surface area being bonded, and on other		
the remaining 35 % of the surface area being bonded, and — on other		
remaining 35 % of the surface area being bonded, and on other		
35 % of the surface area being bonded, and on other		
of the surface area being bonded, and on other		
of the surface area being bonded, and on other		
the surface area being bonded, and on other		
surface area being bonded, and on other		
area being bonded, and on other		
being bonded, and on other		
bonded, and on other		
and on other		
— on other		
other		
	-	
side		
	1	side

		surfactor for use in the manufacture of napkins and napkin liners for babies and similar sanitary articles b	tured ce,		
^e ex 5603 12 90 ex 5603 13 90	60 60	Non-woven of spunbonded polyethylene, of a weight of more than 60 g/m² but not more than 80 g/m² and an air resistance (Gurley) of 8 seconds or more but not more than 36 seconds (as determined by the ISO 5636/5 method)	0 %	m^2	31.12.2023
^g ex 5603 12 90 ex 5603 13 90 ex 5603 92 90 ex 5603 93 90	70 70 40 10	filam of	n ated	m ²	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

weight	
of of	
not	
more	
than	
150	
g/	
m^2 ,	
in ',	
the	
piece	
or	
simply	
cut	
into	
squares	
or	
rectangles,	
and	
— not	
impregnated	
ex 5603 13 10 20 Non- 0 % m^2 31.12.	2020
woven of	
spunbonded	
polyethylene,	
with a	
coating,	
— of a	
weight	
of	
more	
than	
80	
g/	
m^2	
but	
not	
more	
than	
105	
g/	
m^2 ,	
and	
— an	
air air	
resistance	
(Gurley)	
of 8	
22243	
seconds	
or	

		not			
		more			
		than			
		75	,		
		secon	lds		
		(as			
		deter	mined		
		by			
		the			
		ISO			
		5636			
		metho	pd)		
g 7602.1.1	40	N	0.0/	2	21 12 2022
^g ex 5603 14	40	Non-wovens,	0 %	m^2	31.12.2023
90		consisting of			
		poly(ethylene			
		terephthlate)			
		spun bonded			
		media:			
		_ of	,		
		weigl	nt		
		of			
		160			
		g/			
		m^2			
		or			
		more			
		but			
		not			
		more			
		than			
		300			
		g/			
		m^2 ,			
		— whetl	her		
		or			
		not			
			atad		
		lamin	lated		
		on			
		one			
		side			
		with			
		a			
		mem	hrane		
		or a	L		
		mem	ргапе		
		and			
			nium,		
		of a kind			
		used for the			
		manufacture			
		of industrial			
		filters			

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

^g ex 5603 92 90 ex 5603 93 90	20 20	Non-wovens consisting of a meltblown central layer of a thermoplastic elastomer laminated on each side with spunbonded filaments of polypropylene	0 %		31.12.2023
^g ex 5603 92 90 ex 5603 94 90	70 40	Non-wovens, consisting of multiple layers of a mixture of meltblown fibres and staple fibres of polypropylene and polyester, whether or not laminated on one side or on both sides with spunbonded filaments of polypropylene	0 %		31.12.2023
ex 5603 92 90 ex 5603 93 90	80 50	Non-woven polyolefin fabric, consisting of an elastomeric layer, laminated on each side with polyolefin filaments: — a weight of 25 g/m² or	0 %	m ²	31.12.2021

		 not impre with cross direct or mach direct strete 	es ngles, egnated, tional ine- tional herties,		
gex 5603 93 90	60	Nonwovens made of polyester fibres: — with a weight of 85 g/m², with a const thick of 95 µm (± 5 µm),	ant ness	m ²	31.12.2023

		meither coate nor cover in 1 m wide rolls of 2 000m to 5 000 m lengt suitable for the coating of membranes in the manufacture of osmosis and reverse osmosis filters ^b	d red, h,		
^e ex 5603 94 90	20	Acrylic fibre rods, having a length of not more than 50 cm, for the manufacture of pen tips ^b	0 %		31.12.2023
ex 5607 50 90	10	Unsterilised twine of poly(glycolic acid) or of poly(glycolic acid) and its copolymers with lactic acid, plaited or braided, with an inner core, for the manufacture of surgical sutures ^b	0 %		31.12.2019
^g ex 5803 00 10	91	Gauze of cotton, of a width of less than 1 500 mm	0 %	_	31.12.2023

ex 5903 20 90	20	Two layers	0 %	_	31.12.2021
		' plastic-			
		laminated			
		textile fabric			
		with:			
		— one			
		layer			
		consi	isting		
		of			
		knitte	ed		
		or			
		crock			
		polye	ester		
		textil	e		
		fabri			
		— other			
		layer			
		consi	sting		
		of			
		polyı	rethane		
		foam	,		
		— a			
		weig	ht		
		of			
		150			
		g/			
		m^2			
		or			
		more	;		
		but			
		not			
		more			
		than			
		500			
		g/			
		m^2 ,			
		— a			
		thick	ness		
		of 1			
		mm			
		or			
		more	1		
		but			
		not			
		more			
		than			
		5 mn for use in the	+,		
		manufacture			
		of the			
		retractable			
		Tetractable	I		

		roof of motor vehicles ^b			
gex 5906 99 90	10	Rubberised textile fabric, consisting of warp yarns of polyamide-6,6 and weft yarns of polyamide-6,6 polyamide-6,6 polyurethane and a copolymer of terephthalic acid, <i>p</i> -phenylenediam and 3,4'-oxybis(phenylenediam)	line		31.12.2023
ex 5907 00 00	10	Textile fabrics, coated with adhesive in which are embedded spheres of a diameter of not more than 150 µm	0 %	_	31.12.2021
gex 5911 90 99 ex 8421 99 90	30 92	Parts of equipment for the purification of water by reverse osmosis, consisting essentially of plastic-based membranes, supported internally by woven or non-woven textile materials which are wound round a perforated tube, and enclosed in a cylindrical	0 %		31.12.2023

		plastic casing of a wall- thickness of not more than 4 mm, whether or not housed in a cylinder of a wall- thickness of 5 mm or more			
ex 5911 90 99	40	Multi-layered non-woven polyester polishing pads, impregnated with polyurethane	0 %		31.12.2019
ex 5911 90 99	50	Loudspeaker vibration damper, made from round, corrugated, flexible and cut-to-size tissue of textile fibres of polyester, cotton or aramid or a combination hereof, of a kind used in car loudspeakers	0 %		31.12.2022
ex 6804 21 00	20	Discs: of synth diame which are agglo with a metal alloy, ceran alloy or	onds n merated	p/st	31.12.2019

	plastic	
	alloy,	
_	having	
	a	
	self-	
	sharpening	
	effect	
	by	
	constant	
	release	
	of	
	the	
	diamonds,	
	suitable	
	for	
	abrasive	
	cutting	
	of	
	wafers,	
	whether	
	or	
	not	
	containing	
	a hole	
	in	
	the	
	centre,	
_	whether	
	or	
	not	
	on a	
	support,	
_	with	
	a	
	weight	
	of	
	not	
	more	
	than	
	377	
	g	
	per	
	piece,	
	and	
-	with	
	an automal	
	external diameter	
	of	
	not	
	more	
	than	
I	uiuii	

		206 mm			
ex 6805 30 00	10	Probe tips cleaning material consisting of a polymer matrix containing abrasive particles mounted on a substrate for use in the manufacture of semiconductor	0 %		31.12.2021
^g ex 6813 89 00	20	Friction material, of a thickness of less than 20 mm, not mounted, for use in the manufacture of friction components ^b	0 %		31.12.2023
gex 6814 10 00	10	Agglomerated mica with a thickness of not more than 0,15 mm, on rolls, whether or not calcined, whether or not reinforced with aramid fibres	0 %		31.12.2023
^g ex 6903 90 90	20	Silicon carbide reactor tubes and holders, of a kind used for insertion into diffusion and oxidation furnaces for production of	0 %	_	31.12.2023

		semiconductor materials			
ex 6909 19 00	20	Silicon nitride (Si ₃ N ₄) rollers or balls	0 %	_	31.12.2020
^g ex 6909 19 00	25	Ceramic proppants, containing aluminium oxide, silicon oxide and iron oxide	0 %		31.12.2023
^g ex 6909 19 00	30	Supports for catalysts, consisting of porous cordierite or mullite ceramic pieces, of an overall volume of not more than 65 l, having, per cm ² of the cross-section, not less than one continuous channel which may be open at both ends or stopped at one end	0 %		31.12.2023
^g ex 6909 19 00 ex 6914 90 00	50 20	Ceramic articles made of continuous filaments of ceramic oxides, containing by weight: 2 % or more of dibor trioxi	ron		31.12.2023

		 28 % or less of silico dioxi and 60 % or more of dialu trioxi 	de, minium	
gex 6909 19 00	60	Supports for catalysts, consisting of porous ceramic pieces, of a blend of silicon carbide and silicon, with a hardness of less than 9 on the Mohs scale, with a total volume of not more than 65 litres, having, per cm² of the surface of the cross section one or more closed channels at the tail end	0 %	31.12.2023
gex 6909 19 00	70	Supports for catalysts or filters, consisting of porous ceramics made primarily from oxides of aluminium and titanium; with a total	0 %	31.12.2023

		volume of not more than 65 litres and at least one duct (open on one or both ends) per cm ² of cross section		
gex 6914 90 00	30	Ceramic microspheres, transparent, obtained from silicon dioxide and zirconium dioxide, of a diameter of more than 125 µm	0 %	 31.12.2019
ex 7004 90 80	10	Alkali- aluminosilicate drawn flat glass sheet with: — a scrate proof coatin of a thicke of 45 µm (+/- 5 µm), — a total thicke of 0,45 mm or more but not more than 1,1 mm, — a width	ness	31.12.2020

		of 90 % or more an optical distor of 55° or more	e mission al ttion		
ex 7006 00 90	25	Glass wafer made of borosilicate float glass — with a total thicks variate of 1	ness	p/st	31.12.2019

		μm or less, and — laser- engra			
ex 7009 10 00	30	Layered glass with mechanical dimming ability by different angles of incident light comprising: — wheth or not a layer of chror— a break resist adhes tape or hotmelt adhes and — a releas film on the front side and prote paper at the back side, of a kind used for interior rear-view mirrors of vehicles	ne, - ance sive	p/st	31.12.2019

ex 7009 10 00	40	Electrochromic self-dimming inside rearview mirror, consisting of: — a mirror suppo — a plastic casin and — an integrative of motor vehicles of Chapter 87b	or ort c g, rated	31.12.2020
ex 7009 10 00	50	Unfinished electro- chromic auto- dimming mirror for motor vehicle rear-view mirrors: — wheth or not equip with plasti backi plate. — wheth or not equip with a heatin element wheth or not equip with Spot Mode	pped c ng her pped ng ent, her	31.12.2022

	(BSI displ	M) lay	
ex 7009 91 00 10	Unframed glass mirrors with: — a lengg of 1 516 mm (± 1 mm) — a widt of 553 mm (± 1 mm) — a thick of 3 mm (± 0,1 mm) — the back of the mirror cove with prote poly (PE) film, with a	th created ective ethylene checks	st 31.12.2020

		- a lead conte of not more than 90 mg/kg; and a corro resist of 72 hours or more accor to ISO 9227 salt spray test	sion ance ding	
^e ex 7014 00 00	10	Optical elements of glass (other than those of heading 7015), not optically worked, other than signalling glassware	0 %	31.12.2023
ex 7019 12 00 ex 7019 12 00	02 22	Rovings, measuring 650 tex or more but not more than 2 500 tex, coated with a layer of polyurethane whether or not mixed with other materials	0 %	31.12.2023

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

	1	,		,	
ex 7019 12 00 ex 7019 12 00		Rovings ranging from 1 980 to 2 033 tex, composed of continuous glass filaments of 9 µm (± 0,5 µm)	0 %		31.12.2022
gex 7019 19 10	10	Yarn of 33 tex or a multiple thereof (± 7,5 %), obtained from continuous spun-glass filaments of a nominal diameter of 3,5 μm or of 4,5 μm, in which filaments of a diameter of 3 μm or more but not more than 5,2 μm predominate, other than those treated so as to improve their adhesion to elastomers	0 %		31.12.2023
ex 7019 19 10	15	S-glass yarn of 33 tex or a multiple of 33 tex (± 13 %) made from continuous spun-glass filaments with fibres of a diameter of 9 µm (– 1 µm/+ 1,5 µm)	0 %		31.12.2022
ex 7019 19 10	20	Yarn of 10,3 tex or more but not more	0 %	_	31.12.2020

		than 11,9 tex, obtained from continuous spun-glass filaments, in which filaments of a diameter of 4,83 µm or more but not more than 5,83 µm predominate			
ex 7019 19 10	25	Yarn of 5,1 tex or more but not more than 6,0 tex, obtained from continuous spun-glass filaments, in which filaments of a diameter of 4,83 µm or more but not more than 5,83 µm predominate	0 %		31.12.2020
ex 7019 19 10	30	Yarn of E-glass of 22 tex (± 1,6 tex), obtained from continuous spun-glass filaments of a nominal diameter of 7 μm, in which filaments of a diameter of 6,35 μm or more but not more than 7,61 μm predominate	0 %		31.12.2019
ex 7019 19 10	50	Yarn of 11 tex or a multiple thereof (±	0 %	_	31.12.2022

		7,5 %), obtained from continuous spun-glass filaments, containing 93 % by weight or more of silicon dioxide, of a nominal diameter of 6 µm or 9 µm, other than		
ex 7019 19 10	55	oxide 19 % or more but not more than 25 % of	esium , inium	31.12.2019

		not more than 2 % of boror oxide without calciu oxide coated with a latex comprising at least a resorcinol-formaldehyde resin and chlorosulphona polyethylene	n Sput um	
gex 7019 19 10 ex 7019 90 00	60 30	High modulus glass cord (K) impregnated with rubber, obtained from twisted high modulus glass filament yarns, coated with a latex comprising a resorcinol-formaldehyde resin with or without vinylpyridine and/or hydrogenated acrylonitrile-butadiene rubber (HNBR)	0 %	31.12.2023
^g ex 7019 19 10 ex 7019 90 00	70 20	Glass cord impregnated with rubber or plastic, obtained from twisted glass filament yarns, coated with a latex comprising at least a	0 %	31.12.2023

		resorcinol- formaldehyde- vinylpyridine resin and an acrylonitrile- butadiene rubber (NBR)			
gex 7019 19 10 ex 7019 90 00	80 40	Glass cord impregnated with rubber or plastic, obtained from twisted glass filament yarns, coated with a latex comprising at least a resorcinol-formaldehyde resin and chlorosulphona polyethylene	0 %		31.12.2019
ex 7019 39 00	50	Non-woven product of non-textile glass fibre, for the manufacture of air filters or catalysts ^b	0 %	_	31.12.2021
gex 7019 40 00 ex 7019 40 00	11 19	Woven fabrics of rovings, impregnated with epoxy resin, with a coefficient of thermal expansion between 30 °C and 120 °C (measured according to IPC-TM-650) of: — 10 ppm per °C or	0 %		31.12.2023

	more	
	but	
	not	
	more	
	than	
	12	
	ppm	
	per	
	°C	
	in	
	the	
	length	
	and	
	width,	
	and	
_	20	
	ppm	
	per °C	
	or	
	more	
	but	
	not	
	more	
	than	
	30	
	ppm	
	per	
	°C	
	in	
	the	
	thickness,	
	with	
	a	
	glass transition	
	temperature	
	of	
	152	
	°C	
	or	
	more	
	but	
	not	
	more	
	than	
	153 °C	
	(measured according	
	IPC-	
	TM-650)	

^g ex 7019 90 00	10	Non-textile glass fibres in which fibres of a diameter of less than 4,6 µm predominate	0 %		31.12.2023
ex 7020 00 10 ex 7616 99 90		Television pedestal stands with or without bracket for fixation to and stabilization of television cabinet case/ body	0 %	p/st	31.12.2021
ex 7020 00 10	20	Raw material for optical elements of fused silicon dioxide with: — a thick of 10 cm or more but not more than 40 cm, and — a weigh of 100 kg or more	ht	p/st	31.12.2022
ex 7201 10 11	10	Pig iron ingots with a length of not more than 350 mm, a width of not more than	0 %		31.12.2021

ex 7201 10 30	10	150 mm, a height of not more than 150 mm Pig iron ingots with a length of not more than 350 mm, a width of not more than 150 mm, a height of not more than 150 mm, containing by weight not more than 1 % of silicon	0 %		31.12.2021
g7202 50 00		Ferro-silico- chromium	0 %	_	31.12.2023
ex 7202 99 80		and 18 % or more but not more than 22 % of iron	osium,		31.12.2020
ex 7315 11 90	10	Roller type steel timing chain with a fatigue limit of 2 kN at 7 000 rpm or more for	0 %		31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 7318 19 00	30	use in the manufacture of engines of motor vehicles ^b Connecting rod for the master brake cylinder with screw threads on both ends for use in the manufacture of goods of Chapter 87 ^b	0 %	p/st	31.12.2021
gex 7318 24 00	30	stain steel accord to speci 17-41 inject moul with a rocky hardr of 38 (± 1) or 53 (+ 2/- 1),	ensitic less ding fication PH, tion ded, well ness		31.12.2023

		not more than 35 mm × 17 mm × 8 mm, of a kind used for restraint joints for tubes and pipes			
ex 7320 90 10	91	Flat spiral spring of tempered steel, with: — a thickly of 2,67 mm or more but not more than 4,11 mm, — a width of 12,57 mm or more but not more than 16,01 mm, — a torqu of 18,05 Nm or more but	e	p/st	31.12.2023

		not more than 73,5 Nm, — an angle betwee the free position and the noming position in exerce of 76° or more but not more than 218°, for use in the manufacture of tensioners for power transmission belts, for internal combustion engines ^b	een on nal on ise		
ex 7325 99 10	20	Anchor head of hot dipped galvanized ductile cast iron of the kind used in the production of earth anchors	0 %	p/st	31.12.2019
ex 7326 20 00	20	Metal fleece, consisting of a mass of stainless steel wires of diameters of 0,001 mm or more but	0 %		31.12.2021

		not more than 0,070 mm, compacted by sintering and rolling			
ex 7326 90 92	40	rolling Steel nozzle shell with integral flange in one piece open-die forged from 4 castings, worked and machined, with: — a diam of 5 752 mm or more but not more than 5 758 mm, — a heigh of 3 452 mm or more but not more than 3 454 mm, — a total weigh 167 875 kg	nt	p/st	31.12.2022
		or more			

		but			
		not			
		more than			
		168			
		125			
		kg,			
		of a kind			
		used for the			
		fabrication			
		of a nuclear			
		reactor vessel			
ex 7326 90 98	40	Iron and steel	0 %		31.12.2020
		weights			
		— whetl	her		
		or			
		not			
		with			
		parts			
		of other			
		mater			
		— whetl			
		or			
		not			
		with			
		parts			
		of			
		other			
		metal			
		— whetl	ner		
		or not			
		surfa	re		
		treate			
		— whetl			
		or			
		not			
		printe	d		
		of a kind			
		used for the			
		production			
		of remote controls			
ex 7326 90 98	50	Surface-	0 %		31.12.2022
		hardened,			
		steel piston			
		rod for a hydraulic or			
		hydropneumati	c		
		shock			
		absorber			
	I	I	I	I	I

	a a cl	hrome oating, f a iameter f 1 nm r nore, ut ot nore nan 8 nm, f a ength f 0 nm r nore, ut ot nore, ut ot nore, nan nore, ut ot nore, nan nore, ut ot nore nan 00 nm,	
		el	
10 70	Plates or sheets:	east ne ayer f voven lass lbre, mpregnated vith	31.12.2022

	retardant
	artificial
	or
	synthetic
	resin
	with
	a
	glass
	transition
	temperature
	(Tg)
	of of
	more
	than
	130
	°C
	as
	measured
	according
	to
	IPC-
	TM-650,
	method
	2.4.25,
	coated
	on
	one
	or
	both
	sides
	with
	a
	copper
	film
	with
	a
	thickness
	of
	not
	more
	than
	3,2
1 1	mm,
and	,
containir	
least one	
the follow	
	poly(tetrafluoroethylene)
	(CAS
	RN
	9002-84-0),
	poly(pxy-
	(2,6-
1	(2,0-

		pheny (CAS RN	4-01-4), g nal nsion	
ex 7410 11 00 ex 8507 90 80 ex 8545 90 90	10 60 30	Roll of laminate foil of graphite and copper, with: — a width of 610 mm or more but not more than 620 m and		31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		diame of 690 mm or more but not more than 710 mm, for use in the manufacture of lithium- ion electric rechargeable batteries ^b			
gex 7410 21 00	10	Sheet or plate of polytetrafluoro containing aluminium oxide or titanium dioxide as filler or reinforced with glassfibre fabric, covered on both sides with copper foil	0 % ethylene,		31.12.2023
ex 7410 21 00	20	Foils, rolls composed of one layer of glass epoxy of 100 µm colaminated with refined copper foil on one or two sides of 35 µm with a tolerance of 10 % for use in the production of smart cards ^b	0 %	m^2	31.12.2023

gex 7410 21 00	30	Film of polyimide, whether or not containing epoxide resin and/or glass fibre, covered on one side or on both sides with a copper foil	0 %	31.12.2023
gex 7410 21 00	40	fibre, lamir on each side with glass fibre fabric and	al al coven nated de sting ple	31.12.2023

		improvide with phen resin coated on one or both sides with a copper film with a maximum thickness of 0,15 mm		
gex 7410 21 00	50	of at least one layer of fibre fabric	glass cegnated ide red er ith ness	31.12.2023

		loss factor (Df) of less than 0,015 at a meas frequ of 10GF as meas accor to IPC- TM-6	uring ency Iz, ured ding	
ex 7413 00 00 ex 8518 90 00	20 45	Loudspeaker centering ring, consisting of one or more vibration dampers and minimum 2 non-insulated copper cables, therein woven or pressed of the kind used in car loudspeakers	0 %	31.12.2022
gex 7419 99 90 ex 7616 99 90	91 60	Disc (target) with deposition material, consisting of molybdenum silicide: — conta 1 mg/ kg or less of sodiu and mour on a		31.12.2023

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		coppe or alum suppe	inium		
^g 7601 20 20		Slabs and billets of unwrought aluminium alloys	4 %	_	31.12.2023
ex 7601 20 20	10	Slabs and billets of aluminium alloy containing lithium	0 %	_	31.12.2022
ex 7604 29 10 ex 7606 12 99	10 20	Sheets and bars of aluminium- lithium alloys	0 %	_	31.12.2020
ex 7604 29 10	40	Bars and rods of aluminium alloys containing by weight: — 0,25 % or more but not more than 7 % of zinc, and — 1 % or more but not more than 3 % of magn and — 1 % or more but or more than 3 % of magn and 1 % or more but	esium,		31.12.2019

		not more than 5 % of coppe and — not more than 1 % of mang consistent with the material	er,		
		specifications AMS QQ- A-225, of a kind used in aerospace industry (inter alia conforming NADCAP and AS9100) and obtained by rolling mill process			
gex 7605 19 00	10	Not alloyed aluminium wire, of a diameter of 2 mm or more but not more than 6 mm, covered with a layer of copper of a thickness of 0,032 mm or more but not more than 0,117 mm	0 %		31.12.2023
ex 7605 29 00	10	Wire of aluminium alloys containing by weight:	0 %	m	31.12.2019

	more	
	but	
	not	
	more	
	than	
	5 %	
	of	
	copper,	
	and	
_	0,2	
	0/0	
	or	
	more	
	but	
	not	
	more	
	than	
	6 %	
	of	
	magnesium,	
	and	
	0,10	
-	0,10	
	or	
	more	
	but	
	not	
	more	
	than	
	7 %	
	of	
	zinc,	
	and	
	not	
	more	
	than	
	1 %	
	of	
	manganese,	
consist		
with th		
materia		
	cations	
AMS (
A-430		
kind us		
aerosp		
industr		
(inter a		
confor		
NADO		
and AS	S9100)	
and ob	tained	
•	•	•

		by rolling mill process			
ex 7607 11 90 ex 7607 11 90	47 57	Aluminium foil in rolls: — havin a purity of 99,99 % by weigh — of a thick of 0,021 mm or more but not more	nt, ness		31.12.2021
		than 0,2 mm, with a width of 500 mm, with a			
		surface oxide layer by 3 to 4 nm thick, and with a cubic texture of more than	re		
ex 7607 11 90	60	95 % Plain	0 %	_	31.12.2021
		aluminium			

	foil with the following parameters: — an aluminium content of 99,98 % or more — a thickness of 0,070 mm or more but not more than 0,125 mm — with a cubic texture of a kind used for high voltage etching	
ex 7607 19 90 ex 8507 90 80	Sheet in the form of a roll consisting of a laminate of lithium and manganese bonded to aluminium, with: — a width of 595 mm or more but not more than	

		605 m and — a diamo		
		690 mm or more but not more than 710 mm, for use in the manufacture		
		of cathodes for lithium- ion electric rechargeable batteries ^b		
² ex 7608 20 89	30	Seamless aluminium alloyed extruded tubes with: — an outer diame of 60 mm or more but not more than 420 mm, and — a wall thickt of 10 mm or more but not	eter	31.12.2023

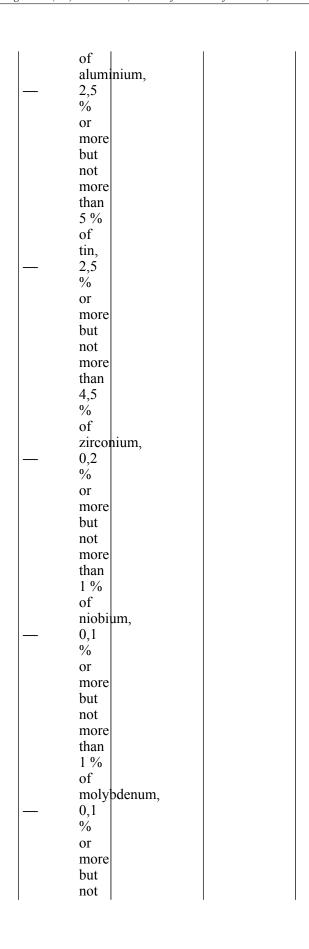
		more than 80 mm			
gex 7613 00 00	20	Aluminium container, seamless, for compressed natural gas or compressed hydrogen, wholly embedded in an overwrap of epoxycarbon fibres composite, of a storage capacity of 172 l (± 10 %) and an unfilled weight of not more than 64 kg	0 %	p/st	31.12.2023
ex 7616 99 10 ex 8708 99 10 ex 8708 99 97	60	Aluminium engine bracket, with dimensions of: — heigh of more than 10 mm but not more than 200 r width of more than 10 mm but not more than 200 r width of more than 200 r	nm,	p/st	31.12.2019

```
length
         of
         more
         than
         10
         mm
         but
         not
        more
         than
         200 mm,
equipped
with at least
two fixing
holes, made
of aluminium
alloys
ENAC-46100
or
ENAC-42100
(based on
the norm
EN:1706)
with
following
characteristics:
         internal
         porosity
         not
         more
         than
         1
         mm,
         outer
         porosity
        not
         more
         than
         2
         mm,
         Rockwell
         hardness
        HRB
         10
         or
         more
of a kind
used in the
production of
suspensions
systems
for engines
```

		in motor vehicles			
^g ex 7616 99 90	15	Honeycomb aluminium blocks of the type used in the manufacture of aircraft parts	0 %	p/st	31.12.2023
ex 7616 99 90	25	(CAS) RN 7429 of a purity of 99,8 % or more with an optic densi of each alum layer of not more than 3,0, with each	sinium -90-5) y inium inium ated		31.12.2019

		 on a carrie film of PET, and on rolls of up to 50 000 metre in length 	es		
ex 7616 99 90 ex 8482 80 00 ex 8803 30 00	10	Connecting components for use in the production of helicopter tail rotor shafts ^b	0 %	p/st	31.12.2021
ex 8101 96 00	10	Tungsten wire containing by weight 99 % or more of tungsten with: — a maximum cross section dimension of not more than 50 µm — a resist of 40 Ohm or more but not more than 300 Ohm	onal nsion		31.12.2020

		at length of 1 metre of a kind used in the production of heated car front windows		
ex 8101 96 00	20	Tungsten wire — conta by weigl 99,95 % or more of tungs and — with a maxin cross section dimen of not more than 1,02 mm	nt ten, mum	31.12.2022
ex 8102 10 00	10	Molybdenum powder with: — a purity by weigh of 99 % or more and — a partic size of 1,0 µm	nt ,	31.12.2022

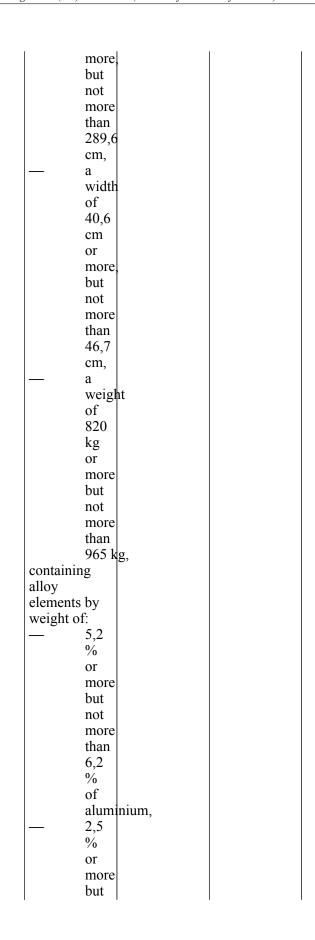

		or more but not more than 5,0 µm	•		
ex 8103 90 90	10	Tantalum sputtering target with: — a coppe chror alloy backi plate, — a diamo of 312 mm, and — a thicks of 6,3 mm	nium ng eter	p/st	31.12.2019
ex 8104 30 00	35	Magnesium powder — of purity by weigl of more than 99,5 % — with a partic size of 0,2 mm or more but not more than	nt		31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		0,8 mm			
^g ex 8104 90 00	10	Ground and polished magnesium sheets, of dimensions not more than 1 500 mm × 2 000 mm, coated on one side with an epoxy resin insensitive to light	0 %		31.12.2023
gex 8105 90 00	10	Bars or wires made of cobalt alloy containing, by weight: —			31.12.2023
gex 8108 20 00	10	Titanium sponge	0 %	_	31.12.2023

^g ex 8108 20 00	30	Titanium powder of which 90 % by weight or more passes through a sieve with an aperture of 0,224 mm	0 %	_	31.12.2023
ex 8108 20 00	40	Titanium alloy ingot, — with a heigh of 17,8 cm or more a length of 180 c or more and a width of 48,3c or more— a weigh of 680 kg or more containing alloy elements by weight of: — 3 % or more but not more than 6 %	h em em		31.12.2020


		1	nore			
			han			
),5			
		Ċ	%			
			of			
			silico	n		
ex 8108 20 00	55	Titanium		0 %	p/st	31.12.2020
		alloy ingo	t:			
		<u> </u>	with			
		8	ı			
		1	neigh	t		
		(of			
]	17,8			
			cm			
			or			
			nore,			
			a [
			ength	1		
			of	-		
			180 c	m		
			or			
			nore,			
			a			
			width			
			of			
			18,3			
			em			
			or			
			nore,			
			1 .	,		
		'	weigh	IT		
			of			
			580			
		ŀ	κg			
			or			
			nore,			
		containing	5			
		alloy				
		elements b	by			
		weight of:	, ,			
			3 %			
			or			
			nore			
			out			
			not			
			nore			
			han			
			7 %			
			of			
		ä	alumi	nium,		
			1 %			
		(or			

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		n	nore		
			out		
		n	ot		
			nore		
			nan		
		5	%		
		o			
		ti	in,		
			%		
		0			
			nore		
			out		
			ot		
			nore		
			han		
		0	%		
			irconium,		
		4	· %		
		0			
			nore		
			ut		
			ot		
			nore		
			nan		
		8	%		
		o	f		
		U	'1		
		n	nolybdenum		
ex 8108 20 00	60	n	nolybdenum	_	31.12.2020
ex 8108 20 00	60	Titanium	nolybdenum 0 %	_	31.12.2020
ex 8108 20 00	60	Titanium alloy ingot	nolybdenum 0 %	_	31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a	nolybdenum 0 % :: with	_	31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d	nolybdenum 0 % with liameter		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d	nolybdenum 0 % with liameter f		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6	nolybdenum 0 % iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6	nolybdenum 0 % iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o	nolybdenum 0 % with liameter of 3,5 m or		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a a d o 6 c o n	nolybdenum 0 % iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o m a	onolybdenum 0 % vith liameter f 3,5 m or nore nd		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o n a a	nolybdenum 0 % vith liameter f 3,5 m or nore nd		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o m a a le	o % vith liameter of 3,5 m or nore nd ength		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o n a a le	nolybdenum 0 % with liameter of 3,5 m or nore nd ength of		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o m a a le o 4	nolybdenum 0 % iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o n a a le o 4	nolybdenum 0 % vith liameter f 3,5 m or nore nd ength f 50 m		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o n a le o 4 c o	nolybdenum 0 % vith liameter f 3,5 m or nore nd ength f 50 m or		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o m a le o 4 c o m — a	nolybdenum 0 % with liameter of 3,5 m or nore nd ength of 50 m or nore,		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o n a a le o 4 c o m — a w	nolybdenum 0 % with liameter of 3,5 m or nore nd ength of 50 m or nore,		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o n a a le o 4 c o m — a w	nolybdenum 0 % vith liameter f 3,5 m or nore nd ength f 50 m or nore, veight f 6		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o m a a le o 4 c o m — a w o 3	nolybdenum 0 % Exit the state of the state		31.12.2020
ex 8108 20 00	60	Titanium alloy ingot — w a d o 6 c o m a a le o 4 c o m — a w o 3	nolybdenum 0 % vith liameter f 3,5 m or nore nd ength f 50 m or nore, veight f 6		31.12.2020

			or			
			more,	,		
		containin	g			
		alloy				
		elements	by			
		weight of	f:			
			5,5			
			%			
			or			
			more			
			but			
			not			
			more			
			than			
			6,7			
			%			
			of			
			alumi	nium,		
			3,7			
			%			
			of			
			more			
			but			
			not			
			more			
			than			
			4,9			
			% of			
			vanac	lium		
ex 8108 20 00	70	Titanium		0 %	p/st	31.12.2022
		alloy slab),			
		with:				
			a			
			heigh	t		
			of			
			20,3			
			cm			
			or			
			more,			
			but not			
			more			
			than			
			23,3			
			cm,			
		_				
			a lengtl	n		
			of			
			246,1			
			cm			
			or			
			,	'	'	

		not more than 4,8 % of vanad		
^g ex 8108 30 00	10	Waste and scrap of titanium and titanium alloys, except those containing by weight 1 % or more but not more than 2 % of aluminium	0 %	31.12.2023
ex 8108 90 30	10	Titanium alloy rods complying with standard EN 2002-1, EN 4267 or DIN 65040	0 %	 31.12.2019
ex 8108 90 30	15	Rods and wire of an alloy of titanium with: — a unifo solid cross section in the form of a cyline with a diame of 0,8 mm or more but not more	der,	31.12.2022

	than	
	5	
	mm,	
-	– an ´	
	aluminium	
	content	
	by	
	weight	
	of	
	0,3	
	%	
	or	
	more,	
	but	
	not	
	more	
	than	
	0,7	
	%,	
-	- a	
	silicon	
	content	
	by	
	weight	
	of	
	0,3	
	%	
	or	
	more,	
	but	
	not	
	more	
	than	
	0,6	
	%,	
-	– a	
	niobium	
	content	
	by	
	weight	
	of	
	0,1	
	or	
	more,	
	but	
	not	
	more	
	than	
	0,3	
	%,	
	and	
_	- an	
	iron	
ı		I

		conte by weigh of not more than 0,2 %	ht	
ex 8108 90 30	25	Titanium- aluminium- vanadium alloy (TiAl6V4) bars, rods and wire, complying with AMS standards 4928, 4965 or 4967	0 %	31.12.2020
ex 8108 90 30	60	Forged cylindrical bars of titanium with: — a purity of 99,99 % by weigh or more — a diame of 140 mm or more but not more than 200 mm, — a weigh of 5 kg or	eter	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		more			
		but			
		not			
		more			
		than			
		300			
		kg			
0100 00 20	70		0.0/		21 12 2021
ex 8108 90 30	70	Wire of an	0 %		31.12.2021
		titanium alloy			
		containing by			
		weight:			
		22			
		%			
		(± 1			
		0/)			
		%)			
		of	<u>.</u> .		
			lium,		
		and			
		— 4 %			
		(±			
		0,5			
		%)			
		of			
		01	ļ .		
			inium,		
		or			
					
		%			
		(± 1			
		%) of			
		of			
		Vono	lium,		
		2 0/	iiuiii,		
		3 %			
		(± 0,5			
		0,5			
		%)			
		%) of			
		chror	nium,		
		_ 3 %	,		
		(±			
		(± 0,5			
		%			
		70			
		of			
		tin,			
		and			
		_ 3 %			
		(± 0,5			
		0,5			
		%)			
		%) of			
		alum	inium		
ex 8108 90 50	45	Cold or hot	0 %		31.12.2022
		rolled plates,			
	I	, r,	I	I	I

		sheets and strips of non-alloyed titanium with: — a thick of 0,4 mm or more but not more than 100 mm, — a length of not more than 14 m, and — a width of not more than 4 m	h	
ex 8108 90 50	55	Plates, sheets, strip and foil of an alloy of titanium	0 %	 31.12.2021
ex 8108 90 50	80	Plates, sheets, strips and foil of non-alloyed titanium of a width of more than 750 mm of a thicks of		31.12.2019

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		r	not			
			nore			
			han			
		3				
		r	nm			
ex 8108 90 50	85	Strip or		0 %		31.12.2019
CX 6106 90 30	63	foil of non		0 /0	_	31.12.2019
		alloyed	•			
		titanium:				
			conta	ining		
			nore	8		
			han			
			0,07			
		0	%			
		t	oy			
		V	veigh	nt		
		(of			
			oxyge	en		
		($(O_2),$			
			of a			
			hickr	ness		
			of			
),4			
			nm			
			or			
			nore			
			not			
			nore			
			han			
			2,5			
			nm,			
				rming		
			o	_		
		t	he			
			Vicke			
			nardn	ess		
			HV1			
			stand	ard		
			of			
			not			
			nore han			
			170,			
		of a kind	. , 0,			
		used in the	<u>. </u>			
		manufactu				
		of welded				
		tubes for				
		nuclear				
		power plan	nt			
		condenser	s			

ex 8108 90 60	30	Seamless tubes and pipes of titanium or an alloy of titanium with: — a diame of 19 mm or more but not more than 159 mm, — a wall thick of 0,4 mm or more but not more than of 0,4 mm or more than or more than	ness		31.12.2022
		8 mm,			
		and			
		— a maxii	mum		
		lengt			
		of 18			
		m			
ex 8108 90 90 ex 9003 90 00	30 20	Parts of spectacle frames and mountings, including:	0 %	p/st	31.12.2021
		— temply blank of a kind used for	les,		
		the			

Status: Point in time view as at 20/12/2018. Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		of spect parts and bolts of the kind used for spect frame and	acle		
gex 8109 20 00	10	Non-alloy zirconium sponges or ingots, containing by weight more than 0,01 % of hafnium for use in the manufacture of tubes, bars or ingots enlarged by remelting for the chemical industry ^b	0 %		31.12.2023
^g ex 8110 10 00	10	Antimony in the form of ingots	0 %	_	31.12.2023
^g ex 8112 99 30	10	Alloy of niobium (columbium) and titanium, in the form of bars and rods	0 %		31.12.2023
gex 8113 00 20	10	Cermet blocks containing by weight 60 % or more of aluminium and 5 %	0 %	_	31.12.2023

		or more of boron carbide			
ex 8113 00 90	10	Carrier plate of aluminium silicon carbide (AlSiC-9) for electronic circuits	0 %	_	31.12.2022
ex 8113 00 90	20	Cuboid spacer made of aluminium silicon carbide (AlSiC) composite used for packaging in IGBT-modules	0 %		31.12.2020
ex 8207 19 10	10	Inserts for drilling tools with working parts of agglomerated diamonds	0 %	p/st	31.12.2019
ex 8207 30 10	10	Set of transfer and/or tandem press tools for cold-forming, pressing, drawing, cutting, punching, bending, calibrating, bordering and throating of metal sheets, for use in the manufacture of frame parts of motor vehicles ^b	0 %	p/st	31.12.2022
ex 8301 60 00 ex 8413 91 00 ex 8419 90 85 ex 8438 90 00	30 20	Keypads of silicone or plastic, — whetl	0 %	p/st	31.12.2020
ex 8468 90 00	20	or			

0.477, 00, 00	20			ı		
ex 8476 90 90			not			
ex 8479 90 70			with			
ex 8481 90 00			parts			
ex 8503 00 99			of			
ex 8515 90 80	30		metal	,		
ex 8536 90 95	95		plasti	c,		
ex 8537 10 98	70		glass			
ex 8708 91 20			fibre			
ex 8708 91 99			reinfo	orced		
ex 8708 99 10			epoxi			
ex 8708 99 97	40		resin	ac		
CX 6706 77 77	40		or			
			wood			
		_	wheth	ner		
			or			
			not			
			printe	d		
			or			
			surfac	ce		
			treate	d,		
			wheth			
			or			
			not			
			with			
			electr	ical		
				acting		
			eleme			
			wheth	ier		
			or			
			not			
			with			
			keypa	ids		
			foil			
			glued			
			on			
			the			
			keybo	oard,		
			whetl	ner		
			or			
			not			
			with			
			prote	otive		
			foil,	Clive		
			single			
			or	102.00		
			multi	ıayer		
ex 8302 20 00	20	Castors,	with	0 %	p/st	31.12.2020
222 23 02 20 00	-		an	- / -	r	
			exteri	nal		
			diame			
			of			
			21			

			mm			
			or			
			more			
			but			
			not			
			more			
			than			
			23			
			mm,			
		_	a			
			width	i		
			with			
			screw	ł		
			of			
			19			
			mm			
			or			
			more			
			but			
			not			
			more			
			than			
			23			
			mm,			
		_	a U-	1		
			shape	a		
			plasti	c		
			outer			
			ring,			
		_	an	h.h.		
			assen			
			screw fitted			
			to the			
			interr	101		
			diam	iai eter		
			and			
			used			
			as			
			an			
			inner			
			ring			
^g ex 8309 90	10	Alumini	um	0 %	p/st	31.12.2023
90		can ends				
			with			
			a	<u> </u>		
			diam	eter		
			of			
			99,00			
			mm			
			or			

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		more but not more than 136,5 mm (±1m wheth or not with a 'ring-pull' apert	m), her		
^g ex 8401 30 00	20	Non- irradiated hexagonal fuel modules (elements) for use in nuclear reactors ^b	0 %	_	31.12.2023
ex 8401 40 00	10	Stainless steel absorber control rods, filled with neutron absorbing chemical elements	0 %	p/st	31.12.2019
ex 8405 90 00 ex 8708 21 10 ex 8708 21 90		Metal casing for automobile safety belt pre- tension gas generators	0 %	p/st	31.12.2019
ex 8407 33 20 ex 8407 33 80 ex 8407 90 80 ex 8407 90 90	10 10	Sparkignition reciprocating or rotary internal combustion piston engines, having a cylinder capacity of not less than	0 %		31.12.2022

$300 \mathrm{cm}^3$ and		
a power of		
not less than		
6 kW but no		
exceeding		
20,0 kW,		
for the		
manufacture		
of:		
— sel	f-	
	ppelled	
lav		
	owers,	
wi		
a		
sea	nt	
of		
	oheading	
84		
11		
51		
an		
	nd-	
	erated	
lav		
	owers	
of		
	oheading	
84		
11		
90		
	ctors	
of		
	oheading	
87		
91		
90		
	iose	
ma		
	nction	
is		
tha	ıt	
of	a	
lav	vn	
mo	ower,	
— for		
	oke	
	owers	
wi		
mo	otor	
of		
cy	linder	
	pacity	
		•

		8433 20 10, or snow and snow blowe of subhe 8430 20 ^b	ers eading	
ex 8407 90 10	10	Four-stroke petrol engines of a cylinder capacity of not more than 250 cm ³ for use in the manufacture of garden equipment of heading 8432, 8433, 8436 or 8508 ^b	0 %	31.12.2021
ex 8407 90 90	20	Compact Liquid Petroleum Gas (LPG) Engine System, with: — 6 cyline — an outpu of 75 kW or more but not more	t,	31.12.2020

		in heavy duty	ust s fied tte nuously		
^g ex 8408 90 41	20	Diesel engines of a power of not more than 15 kW, with 2 or 3 cylinders, for use in the manufacture of vehicle mounted temperature control systems ^b	0 %		31.12.2023
^g ex 8408 90 43	20	Diesel engines of a power of not more than 30 kW, with 4 cylinders, for use in the manufacture of vehicle mounted temperature control systems ^b	0 %		31.12.2023
ex 8408 90 43 ex 8408 90 45 ex 8408 90 47	30	4 Cylinder, 4 cycle, liquid cooled, compression- ignition engine having:	0 %	_	31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		— a capac of not more than 3 850 cm³, and — a rated output of 15 kW or more but not more than 85 kW, for use in the manufacture of vehicles of heading 8427 ^b			
ex 8409 91 00	40	Fuel injector with solenoid valve for optimized atomization in the combustion chamber for use in the manufacture of sparkignition internal combustion piston engines of motor vehicles ^b	0 %		31.12.2021
^g ex 8409 91 00 ex 8409 99 00	50 55	Exhaust manifold with turbine housing of	0 %	p/st	31.12.2023

		turbochargers with: — a heat-resist of not more than 1 050 °C, and — a hole to insert a turbir whee where the hole has a diame of 28 mm or more but not more than 181 mm	ne I, eby		
ex 8409 99 00 ex 8479 90 70		Injectors with solenoid valve for optimised atomisation in the engine combustion chamber	0 %	p/st	31.12.2021
ex 8409 99 00	40	Plastic or aluminum cylinder head cover with: — a cams positi		p/st	31.12.2021

0.400.00.00		senso (CMI) — metal brack for mour on an engin and — two or more gaske for use in the manufacture of engines of motor vehicles	ets ting e,	
ex 8409 99 00	60	Intake manifold for air supply to the engine cylinders, comprising at least: — a thrott — a boost press senso for use in the manufacture of compression ignition engines of motor vehicles ^b	ure	31.12.2022
ex 8409 99 00	70	Metal alloy intake and exhaust valve with a Rockwell hardness HRC 20 or more, but not more than HRC 50 for use in the manufacture of	0 %	31.12.2021

		compression ignition engines of motor vehicles ^b			
ex 8409 99 00	80	High pressure oil jet nozzle for engine piston cooling and lubrication with: — an opening press of 1 bar or more but not more than 3 bar, — a closing press of more than 0,7 bar, — a one-way valve for use in the manufacture of compression ignition engines of motor	ng ure		31.12.2022
ex 8411 99 00	20	vehicles ^b Wheel-	0 %	p/st	31.12.2022
CA 0711 99 00	20	shaped gas turbine component with blades, of a kind	0 70	p/st	31.12.2022

1.	1
used in	
turbochargers:	
of a	
precis	sion-
cast	
nicke	
based	
alloy	
comp	lying
with	
stand	ard
DIN	
G-	
NiCr	13Al6MoNb
or	
DIN	
G-	
NiCr	13Al16MoNb
or	
DIN	
G-	
NiCo	10W10Cr9AlTi
or	
DIN	
G-	
NiCr	12Al6MoNb
or	
AMS	
AISI:	686,
— with	
a	
heat-	
resist	ance
of	
not	
more	
than	
1	
100	
°C,	
— with	
a	
diame	eter
of	
28	
mm	
or	
more.	
but	
not	
more	
than	
tituii	ı

		— with a heigh of 20 mm or more but not more than 150 mm	,		
gex 8411 99 00	30	Turbine housing of turbochargers with: — a heat-resist of not more than 1 050 °C, and — a hole to insert a turbin whee where the hole has a diamo of 28 mm or more but not more	ne I, eby	p/st	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

			than			
			181			
			mm			
	00			0 %	/	21 12 2022
^g ex 8411 99	80	Actuator		0 %	p/st	31.12.2023
00	20	a single-s	stage			
ex 8412 39 00		turbochai	rger:			
			whetl	her		
			or			
			not			
			with			
			condi	ucting		
			horns	3		
			and			
				ecting		
			sleev	es,		
			havin	g		
			an			
			opera	ting		
			dista			
			of			
			20			
			mm			
			or			
			more			
			but			
			not			
			more			
			than			
			40			
			mm, with			
			a 1			
			lengt	n 		
			of			
			not			
			more			
			than			
			350			
			mm,			
		_	with			
			a			
			diam	eter		
			of			
			not			
			more			
			than			
			75			
			mm,			
			with			
			a			
			heigh	t		
			of			
	I .	1		I .	ļ	I .

		not more than 110 mm		
ex 8413 30 20	30	Single-cylinder radial-piston high pressure pump for gasoline direct injection with: — an	0 %	31.12.2021
		opera press of 200 bar or more.	ure	
		but not more than 350 bar,		
		— a flow control and — a pressi relief	ure	
		valve for use in the manufacture of engines of motor vehicles	,	
ex 8413 70 35	20	at least 400 cm ³ fluid	0 % arging	31.12.2020
		per minu	te,	

		 with a noise level limit to 6 dBA with the insid diam of the suction open and dischoutle of not more than 15 mm, and work at ambit temp down to - 10 °C 	e e eter on ing large t		
ex 8413 91 00	30	of alum alloy with a diam of 38 mm or 50 mm, with two	eter	p/st	31.12.2019

		groov forme on its surface anodi of a kind used in motor vehicles with petrol engines	ed ce,	
ex 8414 30 81	50	Hermetic or semi-hermetic variable-speed electric scroll compressors, with a nominal power rating of 0,5 kW or more but not more than 10 kW, with a displacement volume of not more than 35 cm³, of the type used in refrigeration equipment	0 %	31.12.2019
^g ex 8414 30 81 ex 8414 80 73	60 30	Hermetic rotary compressors for Hydro- Fluoro- Carbon (HFC) refrigerants: — drive by 'on- off' single phase alterr curre (AC) or 'brus direct curre	e hate nt hless	31.12.2023

^g ex 8414 30	20	varial speed motor with a noming power rating of not more than 1,5 km of a kind used in the production of household heat pump laundry tumble dryers Vehicle air conditioning	rs nal r		31.12.2023
89		conditioning system part, consisting of an open shaft reciprocating compressor of a power of more than 0,4 kW but not more than 10 kW			
ex 8414 59 25	40	Axial fan with an electric motor, of an output of not more than 2 W, for use in the manufacture of products of heading 8521 or 8528 ^b	0 %	_	31.12.2020
ex 8414 80 22 ex 8414 80 80	20 20	Air membrane compressor with: a flow of	0 %	_	31.12.2022

		4,5 1/ min or more but not more than 7 1/ min, powe input of not more than 8,1 W, and a gauge press capac not excee 400 hPa (0,4 bar), of a kind used in the production of motor vehicle seats	et ure sity eding		
ex 8414 90 00	20	Aluminium pistons, for incorporation into compressors of air conditioning machines of motor vehicles ^b	0 %	p/st	31.12.2019
^g ex 8414 90 00	30	Pressure- regulating system, for incorporation into compressors of air	0 %	p/st	31.12.2023

^g ex 8414 90 00	40	conditioning machines of motor vehicles ^b Drive part, for compressors or air conditioning machines of motor vehicles ^b	0 %	p/st	31.12.2023
ex 8415 90 00	30	Aluminium arc-welded removable receiver dryer with a connection block, containing polyamide and ceramic elements, with: — a lengt of 166 mm (+/- 1 mm), — a diamof 70 mm (+/- 1 mm), — an interricapace of 280 cm³ or more — a water absor	eter nal nity	p/st	31.12.2020

		rate of 17 g or more and — an interr purity expres by perm amou of impu of not more than 0,9 mg/ dm², of a kind used in car air- conditioning systems	nal y ssed issible int rities		
ex 8415 90 00	40	Flame-soldered aluminium block with extruded, bent connector lines, of a kind used in car air-conditioning systems	0 %	p/st	31.12.2020
ex 8415 90 00	55	Aluminium arc-welded removable receiver dryer with polyamide and ceramic elements with: — a lengt of 143 mm	0 %	p/st	31.12.2020

		or		
		more		
		but		
		not		
		more		
		than		
		292 m	ım,	
-		a		
		diame	eter	
		of		
		31		
		mm or		
		more		
		but		
		not		
		more		
		than		
		99 mr	n.	
.		a	,	
		spang	le	
		length	l	
		of		
		not		
		more		
		than		
		0,2		
		mm		
		and		
		a thickn	2000	
		of	iess	
		not		
		more		
		than		
		0,06		
		mm,		
		and		
.		a		
		solid		
		partic	le	
		diame	eter	
		of		
		not		
		more		
		than		
		0,06		
	of a 1.: 1	mm,		
	of a kind			
	in car air			
	condition systems	mg		
	s y stellis			

ex 8418 99 10	50	Evaporator composed of aluminium fins and a copper coil of the kind used in refrigeration equipment	0 %	p/st	31.12.2019
ex 8418 99 10	60	Condenser composed of two concentric copper tubes of the kind used in refrigeration equipment	0 %	p/st	31.12.2019
ex 8418 99 10	70	Evaporator made of aluminium for use in the manufacture of air conditioning machines for automobiles ^b	0 %	p/st	31.12.2021
ex 8421 21 00	20	Water pre- treatment system comprising one or more of the following elements, whether or not incorporating modules for sterilization and sanitization of these elements: — ultraf system carbo filtraf system	n ion	p/st	31.12.2019

suspending...
Document Generated: 2023-09-19

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		water softer syster for use in a biopharmaceut laboratory	ner m		
⁸ ex 8421 99 90	91	Parts of equipment, for the purification of water by reverse osmosis, consisting of a bundle of hollow fibres of artificial plastic material with permeable walls, embedded in a block of artificial plastic material at one end and passing through a block of artificial plastic material at the other end, whether or not housed in a cylinder	0 %	p/st	31.12.2023
ex 8424 89 70	20	Mechanical passenger car headlights washer with telescopic hose, high pressure nozzles and mounting clamps for use in the manufacture of goods of Chapter 87b	0 %		31.12.2021

ex 8431 20 00	30	Drive axle assembly containing differential, reduction gears, crown wheel, drive shafts, wheel hubs, brakes and mast mounting arms for use in the manufacture of vehicles in heading 8427 ^b	0 %	p/st	31.12.2022
gex 8431 20 00	40	Aluminium core, plastic tank radiator, with integral steel support structure and an open core square wave design of 9 fins per 2,54 cm of core length for use in the manufacture of vehicles of heading 8427 ^b	0 %	p/st	31.12.2023
ex 8436 99 00	10	Part containing: — a single phase AC moto — an epicy gearin — a cutter blade and whether or not containing:	r, clic ng,	p/st	31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		— a capace— a part fitted with a thread bolt, for use in the manufacture of garden shredders ^b			
^g ex 8439 99 00	10	Suction-roll shells, produced by centrifugal casting, not drilled, in the form of alloy-steel tubes, of a length of 3 000 mm or more and an external diameter of 550 mm or more	0 %	p/st	31.12.2023
ex 8467 99 00 ex 8536 50 11	10 35	Mechanical switches for connecting electrical circuits, with: — a voltage of 14,4 V or more but not more than 42 V, — an ampe of 10 A or more but	rage	p/st	31.12.2019

		not more than 42 A, for use in the manufacture of machines falling within heading 8467 ^b			
^g ex 8475 29 00 ex 8514 10 80	10 10	heate with openi with a multi of tips (hole of platin rhodi alloy, used to melt glass batch and condi molte glass for drawi into	plicity s) num/ um es ition en ing	p/st	31.12.2019
^g ex 8477 80 99	10	Machines for casting or for surface modification of plastic membranes of heading 3921	0 %	p/st	31.12.2023

^g ex 8479 89 97	35	Mechanical unit ensuring the movement of the camshaft with: — 8 oil cham — a phasi range of at least 38°, but not more than 62°, — a steel and/ or steel alloy	ng		31.12.2023
ex 8479 89 97 ex 8479 90 20 ex 8479 90 70	50 80 80	or steel alloy sproce————————————————————————————————————	ket,	p/st	31.12.2020
		of a production line for the manufacture of lithium ion batteries for passenger electric motor vehicles, for the construction of such a production line ^b			

0.470.00.05	60	D:	0.0/	1.1	21.10.2021
ex 8479 89 97	60	Bioreactor for		p/st	31.12.2021
		biopharmaceut	ical		
		cell culture:			
		— havin			
		interi	or		
		surfac	es		
		of			
		auste	nitic		
		stainl			
		steel,			
		and			
		— with			
		a			
		proce			
		capac	nty		
		up			
		to			
		15			
		000			
		litres,			
		— wheth	her		
		or			
		not			
		comb	ined		
		with			
		a			
		'clear	 n_		
		in-			
		proce	cc'		
		syster			
		and/	11		
		or a	4 1		
		dedic			
		paire			
		media	a.		
		hold			
		vesse	1		
ex 8479 89 97	70	Machine to	0 %	p/st	31.12.2019
CX 04/7 07 7/	70	accurately	0 70	p/st	31.12.2017
		align and			
		aligii aliu			
		attach lenses			
		into a camera			
		assembly			
		in five axis			
		alignment			
		capability and			
		fix them in			
		position with			
		a two part			
		cure epoxy			

ex 8479 89 97	80	Machinery for the production of a sub assembled component (anode conductor and the negative closing cap) for the manufacture of AA and/or AAA alkaline batteries ^b	0 %	p/st	31.12.2019
ex 8479 89 97	85	High Pressure Hard Materials Compression Press ('Link Press'): — with a 16 000 tonne press rating with a 1 100 mm diam Bolst (± 1mm with a 1 400 mm main cylin (± 1mm with a Fixed and floati link frame multi pump	eter er), der), ple	p/st	31.12.2020

			high			
				ura		
			press			
			hydra	lulic		
				nulator		
			and			
			press	ure		
			syste			
			with	,		
			a			
			doub	le		
			arm			
			mani	pulator		
				gement		
			and			
				ections		
				Cuons		
			for .			
			pipin	g		
			and			
			electr	ical		
			syste			
			with	,		
			a 4 - 4 - 1			
			total			
			weigl	ht		
			310			
			tonne	S		
			(±			
			10			
			tonne	(2)		
				5),		
			and			
			creati	ng		
			30			
			000			
			atmos	spheres		
			at 1	1		
			500			
				og.		
			degre	cro do		
			centig	grade		
			using			
			Low			
			Frequ	iency		
			Alter	nating		
			Curre	ent		
			(16			
			000			
			amps)		
ex 8479 90 70	87	Fuel hose		0 %	p/st	31.12.2021
	- '	for interr		- / •	r. ~*	
		combusti				
			OH			
		piston				
		engines				
		with a fu	el			
				. '		:

		temperature sensor, with at least two inlet hoses and three outlet hoses for use in the manufacture of engines of motor vehicles ^b		
ex 8481 10 99	20	Electromagnetic pressure reducing valve — with a plung with at least 275 MPa interretightr — with a plastic connection with 2 silver or tin pins	er, nal ness, c	31.12.2022
ex 8481 10 99	30	Pressure reducing valves in a brass case with: — a length of not more than 18 mm (± 1 mm), — a width		31.12.2022

		of not more than 30 mm (± 1 mm), of a kind used for incorporation in fuel delivery modules of motor vehicles			
ex 8481 30 91	91	Steel check (non-return) valves with: — an openi press of not more than 800 kPa, — an extern diame not more than 37 mm	ure nal eter	p/st	31.12.2019
gex 8481 80 59	10	Air control valve, consisting of a stepping motor and a valve pintle, for the regulation of idle air flow in fuel injection engines	0 %	p/st	31.12.2023
ex 8481 80 59	20	Pressure regulating valve for	0 %	p/st	31.12.2021

		incorporation into compressors of motor vehicle air condition units ^b		
ex 8481 80 59	30	Two-way flow control valve with housing, with: — at least 5 but not more than 9 outle holes with at least 0,110 mm but not more than 0,134 mm diam — at least 640 cm³ / minu but not more than 805 c / minu flow rate, at least 19	eter,	31.12.2022

		but not more than 300 MPa oper press	ating		
ex 8481 80 59	40	but not more than 0,18. mm, with an inlet hole with a diam of at least 0,25. but not more than 0,26. mm, with	eter mm, mium de ng,		31.12.2022
	, !		•	, '	

	[l -	coughness	1	I	
		1	of			
			Rp			
		(0,4			
ex 8481 80 59	50	Electroma	gneti © %	-	_	31.12.2022
		valve for				
		quantity control wi	th			
			a			
			olunger,			
			DLC			
			Diamond-			
			ike			
			carbon)			
			coating,			
			1			
			solenoid with			
			a of			
			coil			
			resistance			
			of at			
			least			
			2,6 Ohm,			
			out			
			not			
			more			
			than 3			
			Ohm,			
			a			
			supply			
		,	voltage			
			of			
			12			
		`	V			
ex 8481 80 59	60	Electroma	gnetic %	-	_	31.12.2022
		valve for				
		quantity				
		control:	1.1			
			with			
			a solenoid			
			with			
			a			
			coil			
		1	resistance			
			of at			
			east			
			0,19 Ohm,			
			out			
		I	not			

		more than 0,52 Omh, and with an induc of at least 0,083 mH, but not more than 0,172 mH, with a suppl voltag of 24 V, — opera at a DC of at least 15,5 A, but not more than 16,5	y ge		
		16,5 A			
ex 8481 80 69	60	Four-way reversing valve for refrigerants, consisting of: — a solen pilot valve — a brass valve body inclue		p/st	31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		valv slide and copy com with a working pressure up to 4,5 MPa	per per nections		
^e ex 8481 80 73 ex 8481 80 99	20 70	— with inte circ of not more than 1 0000 kPa open prese with a flow quant of not more than 5 1/ min with an	le ly(s), nout grated uit, e rating sure, ntity		31.12.2023
^g ex 8481 90 00	40	Valve armature: — for the ope	0 %	_	31.12.2023

			and			
			closir	 1g		
			of	6		
			the			
			flow			
			of			
			fuel,			
			consi	cting		
			of a	Stillg		
			shaft			
			and			
			a 1.1. 1.			
			blade	,		
		_	with			
			8			
			holes			
			on			
			the			
			blade			
			made			
			of			
			metal			
			and/			
			or			
			metal			
			alloy	(s)		
0402 10 10	10	D-11 1			/+	21 12 2010
ex 8482 10 10		Ball and		0 %	p/st	31.12.2019
ex 8482 10 90	10	cylindrica	al		p/st	31.12.2019
		cylindrica bearings:	al		p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	al with		p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	al with an	0 %	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	al with an outsid	0 % de	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	al with an outsid	0 % de	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	al with an outsid diame	0 % de	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28	0 % de	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm	0 % de	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm or	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm or more	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outsid diame of 28 mm or more but	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm or more but not	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm or more but	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outside diamed of 28 mm or more but not more than	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm or more but not more	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outsid diame of 28 mm or more but not more than 140	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings:	with an outside diamed of 28 mm or more but not more than	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outsid diame of 28 mm or more but not more than 140 mm, with an	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outsid diame of 28 mm or more but not more than 140 mm, with an	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outsid diame of 28 mm or more but not more than 140 mm, with an opera	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outside diamed of 28 mm or more but not more than 140 mm, with an opera therm	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outside diamed of 28 mm or more but not more than 140 mm, with an opera therm stress	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outside diamed of 28 mm or more but not more than 140 mm, with an operatherm stress of	0 % de eter	p/st	31.12.2019
ex 8482 10 90	10	cylindrica bearings: —	with an outside diamed of 28 mm or more but not more than 140 mm, with an opera therm stress	0 % de eter	p/st	31.12.2019

		150 °	C		
		at a			
		work	ino		
		press	1170		
		press	uie		
		of			
		not			
		more			
		than			
		14 M	Pa,		
		for the			
		manufacture			
		of machinery			
		for the			
		protection			
		and control			
		of nuclear			
		reactors in			
		nuclear power			
		plants ^b			
0.402 10 10	40		0.0/	1.1	21 12 2010
ex 8482 10 10		Ball bearings:	0 %	p/st	31.12.2019
ex 8482 10 90	30	— with			
		an			
		interr			
		diam	eter		
		of 3			
		mm			
		or			
		more			
		— with	[
		an			
		exter	nal		
		diam			
		of			
		not			
		more			
		than			
		100 r	nm,		
		— with			
		a			
		width	į		
		of			
		not			
		more			
		than			
		40			
		mm,			
		— whetl	her		
			uci		
		or			
		not .	1		
		equip	pea		
		with			

	a duste for use in the manufacture of belt drive steering systems of motor, electric power steering systems or steering gears or assembly ball screw for steering gears ^b			
ex 8483 30 32 ex 8483 30 38	with stand DIN EN 1561 or precis cast ductil cast iron	ard sion- le slying bers, out ngs,	p/st	31.12.2022

		50 mm or more but not more than 250 mm, with a heigh of 40 mm or more but not more than 150 mm, wheth or not with water	her		
ex 8483 40 29	50	Gear set of cycloid gear type with: — a rated torqu of 50 Nm or more but not more than 9 000 Nm, stand ratios	e ard	p/st	31.12.2021

^g ex 8483 40 29	60	of 1:50 or more but not more than 1:475 — lost motio of not more than one arc minu — an effici of more than 80 %, of a kind used in robot arms Epicyclic gearing, of a kind used in driving hand- held power tools with: — a	te,	p/st	31.12.2023
	60	80 %, of a kind used in robot arms Epicyclic gearing, of a kind used in driving handheld power tools with: — a rated torqu of 25		p/st	31.12.2023
		Nm or more but not more than 70 Nm, stand gear ratios of 1:12,	ard		

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		or more but not more than 1:64,			
^g ex 8483 40 51	20	Gear box, having a differential with wheel axle, for use in the manufacture of self- propelled lawnmowers with a seat of subheading 8433 11 51 ^b	0 %	p/st	31.12.2023
gex 8483 40 59	20	Hydrostatic speed changer, having a hydro pump and a differential with wheel axle, for use in the manufacture of self-propelled lawnmowers with a seat of subheading 8433 11 51b	0 %	p/st	31.12.2023
ex 8483 40 90	20	Hydrostatic transmission with: — meas (with shafts of not more than 154 n × 115 mm	5)	p/st	31.12.2022

	×	
	108	
	mm,	
_	a	
	weight	
	of S	
	not	
	more	
	than	
	3,3	
	kg,	
l_	a	
	maximum	
	rotation	
	speed	
	of	
	the	
	input shaft	
	of 2	
	700	
	rpm	
	or	
	more	
	but	
	not	
	more	
	than	
	3	
	200	
	rpm,	
	a	
	torque	
	of	
	the	
	output	
	shaft	
	of	
	not	
	more	
	than	
	10,4 Nm,	
_	a	
	rotation	
	speed	
	of	
	the	
	output	
	shaft	
	of	
	not	
	more	
	than	
I		

		range of – 5 °C or more, but not more than + 40 °C, for use in the manufacture of hand- operated lawn mowers of	ting erature		
ex 8483 40 90	30	subheading 8433 11 90 ^b Hydrostatic transmission with: — a reduc of 20,63 or more but not more than 22,68 — an input speed of 1 800 rpm or more when	:1,	p/st	31.12.2022

	loaded	
	and	
	of	
	not	
	more	
	than	
	3	
	000	
	rpm	
	when	
	unloaded,	
_	a	
	continuous	
	output	
	torque	
	of	
	142	
	Nm	
	or	
	more.	
	but	
	not	
	more	
	than	
	156	
	Nm,	
	an	
	intermittent	
	output	
	torque	
	of	
	264	
	Nm	
	or	
	more,	
	but	
	not	
	more than	
	291	
	Nm,	
	and	
	an	
	axle	
	shaft	
	diameter	
	of	
	19,02	
	mm	
	or	
	more	
	but	
	not	i

		more than 19,06 mm, — wheth or not equip with a fan impe or with a pulle with integfan impe for use in the production of self-propelled lawn mowers with a seat of subheading 8433 11 51, and tractors of subheading 8701 91 90,	ner pped Iller y		
ex 8483 40 90	80	that of a lawn mower ^b Transmission gearbox, with:	0 %	p/st	31.12.2020
		not more than 3 gearsan auton	natic eration m, r sal		

		for use in the manufacture of goods of heading 8427 ^b			
ex 8484 20 00	10	Mechanical shaft seal for incorporation into rotary compressors for use in the manufacture of motor vehicle air condition units ^b	0 %	p/st	31.12.2021
ex 8501 10 10	20	Synchronous motor for a dishwasher with a water flow control mechanism with: — a length without axle of 24 mm (+/- 0,3), — a diamond of 49,3 mm (+/- 0,3), — a rated voltage of 220 V AC or more but not more than	eter		31.12.2020

		240)	
		V		
		AC	2,	
		a		
		rate	ed	
		free	quency	
		of		
		50		
		Hz		
		or		
		mo		
		but		
		not		
		mo		
		tha	n	
		60		
		Hz	,	
		— an		
		inp	ut	
		of	ver	
		not		
		mo		
		tha		
		4 V	W	
		_ a	ν,	
			ation	
		spe		
		of		
		4 rj	nm	
		or		
		mo	re	
		but		
		not		
		mo		
		tha		
		4,8	rpm,	
		— an		
		out	put	
		tore	que	
		of		
		not		
		less		
		tha	n	
		10		
		kgt		
		cm		
ex 8501 10 99	56	DC Motor:	0 %	31.12.2021
511 05 01 10 77		— wit	h	51.12.2021
		a		
		spe	ed	
		rot	ation	
				,

1	of
	not
	more
	than
	7
	000
	rpm
	(without
	load),
	with
	a
	nominal
	voltage
	of
	12
	V
	(± 4
	V),
 	with
	a
	maximum
	power
	of
	13,78
	W
	(at
	3,09
	A),
	with
	a
	specified
	temperature
	range
	from
	-40
	°C
	to
	160
	°C,
	with
	a
	gear
	connection,
	with
	a
	mechanical
	attachment
	interface,
	with
	2
	electrical
	connections,
1	1 - 1

		— with			
		a			
		maxi	mum		
		torqu	ıe		
		of			
		100			
		Nm			
ex 8501 10 99	57	DC motor:	0 %		21 12 2020
ex 8301 10 99	37	— with	0 70		31.12.2020
		a rotor			
		speed	4		
		not			
		more	;		
		than			
		6			
		500			
		rpm			
		wher	1		
		not	4.		
		loade	eu,		
		— with			
		a			
		rated			
		volta	ge		
		of			
		12,0			
		V			
		(+/_			
		— 0,1); of a			
		— 01 a	fied		
		speci	ereture		
		range	erature		
		range of –	1		
		40			
		°C			
		or			
		more			
		but			
		not			
		more	,		
		than			
		+			
		165			
		°C;			
		— with			
		or			
		with	out		
		a	-		
	I	· · · · · · · · · · · · · · · · · · ·	I	I .	I

		pin wit or wit an eng	inecting ion; h hout gine inector	
ex 8501 10 99	58	of not mo that for the not mo the not matter for the not mot mot for the not mot for mot f	ed attion re n n thout d), h minal tage 4 h ximal ver ow n h cified aperature ge m 0	31.12.2021

worm gear drive, with a mechanical attachment interface, with 2 electrical connections, with a maximum torque of 75
gear drive, with a mechanical attachment interface, with 2 electrical connections, with a maximum torque of 75
drive, with a mechanical attachment interface, with 2 electrical connections, with a maximum torque of 75
 with a mechanical attachment interface, with 2 electrical connections, with a maximum torque of 75
a mechanical attachment interface, — with 2 electrical connections, — with a maximum torque of 75
mechanical attachment interface, with 2 electrical connections, with a maximum torque of 75
attachment interface, — with 2 electrical connections, — with a maximum torque of 75
interface, with electrical connections, with a maximum torque of 75
 with electrical connections, with a maximum torque of 75
electrical connections, with a maximum torque of 75
electrical connections, — with a maximum torque of 75
connections, — with a maximum torque of 75
— with a maximum torque of 75
a maximum torque of 75
maximum torque of 75
torque of 75
of 75
75
Nm
ex 8501 10 99 60 DC motor: 0 % — 31.12.2022
— with
a
rotor
speed of 3
500
rpm
or
more
but
not
more
than
5
000
rpm
loaded
and
not
more
than
6
500
rpm
when
not
loaded
— with
a
power
supply
voltage

		of 100 V or more but not more than 240 V for use in the manufacture of electric fryers ^b		
ex 8501 10 99	65	— a (pulliforce of 200 N or more at a minii of 140 °C eleva ambi	rated anism, ing) mum ted ent erature, ing)	31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		l i	its	
		9	stroke,	
			an 🕺	
			effective	
		9	stroke	
			of	
			15	
			mm	
			or	
			more	
			but	
		1	not	
		1	more	
		1	than	
			25	
		1	mm,	
			with	
		(or	
		,	without	
			an	
			on-	
]	board	
		(diagnostics	
		1	interface	
^g ex 8501 10	70	DC steppi	ng 0 %	 31.12.2023
99		motor, wit	th:	
			an	
			angle of	
		(of	
		5	step	
		(step of 7,5°	
		,	7,5°	
		((±	
			0,5°),	
			a	
			two-	
			phase	
			winding,	
			a rated	
			voltage	
			of 9	
		,	V or	
			more,	
			but	
			not	
			more	
			than	
			16,0	
		,	V,	
		l	of a	
			51 u	
			specified	

		range cove at least - 40 °C to + 105 °C, with or wither conn pinion with or wi	out ecting on, out or ector	
ex 8501 10 99	75	Permanently excited DC motor with: — a multiphase wind an exter diam of 28 mm or more but not more than 35 mm, — a rated speed of not more than 12 000 rpm,	ing, nal eter	31.12.2020

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		— a power supply voltage of 8 V or more but not more than 27 V	y ge	
^g ex 8501 10 99	79	DC motor with brushes and an internal rotor with a three-phase winding, whether or not equipped with a worm, of a specified temperature range covering at least – 20 °C to + 70 °C	0 %	31.12.2023
gex 8501 10 99	80	DC stepping motor, with: — an angle of step of 7,5° (± 0,5°) — a pull- out torqu at 25 °C of 25 mNm or more	e	31.12.2023

		— a pull- out pulse rate of 1 500 pps or more, a two- phase windi and — a rated voltag of 10,5 V or more, but not more than 16,0 V	ng,	
ex 8501 10 99	82	DC motor, brushless, with an external diameter of not more than 29 mm, a rated speed of 1 500 (± 15 %) rpm or 6 800 (± 15 %) rpm, a supply voltage of 2 V or 8 V	0 %	31.12.2019
ex 8501 20 00	30	Universal AC/DC motor with a rated outpu of 1,2 kW,	0 %	 31.12.2022

		— a suppl voltage of 230 V, and — engin brake assen to a reduce gear with output shaft, which is contain a plastition housi for use as electric drive of lawnmower	e , nbled tion t n ined	
ex 8501 31 00	30	blades ^b DC motor, brushless, with a three-phase winding, an external diameter of 85 mm or more, but not more than 115 mm, a nominal torque of 2,23 Nm (± 1,0 Nm), of an output of more than 120 W but not more than 520 W, calculated with 1 550 rpm (± 350 rpm) at a supply voltage	0 %	31.12.2021

		of 12 V equipped with electronic circuit with sensors using the Hall effect, for use with an electric power steering control module (power steering motor) ^b		
gex 8501 31 00	37	Permanently excited DC motor with: — a multiphase wind — an exter diam of 30 mm or more but not more than 80 mm, — a rated speed of not more than 15 000 rpm, — an output of 45 W or	ing, nal eter	31.12.2019

	more
	but
	not
	more
	than
	300 W,
	and
	a
	supply
	voltage
	of 9
	V or
	more
	but
	not more
	than
	50
	V,
_	whether
	or
	not
	with
	a
	drive
	disc,
	whether
	or
	not
	with
	a
	crankcase,
_	whether
	or not
	with
	a
	fan,
_	whether
	or
	not
	with
	a
	cap
	assembly,
	whether
	or
	not
	with
	a
	sun
1	gear,

		whethor not with a speed and rotating direct encountry with or without a speed or rotating direct sensor of resolutype or Hall effect type	onal tion der, her out der onal tion or	
gex 8501 31 00	45	DC motors, brushless, with: — an exter diam of 90 mm or more but not more than 110 mm, — a rated speed of not more	eter	31.12.2023

	than	
	3	
	680	
	rpm,	
_	an	
	output	
	of	
	600	
	W	
	or	
	more	
	but	
	not	
	more	
	than	
	740 W	
	at 2	
	300	
	rpm	
	and	
	at	
	80	
	°C,	
	a	
	supply	
	voltage	
	of	
	12	
	V,	
_	a	
	torque	
	of	
	not	
	more	
	than	
	5,67	
	Nm,	
	a	
	rotor	
	position	
	sensor,	
_	an	
	electronic	
	star-	
	point	
	relay,	
	and	
	for	
	use	
	with	
	an	
	electric	
	power	
	·	

		stee	ring		
		con	trol		
		mod	dule		
ex 8501 31 00	50	DC motors, brushless, with: — an extendiar of 80 mm or more but not more than 200 mm — a supply volted of 9 Volted motor more than 16 V, — an outpate at 20 °C of 300 W or more but not more more more more more more more more	dule 0 % ernal meter re, re, re, re, re, re, re, re, re,		31.12.2022
		thar			
		750			
		W, a			
		torg	lue		
		at 20			
	I		I	I	I

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		°C			
		of			
		2,00			
		Nm			
		or			
		more	eļ		
		but			
		not			
		more			
		than			
		7,00			
		Ńm,			
		a			
		rated	l		
		spee			
		at			
		20			
		°C			
		of			
		600			
		rpm			
		or			
		more	eļ		
		but			
		not			
		more			
		than			
		3			
		100			
		rpm,			
		— with			
		or			
		with	out		
		the			
		rotor	•		
		angle	e		
		posit			
		sense	or		
		of			
		resol			
		type			
		or			
		Hall			
		effec			
		type	,		
		of the kind			
		used in power			
		steering			
		systems for			
		cars			
^g ex 8501 31	55	DC motor	0 %		31.12.2023
00		with			51.12.2025
	1	1	I	I	I

commut	ator,		
with:	,		
	an		
	exter	nal	
	diam		
	of		
	27,5		
	mm		
	or		
	more		
	but	,	
	not		
	more		
	than		
	45		
	mm,		
_	a		
	rated		
	speed		
	of		
	11		
	000		
	rpm		
	or		
	more		
	but		
	not		
	more		
	than		
	23		
	200		
	rpm,		
	a		
	rated		
	suppl	X 7	
	volta	y Te	
	of	gc	
	3,6		
	V or		
	more		
	but	•	
	not		
	more		
	than		
	230		
	V,		
	an		
	outpu	t	
	powe		
	of	ı	
	not		
	more		
	than		
T	uiuii	I	I

		529 W, — a free load curre of not more than 3,1 A, — a maximelification of 54 % or more for driving hand-held power tools	mum ency	
⁹ ex 8501 31 00 ex 8501 32 00	71 77	Automotive-ready, brushless and permanently excited direct current motor with: — a speci speed of not more than 4 100 rpm, — a minin outpu of 400 W, but not more than 1,3 k	num it	31.12.2020

	(at
	12 V),
	a T
	flange
	diameter
	of
	90
	mm
	or
	more
	but
	not
	more
	than
	150
	mm,
_	a
	maximum
	length
	of
	210
	mm,
	measured
	from
	the
	beginning
	of
	the
	shaft
	to
	the
	outer
	ending,
_	a
	housing
	length
	of
	not
	more
	than
	160
	mm,
	measured
	from
	the
	flange
	to
	the
	outer
	ending,
	a .
	maximum
	of

	two-	
	piece	
	(basi¢	
	housing	
	including	
	electric	
	components	
	and	
	flange	
	with	
	minimum	
	2	
	and	
	maximum	
	11	
	bore	
	holes)	
	aluminium	
	diecast	
	or about	
	sheet steel	
	housing	
	whether	
	or	
	not	
	with	
	a	
	sealing	
	compound	
	(groove	
	with	
	an	
	0-	
	ring	
	and	
	grease),	
	a	
	stator	
	with	
	single	
	T-	
	tooth	
	design	
	and	
	single	
	coil	
	windings	
	in	
	9/6	
	or	
	12/8	
I	· =	

		to	opology,	
		n	nagnets	
ex 8501 31 00	75	Brushless DC motor assembly comprised a motor an transmissic with: — e b F p s — v iii 9 o n b n tl 1 V — e d o tl n o n o n b n o n b n o n b n o n b n n d o n b n o o	nd urface nagnets 0 % of	31.12.2021
			note han 10 nm, putput notor power 150 W	
			nore	

	but	
	not	
	more	
	than	
	550	
	W, .	
	maximum	
	output	
	torque	
	50	
	Nm	
	or	
	more	
	but	
	not	
	more	
	than	
	52	
	Nm,	
	maximum	
	output	
	rotation	
	speed	
	280	
	rpm	
	or	
	more	
	but	
	not	
	more	
	than	
	300	
	rpm,	
_	coaxial	
	male	
	spline	
	outputs	
	of	
	outer	
	diameter	
	20 mm	
	(± 1	
	mm),	
	17	
	teeth	
	and	
	minimum	
	length	
	of	
	teeth	
	25	
	mm (+ 1	
	(± 1	

	mm), and with distar betwee root of spline 119 mm (± 1 r for use in the manufacture of all-terrain or utility task vehicles ^b	nce een es nm),		
ex 8501 32 00 ex 8501 33 00	Traction motor, with:	0 %	_	31.12.2019
	a torquioutpu of 200 Nm or more but not more than 300 Nm — a powe outpu of 50 kW or more but not more than 100 kW — a rated speed of not more	r t		

		than 12 500 rpm for use in the manufacture of electric vehicles ^b		
ex 8501 33 00 ex 8501 40 80 ex 8501 53 50	50	— powe	ner mission,	31.12.2021
ex 8501 51 00 ex 8501 52 20		AC synchronous servo motor with resolver and brake for a maximum speed of not more than 6 000 rpm, with: — an outpu of 340 W or more but not more than 7,4 k — a flang of dimen	W,	31.12.2021

	of	 	I
	not		
	more		
	than		
	180		
	mm		
	×		
	180		
	mm, and		
	— a		
	lengt	h	
	from		
	flang	e	
	to		
	extre	me	
	end of		
	resol	ver	
	of		
	not		
	more		
	than		
	271		
	mm		
ex 8501 61 20 35	Fuel cell	0 %	31.12.2020
	module, AC		
	generator with an		
	output of		
	7,5 kVA		
	or less,		
	consisting of:		
	— a		
	Hydr		
	gener	lphurizer,	
	reform	mer	
	and		
	clean	er)	
	<u> </u>		
	PEM		
	fuel		
	cell stack		
	and		
	— an		
	****		i .
	Inver	ter,	
	Inver for use as	ter,	
	Inver for use as a part in	ter,	
	Inver for use as	ter,	

	1	Υ	I	T	
ex 8501 62 00	30	Fuel cell system	0 %	_	31.12.2022
		— consi	sting		
		of at			
		least			
			haria		
			horic		
		acid			
		fuel			
		cells,			
		— in a			
		housi	ng		
		with			
		integ	rated		
		water			
		and	gement		
		gas			
		treatr	nent,		
		— for			
			anent,		
		statio			
		energ	•		
		suppl	· •		
-					
^g ex 8503 00	31	Rotor, at the	0 %	p/st	31.12.2023
91	32	inner side			
ex 8503 00 99		provided with			
		one or two			
		magnetic			
		rings			
		(uniform or			
		sectional)			
		whether			
		or not			
		incorporated			
		in a steel ring			
^g ex 8503 00	31	Stamped	0 %	p/st	31.12.2023
	J 1	collector of	0 /0	P ^r St	51.12.2025
99					
		an electric			
		motor, having			
		an external			
		diameter of			
		not more than			
		16 mm			
0.502.00.00	22		0.07		21 12 2021
ex 8503 00 99	33	Stator for	0 %	p/st	31.12.2021
		brushless			
		motor of			
		electrical			
		power			
			I .	İ	Í.
		steering with			

		tolerance of 50 µm			
ex 8503 00 99	34	Rotor for brushless motor of electrical power steering with a roundness tolerance of 50 µm	0 %	p/st	31.12.2019
ex 8503 00 99	35	Transmitter resolver for brushless motors of electrical power steering	0 %	p/st	31.12.2019
^g ex 8503 00 99	37	Rotor for an electric motor, with the rotor cylindrical body made of agglomerated ferrite and plastics and the shaft made of metal with: — diamond of the rotor body of 17 mm or more but not more than 37 mm, lengt of the rotor body	h		31.12.2023

		of 12 mm or more but not more than 36 mm, shaft lengtl of 52 mm or more but not more than 82 mm	h		
ex 8503 00 99	40	Fuel cell membrane, in rolls or sheets, with a width of not more than 150 cm, of a kind used for manufacture of fuel cells in heading 8501	0 %	p/st	31.12.2022
ex 8503 00 99	60	Engine cover for electronic belt drive steering system of galvanized steel with a thickness of not more than 2,5 mm (± 0,25 mm)	0 %	p/st	31.12.2019
gex 8504 31 80	15	Electrical Transformer with:	0 %	_	31.12.2023

			a			
			capac	ity		
			of			
			192			
			Watts	3		
			or			
			216			
			Watts			
		_	dime	nsions		
			of			
			not			
			more			
			than			
			27,1			
			× ×			
			26,6			
			× 18			
			mm,			
		_	an			
			opera	iting		
			temp	erature		
			range			
			of-			
			40			
			°C			
			or			
			more	ļ		
			but			
			not			
			more			
			than			
			+			
			125			
			°C,			
		_	three			
			or			
			four			
			induc	tively		
			coup	led		
			coup	er		
			wire			
				ings		
			wind and	ings,		
			and 9			
				ection		
			pins			
			at			
			the			
			botto	m		
^g ex 8504 31	25	Electric	al	0 %		31.12.2023
80	-	Transfo	rmer			
		with:				
	I	,,,,,,,,,		I	I	1

		i		i	i
		— a			
		capac	ity		
		of			
		432			
		Watts	1		
		vvaus],		
			nsions		
		of			
		not			
		more			
		than			
		24			
		mm			
		× 21			
		mm			
		×			
		19 m	m,		
		— an	,		
		opera	ting		
		tomer	uiiig		
			erature		
		range			
		of –			
		20			
		°C			
		or			
		more			
			†		
		but			
		not			
		more			
		than			
		+ 85			
		°C,			
		— two]		
		wind	ings,		
		and			
		_ 5			
		conn	ection		
		pins			
		ot			
		at			
		the			
		botto	m		
g 0504.21	30	Cyvitahina	0 %		21 12 2022
^g ex 8504 31	30	Switching	U 70		31.12.2023
80		transformers,			
		having			
		a power			
		handling			
		canacity of			
		capacity of not more than			
		1 1-374 - 6			
		1 kVA for			
		use in the			
		manufacture			
		of static			
		converters ^b			
		CONVENTIONS			

The state of the s			T .		1
^g ex 8504 31	35	Electrical	0 %	_	31.12.2023
80		Transformer			
		with:			
		a			
		capac	ity		
		of			
		433			
		Watts	,		
		— aime	nsions		
		of			
		not			
		more			
		than			
		37,3			
		×			
		38,2			
		×			
		28,5	mm,		
		— an			
		opera	ting		
		temn	erature		
		range			
		of –			
		40			
		°C			
		or			
		more	}		
		but			
		not			
		more			
		than			
		+			
		125			
		°C,			
		— four			
		induc	tively		
		coup	led		
		copp			
		wire			
		wind	ings,		
		and	3-,		
		<u> </u>			
			ection		
		pins			
		at			
		the			
		botto	111		
ex 8504 31 80	40	Electrical	0 %	_	31.12.2022
		transformers:			
		— with			
		a			
		capac	ity		
l		Capac	77	I	I

		of 1 kVA or less, without plugs or cable for internal use in the manufacture of set top boxes and TVs ^b	3		
^g ex 8504 31	45	Electrical	0 %	_	31.12.2023
80	15	Transformer			
ex 8504 50 95		with:			
		— a capa	rity		
		of			
		0,2			
		Watts			
		— dime of	nsions		
		not			
		more			
		than			
		15 ×			
		15,5 × 14			
		mm,			
		— an '			
		opera	ating		
			erature		
		range of –			
		10			
		°C			
		or			
		more	; 		
		but not			
		more			
		than			
		+			
		125 °C,			
		- two			
		indu	tively		
		coup	led		
		copp	ęr		

		wire wind 5 conne pins at the botto and a	ection		
		coppe shield			
ex 8504 31 80	50	Transformers for use in the manufacture of electronic drivers, control devices and LED light sources for lighting industry ^b	0 %		31.12.2021
ex 8504 40 82	40	— with two input	ectors, able lel, h	p/st	31.12.2022

1	and	
	dimmed	
	operation	
	mode,	
	with	
	an	
	input	
	voltage	
	of	
	40	
	V (+	
	25	
	% −	
	15	
	%)	
	or	
	42 V	
	(+	
	25	
	% −	
	15	
	%)	
	in	
	bright	
	operation	
	mode,	
	with	
	an	
	input	
	voltage	
	of	
	30	
	V (±	
	4 V)	
	in	
1	dimmed	
	operation	
	mode,	
	or	
	with	
	an	
	input	
	voltage	
	of	
	230	
	V (+	
1	20	
	% -	
	15	
1		
	%)	
1	in	
	bright	
1	operation	
ı	I '	ı

	mode,	
	with	
	an	
	input	
	voltage	
	of	
	160 ¥	
	(±	
	15	
	%)	
	in	
	dimmed	
	operation mode,	
	or	
	with	
	an	
	input	
	voltage	
	of	
	120	
	V	
	(15	
	% -	
	35	
	%)	
	in	
	bright .	
	operation	
	mode, with	
	an	
	input	
	voltage	
	of	
	60 V	
	(±	
	20	
	%)	
	in	
	dimmed	
	operation	
	mode,	
_	with	
	an	
	input current	
	reaching	
	80	
	%	
	of	
	its	
	nominal	
1	1	

value within 20 ms, with an input frequency of 45 Hz or more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of the		
within 20 ms, with an input frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		value
— with an input frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
ms, with an input frequency of 45 Hz or more but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
- with an input frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
an input frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		ms,
an input frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of	l—	with
input frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
frequency of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
of 45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		frequency
45 Hz or more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		of
Hz or more but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
or more but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
more, but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		or
but not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		more
not more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		1
more than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
than 65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
65 Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		than
Hz for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		65
for 42 V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
V and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
V and 230 V, and 45-70 Hz for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		
and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		42
and 230 V, and 45-70 Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		V
V, and 45-70 Hz for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		
V, and 45-70 Hz for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		
and 45-70 Hz for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		
45-70 Hz for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		
45-70 Hz for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		and
Hz for 120 V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
for 120 V versions, — with an maximum inrush current overshoot of not more than 250 % of the input current, — with a period of		
V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
V versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		120
versions, with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		V
 with an maximum inrush current overshoot of not more than 250 % of the input current, with a period of 		versions
an maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
maximum inrush current overshoot of not more than 250 % of the input current, with a period of		
inrush current overshoot of not more than 250 % of the input current, with a period of		an
current overshoot of not more than 250 % of the input current, with a period of		maximum
current overshoot of not more than 250 % of the input current, with a period of		inrush
overshoot of not more than 250 % of the input current, with a period of		
of not more than 250 % of the input current, with a period of		
not more than 250 % of the input current, with a period of		
more than 250 % of the input current, with a period of		
more than 250 % of the input current, with a period of		not
than 250 % of the input current, with a period of	1	
250 % of the input current, with a period of		
of the input current, with a period of		
of the input current, with a period of		
the input current, — with a period of		
the input current, — with a period of	1	of
input current, with a period of		
current, — with a period of		
— with a period of		
a period of		
a period of		with
period of		
of		
		periou
the		
·		the
		·

	inrush	
	current	
	overshoot	
	of	
	not	
	more	
	than	
	100	
	ms,	
	with	
	an	
	input	
	current	
	undershoot	
	of	
	not	
	less	
	than	
	50 %	
	of	
	the	
	input	
	current,	
_	with	
	a	
	period	
	of	
	the	
	inrush	
	current	
	undershoot	
	of	
	not	
	more	
	than	
	20	
	ms,	
	with	
	a	
	presettable	
	output	
	current,	
	with	
	an	
	output	
	current	
	reaching	
	90	
	%	
	of	
	its	
	nominal	
	pre-	

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

			set value within 50 ms, with an output current reach zero within 30 ms after removed of the input voltage with an define failur status in case of noload or tooload or tooload (end-of-life funct).	t nt ing n val		
ex 8504 40 82	50	Electric rectifier:	with an input AC voltag of 100-2 V at frequ of 50-60 Hz,	ge 140 ency	p/st	31.12.2022

1		
I —	with	
	two	
	output	
	DC	
	voltages	
	of 9	
	Vor	
	more	
	but	
	not	
	more	
	than	
	12	
	V	
	and	
	396	
	V or	
	more	
	but	
	not	
	more	
	than	
	420	
	V,	
_	output	
	cables	
	without	
	connectors,	
	and	
	in a	
	plastic	
	enclosure	
	with	
	dimensions	
	110	
	mm	
	$(\pm 0,5)$	
	mm)	
	× 60	
	mm	
	(±	
	0,5	
	mm)	
	× 38	
	mm	
	$(\pm 1 \text{ mm}),$	
	use in the	
	nufacture	
	products	
usi	ng IPL	
(In	tensive	
Pul	lse Light) ^b	

ex 8504 40 88	30	DC to AC inverter for use in traction motor control for use in the manufacture of electric vehicles ^b	0 %	p/st	31.12.2019
ex 8504 40 90	15	Semiconductor power module (so called Smart Power Module) for converting single-phase AC input voltage into 2 or 3-phase AV voltage used to power up polyphase AC variable-speed electrical drives, in a casing fitted with one or more integrated circuits, IGBTs, diodes and thermistors, having an output voltage of 600 VAC or 650 VAC, and a rated current of 4 A or more, but not more than 30 A	0 %		31.12.2021
ex 8504 40 90	25	Direct current to direct current converter witho housi or	ut	p/st	31.12.2021

	ı		ı	ı	ı
		— with			
		housi	ng		
		with			
		conne	ection		
		pins,			
			ection		
		studs			
		screw	1		
			ctors,		
			tected		
		line	ficeted		
			nations		
			ections,		
			ection		
		eleme			
		which			
		allow	1		
		the			
		moun	iting		
		to a			
		printe	d		
		circui			
		board			
		by			
		solde	inσ		
		or	11115		
		any			
		other			
			ology,		
		or			
		other			
		wirin			
			ections		
		requi	ring		
		furthe	ŧr		
		proce	ssing		
	20	_			21 12 2022
^e ex 8504 40	30	Static	0 %	p/st	31.12.2023
90		converter			
		comprising			
		a power			
		switch with			
		insulated-			
		gate bipolar			
		transistors			
		(IGBTs),			
		contained in			
		a housing,			
		for use in the			
		manufacture			
		of microwave			
		ovens of			
		subheading			
		8516 50 00 ^b			
	L	I.	1	1	1

ex 8504 40	40	Semiconductor 0 %	p/st	31.12.2023
0		power		
		modules		
		comprising:		
		— power		
		transistors,		
		— integrated		
		circuits,		
		— whether		
		or		
		not		
		containing		
		diodes		
		and		
		with		
		or		
		without		
		thermistors,		
		— an		
		operating		
		voltage		
		of		
		not		
		more		
		than		
		600		
		V,		
		— not		
		more		
		than		
		three		
		electrical		
		outputs		
		each		
		containing		
		two		
		power		
		switches		
		(whether MOSFET		
		(Metal Oxide		
			~ #	
		Semiconducto Field-	31	
		Effect		
		Transistor)		
		OT ICDT		
		IGBT (Inquisted		
		(Insulated		
		Gate		
		Bi-		
		polar		
		Transistors))		

		and			
		interr	al		
		drive			
		and	,		
		a			
		rms			
		(root			
		mean			
		squar	e)		
		curre			
		rating	}		
		of			
		not			
		more			
		than			
		15,7			
		A A			
^g ex 8504 40	50	Drive unit	0 %	p/st	31.12.2023
90		for industrial		•	
		robot with:			
		— one			
		or			
		six			
		3-			
		phase			
		moto			
		outpu	its		
		with			
		maxii	mum		
		3 ×			
		32			
		A,			
		a *			
		main			
		powe			
		input of			
		220			
		V V			
		V A.C.			
		AC			
		or			
		more	}		
		but			
		not			
		more			
		than			
		480			
		V			
		AC,			
		or			
		280			
		V 280			
		ı v	l		

		DC		1	
		or			
		more,			
		but			
		not			
		more			
		than			
		800			
		V			
		DC,			
		_ a			
		logic			
		powe	r		
		input			
		of			
		24			
		V			
		DC,			
		— an ´			
		Ether	Cat		
		comn	nunication		
		interf			
		and	,		
		a			
		dimer	nsion		
		of			
		150			
		×			
		140			
		×			
		120			
		mm			
		or			
		more,			
		but			
		not			
		more			
		than			
		335			
		×			
		430			
		×			
		179			
		mm			
³ ex 8504 40	70	Module for	0 %	p/st	31.12.2023
)()	, ,	converting	J / V	P' St	51.12.2025
90		alternating			
		current into			
		direct current			
		and direct			
		current into			
	1			I	I

3371fh:		
with:		
_	a	
	rated	
	power	
	of	
	not	
	more	
	than	
	100	
	W,	
	an	
	input	
	voltage	
	of	
	80	
	V or	
	more,	
	but	
	not	
	more	
	than	
	305	
	V,	
_	an	
	certified	
	input	
	frequency	
	of	
	47	
	Hz	
	or	
	more,	
	but	
	not	
	more	
	than	
	440	
	Hz,	
	one	
	or	
	more	
	constant	
	voltage	
	output(s),	
	an	
	operating	
	temperature	
	range	
	of –	
	40	
	°C	
	\sim $_{\parallel}$	
	or	

		more but not more than + 85 °C, pins for mour to a printe circui	ting ed		
ex 8504 40 90	80	Power converter containing: — a DC to DC converter converter containing: — a Charge of a capace of not not more than 7 kW — switce funct for use in the manufacture of electric vehicles b	er bity hing	p/st	31.12.2019
^g ex 8504 50 95	20	Inductors with one or more windings, having an inductance of not more than 62 mH per winding/coil	0 %	p/st	31.12.2023
ex 8504 50 95	40	Coil choke with: — an induction	0 %	p/st	31.12.2020

		of 4,7 µH (± 20 %), — a DC resist of not more than 0,1 Ohm — an insularesist of 100 MOh or more at 500 V (DC) for use in the manufacture of LCD and LED module power boards ^b	s, ation ance ms		
ex 8504 50 95	50	Solenoid coil with: — a power constroid of not more than 6 W, — an insularesist of more than 100 M	ation ance	p/st	31.12.2022

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		ohms and an insert hole of 11,4 mm or more but not more than 11,8 mm			
ex 8504 50 95	60	Inductors with one or more windings, with an inductance per winding of not more than 350 mH, for use in the manufacture of electronic control gear, control units and LED light sources for the lighting industry ^b	0 %		31.12.2021
ex 8504 50 95	70	Solenoid coil with: — a rated powe of more than 10 W but not more than 15 W,		p/st	31.12.2021

	i.				
		_	an		
			insula	ition	
			resist	ance	
			of		
			100		
			M		
			Ohm		
			or		
			more	}	
			a		
			DC		
			resist	ance	
			of		
			not		
			more		
			than		
			34,8		
			0hm		
			Ohm		
			$(\pm 10$	% 0)	
			at		
			20		
			°C,		
			a		
			rated		
			curre	nt	
			of		
			not		
			more		
			than		
			1,22		
			A,		
			a .		
			rated		
			volta	ge	
			of		
			not		
			more		
			than		
			25		
			V		
0.501.50.5		G 16	-	0.07	21.12.222
ex 8504 50 95	80	Self-		0 %	 31.12.2022
		induction	1		
		coil:			
			with		
			one		
			or		
			more		
			wind		
			with	, ,	
			an		
			induc	tivity	
			per	111111	
			per		

		Coeff resist as a temp senso whetl or not with insula cover space and	ned er rials, es, es, erature ficient ors erature or, her ation es, ers		
^g ex 8504 90 11	10	Ferrite cores, other than for deflection yokes	0 %	p/st	31.12.2023
ex 8504 90 11	20	Reactor cores for use in a High Voltage Direct Current thyristor converter	0 %	p/st	31.12.2019
ex 8504 90 99	20	Thyristor SGCT (Symmetric	0 %	p/st	31.12.2019

		havin an ability to block the voltag - 6 500 V - in both direct (cond and the revers direct of a kind used in medium voltagestatic converters (rectifiers and inverters)	r onic t ted ped futor ic onic onents, g y ge ions ucting see ion),		
ex 8505 11 00	47	Articles in the form of a triangle, square or	0 %	_	31.12.2021

		rectangle, whether or not shaped or with rounded corners intended to become permanent magnets after magnetization, containing neodymium, iron and			
		boron, with dimensions: — a lengtl of 9 mm or more but not more than 105 m			
		— a width of 5 mm or more but not more than 105 n and			
		mm or more but not more than 55 mi			
ex 8505 11 00	50	Bars specifically shaped,	0 %	p/st	31.12.2022

		intended to become permanent magnets after magnetisation, containing neodymium, iron and boron, with dimensions: — a lengtl of 15 mm or more but not more than 52 mm or more but not more dimensions in more than or more than or more for more but not more than all more	m,	
gex 8505 11 00	53	Permanent magnets of a neodymium alloy cylindrical shaped with notch with internal threaded bore on one side, with:	0 %	31.12.2023

		— a lengt of 97,5	h		
		mm			
		or more			
		but	1		
		not			
		more			
		than			
		225 mm			
		mm — a			
		diam	 eter		
		of			
		19			
		mm			
		or more			
		but	1		
		not			
		more			
		than			
		25 mm			
		111111			
ex 8505 11 00 ex 8505 19 90	55 40	Flat bars of an alloy of samarium and	0 %	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and	0 %	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a		p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt		p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of		p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4		p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm		p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with a lengt of 30,4 mm (± 0,05	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with a lengt of 30,4 mm (± 0,05 mm),	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with a lengt of 30,4 mm (± 0,05 mm), a width of 12,5 mm	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (±	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (± 0,15	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (± 0,15 mm),	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (± 0,15 mm), — a thick	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (± 0,15 mm), — a thick of	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (± 0,15 mm), — a thick of 6,9	h	p/st	31.12.2020
ex 8505 11 00 ex 8505 19 90		an alloy of samarium and cobalt with — a lengt of 30,4 mm (± 0,05 mm), — a width of 12,5 mm (± 0,15 mm), — a thick of	h	p/st	31.12.2020

		0,05 mm), or comp of ferrite in the shape of a quarte sleeve with: — a lengtl of 46 mm (± 0,75 mm), — a width of 29,7 mm (± 0,2 mm), intended to become permanent magnets after magnetisation, of a kind used in car starters and devices extending the drive range of electric cars	er es h		
ex 8505 11 00	63	Rings, tubes, bushings or collars made from an alloy of neodymium, iron and boron, with: — an extern diamo of		p/st	31.12.2022

		not more than 45 mm, — a heigh of not more than 45 mm, of a kind used in the manufacture of permanent magnets after magnetisation	t		
gex 8505 11 00	65	Permanent magnets consisting of an alloy of neodymium, iron and boron, either in the shape of a rectangle, whether or not rounded, with a rectangular or a trapezoidal section having: — a length of not more than 140 mm, — a width of not more than 90 mm, and		p/st	31.12.2023

I—	a
	thickness
	of
	not
	more
	than
	55
	mm,
or in the	,
shape of	
curved	
rectangle	e (tile
type) hav	
<u></u>	a
	length
	of
	not
	more
	than
	75
	mm,
_	a
	width
	of
	not
	more
	than
	40
	mm,
_	a
	thickness
	of
	not
	more
	than
	7
	mm,
	and
	a
	radius
	of
	curvature
	of
	more
	than
	86
	mm
	but
	not
	more
	than
	241
	mm,
	•

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		or in the shape of a disc with a diameter of not more than 90 mm, whether or not containing a hole in the centre			
⁸ ex 8505 11 00	70	Disc consisting of an alloy of neodymium, iron and boron, covered with nickel or zinc, that after magnetisation is intended to become a permanent magnet: — wheth or not conta a hole in the centre with a diame of not more than 90 mm, of a kind used in car loudspeakers	ining eter		31.12.2023
ex 8505 11 00	75	A quarter sleeve intended to become permanent	0 %	p/st	31.12.2019

		iron and boron with a width of 9,1 mm or more but not more than 10,5 mm, with a lengt of 20 mm or more but not more than 30,1 mm, of a kind used on rotors for the manufacture	sting ymium,	
gex 8505 19 90	30	of fuel pumps Articles of agglomerated ferrite in the shape of a disc with a diameter of not more than 120 mm, containing a hole in	0 %	31.12.2023

		the centre intended to become permanent magnets after magnetisation with a remanence between 245 mT and 470 mT			
ex 8505 19 90	50	Article of agglomerated ferrite in the shape of a rectangular prism to become a permanent magnet after magnetisation: — whetl or not with bevel edges of a lengtl of 27 mm or more but not more than 32 mm (± 0,15 mm), — of a width of 8,5 mm or more but not more but not more but not more but not more than 32 mm (± 0,15 mm), — of a width of 8,5 mm or more but not	led , h	p/st	31.12.2022

		more than 9,5 mm (+ 0,05 mm / 0,09 mm), of a thick of 5,5 mm or more but not more than 5,8 mm (+ 0/- 0,2 mm), and of a weig of 6,1 g or more but not more than 8,3 g	ness	
^g ex 8505 19 90	60	Article of agglomerated ferrite in the shape of a half-sleeve or a quarter-sleeve to become a permanent magnet after magnetization: — of a lengt of		31.12.2023

	30	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	50	
	mm	
	(± 1	
	mm), of a	
_		
	width	
	of	
	33	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	55 mm	
	(± 1	
	mm),	
	of a	
	height	
	of	
	12,5	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	21,5	
	mm	
	(± 1	
	mm),	
	of a	
	thickness	
	of	
	3,85	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	6,8	
ı		

	I	l	I	j l	l
		mm (± 0,15 mm) and havin an outer radius of 19 mm or more but not more than 29,4 mm (± 0,2 mm)	S		
^g ex 8505 20 00	30	Electromagnetic clutch, for use in the manufacture of compressors of air conditioning machines of motor vehicles ^b	€ %	p/st	31.12.2023
ex 8505 90 29	30	Coil for an electromagneti valve, with: — a plung — a diamo of 12,9 mm (+/- 0,1), — a heigh without plung of 20,5	ger, eter et	p/st	31.12.2019

		and in a cylindrical metal housing	ector,	
ex 8506 50 10	10	Lithium cylindrical primary cells with: — a diam of 14,0 mm or more but not more than 26,0 mm, — a lengt of 2,2 mm or more but not more than 51 m — a volta of 1,5 V or more but not more than	m, ge	31.12.2021

		3,6 V, a capace of 0,15 Ah or more but not more than 5,00 Ah, for use in the manufacture of telemetry and medical devices, electronic meters or remote controls ^b	,	
ex 8506 50 30	10	Lithium manganese dioxide cell, with: — a diame of 20 mm or more but not more than 25 m — a lengtl of 3 mm or more but not more than 6 mm	m h	31.12.2022

		test temporange from -40 °C to + 125 °C for use as a component within the manufacture of Tyre Pressure Measuring Systems (TPMS)b	notive	
gex 8506 50 90	10	Lithium iodine single cell battery the dimensions of which do not exceed 9 mm × 23 mm	0 %	31.12.2023

		× 45 mm and a voltage of not more than 2,8 V		
ex 8506 50 90	30	Lithium-iodine or lithium-silver vanadium oxide single cell battery of dimensions of not more than 28 mm × 45 mm × 15 mm and a capacity of not less than 1,05 Ah	0 %	31.12.2023
ex 8507 10 20	80	capacion of 200 % or more of the level of an equivicant conversion of the first 5 second of charge a liquic	tance sity ralent entional ed ry g	31.12.2020

		cars and light commercial vehicles employing high regenerative alternator controls or start/stop systems with high regenerative alternator controls ^b		
^g ex 8507 50 00 ex 8507 60 00	20 20	Rectangular accumulator or module, with a length of not more than 69 mm, a width of not more than 36 mm and a thickness of not more than 12 mm, for use in the manufacture of rechargeable batteries ^b	0 %	31.12.2023
ex 8507 50 00	40	Nickel-metal Hydride (NiMH) battery assembly, with: — a volta of 190 V or more but not more than 210 V — a lengt of 220	J,	31.12.2022

		mm	I	l	l
		mm or more but not more than 280 n			
		— a width of 500 mm or more but			
		not more than 600 n — a heigh	nm,		
		of 100 mm or more but not			
		more than 150 m for use in the manufacture of motor vehicles of Chapter 87 ^b			
ex 8507 60 00	15	Cylindrical lithium-ion-accumulators or modules with: — a	0 %	_	31.12.2020
		nomi capac of 8,8 Ah or more but	ity		
		not			

		more than 18 Ah, — a nomi volta; of 36 V or more but not more than 48 V, — a powe of 300 Wh or more but not more than 648 Wh, for use in the manufacture of electric bicycles ^b	nal ge	
ex 8507 60 00	17	Lithiumion starter accumulator, consisting of four rechargeable lithiumion secondary cells, with: — a rated voltage of 12 V, — a length of	ge	31.12.2020

	350	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	355 mm,	
_	a	
	width	
	of	
	170	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	180 mm,	
	a	
	height	
	of	
	180	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	195 mm,	
	weighing	
-	10	
	kg	
	or	
	more but	
	not	
	more	
	than	
	15	
	kg,	
_	a naminal	
	nominal	
	charge	
	of	
	60	
	Ah	
	or	
	more,	
	but	

ex 8507 60 00	23	not more than 80 Ah Lithium-ion-accumulator or module with: — a nomic capace of 72 Ah or more but not more than 100 Ah, — a nomic voltage of 3,2 V, — a weight	nal hity		31.12.2020
		of 1,9 kg more but not more than 3,4 kg, for use in the manufacture of rechargeable hybrid electric vehicle batteries ^b			
ex 8507 60 00	25	Rectangular modules for incorporation	0 %	p/st	31.12.2022

	um-ion	
recharg	geable	
batterie	es,	
with:		
	a	
	width	
	of	
	352,5	
	mm	
	(± 1	
	mm)	
	or	
	367,1	
	mm	
	$(\pm 1 \text{ nm}),$	
	a limi),	
	depth	
	of	
	300	
	mm	
	(± 2	
	mm)	
	or	
	272,6	
	mm	
	$(\pm 1 \text{ mm}),$	
	a limi),	
	height	
	of	
	268,9	
	mm	
	(±	
	1,4	
	mm)	
	or	
	229,5	
	mm	
	$(\pm 1 \text{ mm}),$	
	a a	
	weight	
	of	
	45,9	
	kg	
	or	
	46,3	
	kg,	
	a	
	rating	
	of	
	75	
	Ah,	
	Ah I	

		— a nomi volta of 60 V		
ex 8507 60 00	27	Lithium-ion cylindrical accumulator with: — a nomi capaco of 10 Ah or more but not more than 20 Ah, — a nomi volta of 12,8 V (± 0,05) or more but not more than 15,2 V (± 0,05) — a powe of 128 Wh or more but not more than than 15,2 V (± 0,05) — a powe of 128 Wh or more but not more than than 15,2 V (± 0,05) — a powe of 128 Wh or more but not more than than 15,2 V (± 0,05) — a powe of 128 Wh or more but not more than than 15,2 V (± 0,05) — a powe of 128 Wh or more but not more than than the second power of than the second power of than the second power of than the second power of the second power of than the second power of than the second power of the second	nal	31.12.2020

		256 Wh, for use in the manufacture of electric bicycle drives ^b		
ex 8507 60 00	30	Cylindrical lithium-ion accumulator or module, with a length of 63 mm or more and a diameter of 17,2 mm or more, having a nominal capacity of 1 200 mAh or more, for use in the manufacture of rechargeable batteries ^b	0 %	31.12.2019
ex 8507 60 00	33	Lithium-ion accumulator, with: — a lengtl of 150 mm or more but not more than 300 mm — a width of 700 mm or more but not more more but not more more but not more more but not more but not more more but not more		31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		than		
		1		
		000		
		mm		
		a		
		heigh	nt.	
		of 1		
		100		
		mm		
		or		
		more		
		but	•	
		not		
		more		
		than		
		1		
		500		
		mm		
		— а		
		weig	ht	
		of		
		75		
		kg		
		or		
		more	,	
		but		
		not		
		more		
		than		
		160 k	g	
		a		
		nomi	nal	
		capac		
		not		
		less		
		than		
		150		
		Ah		
		and		
		not		
		more		
		than		
		500		
		Ah		
ex 8507 60 00	37	Lithium-ion	0 %	31.12.2020
		accumulator,		
		with:		
		— a		
		lengt	h	
		of 1	1	
		200		
		mm	I	

	or	
	more,	
	but	
	not	
	more	
	than	
	2	
	000	
	mm	
_	a	
	width	
	of	
	800	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	1	
	300	
	mm	
_	a	
	height	
	of 2	
	000	
	mm	
	or	
	more	
	but	
	not	
	more	
	than	
	2	
	800	
	mm	
_	a	
	weight	
	of 1	
	800	
	kg	
	or	
	more,	
	but	
	not	
	more	
	than	
	3	
	000	
	kg	
_	a	
	nominal	
ı	1 1	

		capac of 2 800 Ah or more but not more than 7 200 Ah		
ex 8507 60 00	43	Lithium-ion accumulators, with: — a thick of not more than 4,15 mm, — a width of not more than 245,1 mm, — a lengt of not more than 90,15 mm, — a nomi capac of 1 000 mAh or more but not more than	5 n nal nity	31.12.2020

	10 000 mAh, — a weight of not more than 250 g, for use in the manufacture of products falling within subheading 8471 30 00 ^b	
ex 8507 60 00 ex 8507 80 00	Rechargeable lithium-ion polymer battery with:	1.12.2019

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

9 0507 (0	47	(± 0,1), a width of 45 mm (± 0,1), a heigh of 11 mm (± 0,1), for use in the manufacture of cash registers ^b	t	21.12.2020
gex 8507 60 00	47	Lithium-ion accumulators, with: — a thick of not more than 6 mm, — a width of not more than 100 mm, — a lengt of not more than 150,1 mm, — a nomi capac of 1 000	h 5	31.12.2020

		mAh or more but not more than 10 000 mAh a weigl of not more than 150 g,	ht.	
		for use in the manufacture of products falling within subheading 8517 12 00 ^b		
ex 8507 60 00	50	Modules for the assembly of batteries of ion lithium electric accumulators with: — a length of 298 mm or more but not more than 408 mm, — a width of 33,5 mm or more but		31.12.2022

		not			
		more than 209			
		mm,			
		— a	4		
		heigh of	ι		
		138			
		mm			
		or more			
		but	,		
		not			
		more			
		than 228			
		mm,			
		<u> </u>			
		weigl of	nt 		
		3,6			
		kg			
		or			
		more, but	}		
		not			
		more			
		than 17 kg			
		and	,		
		— a			
		powe	r		
		of 458			
		Wh			
		or			
		more,	}		
		but not			
		more			
		than			
		2 158			
		Wh			
ex 8507 60 00	53	Batteries Wh	0 %	_	31.12.2022
		of lithium-			
		ion electric accumulators			
		or			
		rechargeable			
		module:			

1		
_	a	
	length	
	of 1	
	203	
	mm	
	or	
	more,	
	but	
	not	
	more	
	than 1	
	297	
	mm,	
	a	
	width	
	of	
	282	
	mm	
	or	
	more,	
	but	
	not	
	more	
	than	
	772 mm,	
	a height	
	of	
	792	
	mm	
	or	
	more,	
	but	
	not	
	more	
	than	
	839	
	mm,	
_	a weight	
	of	
	253	
	kg	
	or	
	more,	
	but	
	not	
	more	
	than	
	293 kg,	
	power of	

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		22 kWh or 26 kWh and const of 24 or 48 modu	ituted	
ex 8507 60 00	60	Lithium-ion rechargeable batteries, with: — a lengt of 1 213 mm or more but not more than 1 575 mm, — a width of 245 mm or more but not more than 1 200 mm, — a heigh of 265 mm or more but	t	31.12.2020

		not more than 755 mm, — a weigh of 265 kg or more but not more than 294 k — a nomi capac of 66,6 Ah, put up in packs of 48 modules	nt g, nal	
ex 8507 60 00	65	Cylindrical lithium ion cell with: — 3,5 VDC to 3,8 VDC — 300 mAh to 900 mAh and — a diamon of 10,0 mm to 14,5 mm		31.12.2021
ex 8507 60 00	71	Lithium-ion rechargeable batteries, with:	0 %	 31.12.2021

l—	a	
	length	
	of	
	700	
	mm	
	or	
	more,	
	but	
	not	
	more	
	than	
	2	
	820	
	mm	
l	a	
	width	
	of	
	935	
	mm	
	or	
	more.	
	but	
	not	
	more	
	than	
	1	
	660	
	mm	
l	a	
	height	
	of	
	85	
	mm	
	or	
	more,	
	1	
	but	
	not	
	more	
	than	
	700 mm	
	a	
	weight	
	of	
	250	
	kgor	
	more,	
	but	
	not	
	more	
	than	
	700 kg	
	a	
1	power	

		of		
		not		
		mo		
		tha	!! -	
		175	2	
		kW	h	
ex 8507 60 00	75	Rectangular	0 %	 31.12.2021
CX 0307 00 00	13	lithium ion	0 /0	31.12.2021
		lithium-ion-		
		accumulator,		
		with:		
		<u> </u>		
		me	tal	
			ing,	
		a	6 ,	
			gth	
		of	Sill	
		17	,	
		173		
		mn	1	
		(±		
		0,1	5	
		mn	1),	
		a		
		wic	lth	
		of		
		21		
		mn	,	
		(±	•	
		0,1		
		0,1	2)	
		mn	1),	
		— a	1 .	
		hei	gnt	
		of		
		91		
		mn	1	
		(±		
		0,1	5	
		mn	n),	
		— a		
			ninal	
		vol	tage	
		of		
		3 3		
		3,3 V,		
		and	1	
			1	
		— a		
		noi	ninal	
		cap	oacity	
		of		
		21		
		Ah		
		or		
		mo	re	
	<u> </u>			

ex 8507 60 00		Rectangular lithium-ion-accumulator or module, with ————————————————————————————————————	g, h nal ge		31.12.2020
^g ex 8507 60 00	85	Lithium-ion Rectangular modules for	0 %	_	31.12.2020

incorp	oration um-ion	
	geable	
batteri		
	of a	
	length	
	of	
	300	
	mm	
	or	
	more,	
	but	
	not	
	more	
	than	
	350	
	mm,	
_	of a width	
	of	
	79,8	
	mm	
	or	
	more, but	
	not	
	more	
	than	
	225	
	mm,	
	of a	
	height	
	of	
	35	
	mm	
	or	
	more,	
	but	
	not	
	more	
	than	
	168	
	mm,	
_	of a	
	weight	
	of	
	3,95	
	kg	
	or	
	more	
	but	
	not	
	more	

ex 8507 90 80	70	than 8,85 kg, with a rating of 66,6 Ah or more but not more than 129 Ah		p/st	31.12.2021
CA 6507 70 80		nickel-plated copper foil, with: a width of 70 mm (± 5 mm), a		p/st	31.12.2021
		a thicks of 0,4 mm (± 0,2 mm), a length of			
		not more than 55 mm, for use in the manufacture of lithiumion electric rechargeable batteries ^b			
ex 8508 70 00 ex 8537 10 98		Printed circuit board without	0 %	p/st	31.12.2020

		a housing for actuating and controlling vacuum cleaner brushes powered by a motor with an output of not more than 300 W			
ex 8508 70 00 ex 8537 10 98	20 98	Electronic circuit cards that: — are conne by wire or radio freque to each other and the motor control card, and — regulation or off and suction capacity of vacuation capacity of vacuation capacity of vacuation or off and suction capacity of vacuation capacity of	ency r oller ate ioning ching im ers ding d am, ner	p/st	31.12.2020

0511 20 00	20	ti d d ti f c d c d d b f a	indicate that display the function of the wacuur cleaner (suction capacitand/or dust bag full and/or filter full)	oning m r on ty		21.12.2010
ex 8511 30 00	30	— a a c c c c c c c c c c c c c c c c c	nbly an igniter	bly ated ing et,	p/st	31.12.2019

		an		
		opera	ting	
		temp	erature	
		of –		
		40		
		°C		
		or		
		more		
		but		
		not		
		more		
		than		
		130		
		°C,		
		a		
		volta	ore.	
		of		
		10,5		
		V or		
		more		
		but	,	
		not		
		more		
		than		
		16 V		
ex 8511 30 00	55	Ignition coil:	0 %	 31.12.2021
		— with		
		a		
		lengt	h	
		of		
		50		
		mm		
		or		
		more	,	
		but		
		not		
		more		
		than		
		200		
		mm,		
		— with		
		an		
		opera	ting	
		temp	erature	
		of-		
		40		
		°C		
		or		
		more	1	
		but	,	
		but not		
		but		

	1	than	I		
		— With a voltage of 9 V or more but			
		not more than 16 V, with or witho conne cable for use in the	out ection		
		manufacture of engines of motor vehicles	ь		
ex 8511 80 00	20	of more than 800 °C, a voltage of 5 V or more	erature ge		31.12.2021
		but not more than 16 V,			

		disilia (MoS and — a metal housi for use in the manufacture of diesel engines of motor vehicles ^b	e 4) bdenum cide ii ₂),		
ex 8512 20 00	20	Information screen displaying at least time, date and status of safety features in a vehicle with an operating voltage of 12 V or more, but not more than 14,4 V, of a kind used in the manufacturing of goods of Chapter 87	0 %	p/st	31.12.2019
ex 8512 20 00	30	Lighting module, containing at least: — two LEDs or plasti lenses focus scatted the light emitted.	c s, ing/ ering	p/st	31.12.2020

		by the LEDs reflec redire the light emitt by the LEDs in an aluminium housing with a radiator, mounted at a bracket with an actuator	tors ecting ed		
ex 8512 20 00	40	Fog lamp with a galvanised inner surface, containing: — a plasti holde with three or more brack — one or more 12 V bulbs — a conne — a plasti cover — wheth or not with a conne cable for use in the manufacture	ets, ctor, c	p/st	31.12.2019

		of goods of Chapter 87 ^b			
ex 8512 30 90	10	Horn assembly operating on piezomechanic principle for generating a specific sound signal, with a voltage of 12 V, comprising: — coil, — magn — metal memi — conne — holde of a kind used in the manufacture of goods of Chapter 87	et, brane, ector,	p/st	31.12.2019
ex 8512 30 90	20	Warning buzzer for parking sensor system in a plastic casing operating on the piezo- mechanic principle, containing: — a printe circuit board — a conne — whetl or not a metal holde of a kind used in the manufacture	t , ector, ner	p/st	31.12.2020

		of goods of chapter 87			
ex 8512 30 90	30	Sound alarm device for protection against burglary into the vehicle: — with an operatempt of – 45 °C or more but not more than + 95 °C, with a volta of 9 V or more but not more than 16 V, — in a plastification or not with a metal holder for use in the manufacture of motor vehicles but not vehicles but not more than 16 V, in a plastification or not with a metal holder for use in the manufacture of motor vehicles but not with a metal holder for use in the manufacture of motor vehicles but not more than not more than not more than not more than not more which a metal holder for use in the manufacture of motor vehicles but not more vehicles but not more than not more than not more than not more than not more which not more than not more which not more than not more than not more than not more which not more than not mor	ge c ng,		31.12.2022
^g ex 8512 40 00 ex 8516 80 20	10 20	Car door mirror heating foil:	0 %	_	31.12.2023

		twell come and add lay on both side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the mean or the side of the	ectrical ontacts, ith officeria description in the		
ex 8514 20 80 ex 8516 50 00 ex 8516 60 80	10 10 10	Cavity assembly comprising least: — a tra wi an in of no	ansformer ith put of ore an 40 V	p/st	31.12.2019

1	an	
	output	
	of	
	not	
	more	
	than	
	3	
	000	
	W	
l	an	
	AC	
	or	
	DC	
	fan	
	motor	
	with	
	an	
	output	
	of	
	not	
	more	
	than	
	42	
	watts	
l —	a	
	housing	
	made	
	of	
	stainless	
	steel	
	with	
	or	
	without	
	a	
	magnetron	
	of a	
	microwave	
	output	
	power	
	of	
	not	
	more	
	than	
	900	
	W	
for use	in the	
manufa	cture	
of built-		
product		
heading	.c	
0514 20	0.00	
8514 20	00,	
8516 50	000	

		and 8516 60 80 ^b			
ex 8516 90 00	60	above 110 °C, fitted with a	r g r r g r med onic t, ting ent eratures	p/st	31.12.2019
ex 8516 90 00	70	Inner pot: — conta side and centra openi — of annea	0 % ining al ngs, aled inium,	p/st	31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		more than 200 °C, for use in the manufacture of an electric fryer ^b			
ex 8516 90 00	80	Door assembly incorporating a capacitive sealing element and wavelength choke for use in the manufacture of built-in products of headings 8514 20 80, 8516 50 00 and 8516 60 80 ^b	0 %	p/st	31.12.2019
ex 8518 29 95	30	Loudspeakers of: — an imper of 3 Ohm or more but not more than 16 Ohm, a noming power of 2 W or more but not more than 20 W,	nal r		31.12.2022

		with or without plasti brack and with or without electrocable fitted with connor of a kind used for TV sets and video monitors manufacture as well as home entertainment systems	c et, out ic	
ex 8518 29 95	40	Loudspeaker of an imper of 1,5 Ohm or more but not more than 10 Ohm of a diame of 25 mm or more but not more than an of more but not more than of more but not more but not more but not more more but not more more but not more more but not more more but not more more but not more more but not more more but not more more	eter	31.12.2021

	20	with frequent range of 150 Hz to 20 kHz, with rated power of 5 W or more but not more than 40 W, and wheth or not with electricable with connor with a brack used in the manufacture of goods of Chapter 87b	ner ic ector, her		21.12.2022
ex 8518 30 95	20	Headphone and earphone for hearing aids, contained in a housing the exterior dimensions of which, excluding connecting	0 %	p/st	31.12.2023

		points, do not exceed 5 mm × 6 mm × 8 mm			
ex 8518 40 80	91	Circuit board sub-assembly, comprising digital audio signal decoding, audio signal processing and amplification with dual and/or multichannel functionality	0 %		31.12.2019
ex 8518 40 80	92	Circuit board sub-assembly, comprising power supply, active equalizer and power amplifier circuits	0 %		31.12.2020
ex 8518 40 80	93	Audio power amplifier with: — an outpu power of 50 W, — an opera volta of more than 9 V but not more than 16 V, — an electr	ting ge	p/st	31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

impedance of not more than Ohm, a sensitivity of more than 80 dB, in a metal housing, for use in the manufacture of motor vehicles^b ex 8518 90 00 30 0 % Magnet p/st 31.12.2019 system consisting of: a steel coreplate, in the form of a disk on one side provided with cylinder neodymium magnet an upper plate lower plate of a kind used in car loudspeakers ex 8518 90 00 35 Metal plate 0 % 31.12.2021

		and meas 60,30 mm (+ 0,00 mm /- 0,40 mm) × 15,5 mm (+ 0,00 mm /- 0,40 mm) × 4,40 mm	rated, uring		
ex 8518 90 00	40	Loudspeaker cone, made from paper pulp or polypropylene, with accompanying dustcaps, of a kind used in car loudspeakers		p/st	31.12.2019
ex 8518 90 00	50	Diaphragm for an electrodynamic speaker with: — an outsid diame of 25 mm or	de	p/st	31.12.2019

		bu no mothate that 25 min a restrict of 20 Hz or mothate 15 Hz a tothe of min or mothate 50 min or mot	tore tore an 0 m, sonance equency z ore t t t ore an 0 z , al ight 5 m ore t t t ore an m, ge ckness		
ex 8518 90 00	60	Upper plate for a loudspeaker magnet	0 %	_	31.12.2020

		system of integrally punched, stamped and plated steel, in the shape of a disk, whether or not containing a hole in the centre, of a kind used in car loudspeakers			
ex 8518 90 00	80	Integrated car loudspeaker housing, consisting of: — a speak frame and magn system holde with a protect coatin and — an embo antidust cloth	et m ctive ng,	p/st	31.12.2019
ex 8521 90 00	20	Digital video recorder:	out -		31.12.2019

ex 8522 90 49 60 Printed 0 % p/st 31.12.2019 ex 8527 99 00 10 circuit board assembly comprising: — a radio tuner (capable of receiving and decoding radio signals and transmitting those signals within the assembly) without	019	31.12.2	p/st	bility on tion gh ectivity ector out 0 % ble ving ling ls mitting ls n ably)	via LAN conne with or with a USB serial port, for use in the manufacture of closed- circuit television (CCTV) surveillance systems Printed circuit board assembly comprising: — a radio tuner (capa of receir and decoor radio signa and transi those signa withi the assen	10	ex 8527 99 00
signal							

		— a micro capable of receive remote control messal and control the tuner chips for use in the manufacture of home entertainment systems ^b	processor processor ple ying te ol ages olling et,		
ex 8522 90 49 ex 8527 99 00 ex 8529 90 65	20	Printed circuit board subassembly, comprising: — a radio tuner, capable of receive and decode radio signal and transist those signal within the assen with a signal decode — a radio frequing (RF) remote controller receives	ole ving ling ls mitting ls n bly, leer, ency	p/st	31.12.2019

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		— an infrar remo control signaturans. — a SCAl signatener gener a TV state senso for use in the manufacture of home entertainment systems ^b	te ol I mitter, RT I ator,		
ex 8522 90 80 ex 8529 90 92	30 57	Metal holder, metal fixing item or internal stiffener of metal, for use in the manufacture of televisions, monitors and video players ^b	0 %	p/st	31.12.2021
^g ex 8522 90 80	65	Assembly for optical discs, comprising at least an optical unit and DC motors, whether or not capable of double layer recording	0 %	p/st	31.12.2023
^g ex 8522 90 80	80	Laser optical drive unit assembly (so called mecha units) for the recording and/or reproduction of digital video and/or	0 %	p/st	31.12.2023

		audio signals, comprising at least a laser optical reading and/ or writing unit, one or more DC motors and not containing a printed circuit board or containing a printed circuit board not capable of signal processing for sounds and images, for use in the manufacture of products falling within headings 8519, 8521, 8526, 8527, 8528 or 8543b			
gex 8522 90 80	84	Blu-ray drive mechanism, whether or not recordable, for use with Blu-ray, DVD and CD discs, comprising at least: — an optica pick up unit with laser diode opera at three differ wave	es tting	p/st	31.12.2023

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 8522 90 80	97	— a spind moto. — a stepp moto. Tuner transforming high-frequency signals into midfrequency signals, for use in the manufacture of products falling under heading	r, ing	p/st	31.12.2021
⁸ ex 8525 80 19 ex 8525 80 91	31 10	of not more than 405 mm × 315 n with a single Charg Coup Device (CCE or	nm, ege- le- ce polementary		31.12.2023

		— (CMG senso with effect pixels of not more than 5	conductor DS) r, iive s		
ex 8525 80 19	60	or 'Stati overl. lines' system an outpu NTSO video signa — a voltag of 6,5 V or more an	ay m, t C I,		31.12.2019
ex 8525 80 19	65	Cameras using MIPI	0 %	_	31.12.2020

n	
magę	
ensor,	
n	
bjective	
lens),	
,	
olour	
rocessor,	
lexible	
rinted	
ircuit	
oard	
r a	
rinted	
ircuit	
oard,	
vhether	
r	
ot	
apable	
f	
eceiving	
udio	
ignals,	
nodule	
imension	
f	
ot	
nore	
han	
5	
nm	
5 mm	
15	
nm,	
esolution	
nega	
1	
ixel\$	
nega pixel pr nore 1 16*1 32 pixels	

		and higher wheth or not wired and — a house for use in the manufacture of products falling within subheading 8517 12 00 or 8471 30 00b	her I,	
ex 8525 80 19	70	Long wavelength infrared camera (LWIR camera) (according to ISO/TS 16949), with: — a sensi in the	length	31.12.2019

			a			
			weigl	nt		
			of			
			not			
			more			
			than			
			400			
			g,			
		_		urements		
			of			
			not			
			more			
			than			
			70			
			mm			
			× 86			
			mm			
			× 82			
			mm,			
		—	whetl	ner		
			or			
			not			
			in a			
			housi	ng,		
		—	with			
			auton	notive-		
			qualit	ried		
			plug,			
			and			
			a	.•		
			devia	tion		
			of			
			the			
			outpu			
			signa			
			over			
			the			
			entire work			
				erature		
			range	rature		
			of			
			not			
			more			
			than			
			20			
			%			
0.50 5 10 5 5		D 1		0.07		21.12.2221
ex 8526 10 00	20	Radar sei		0 %	—	31.12.2021
		with cont	rol			
		unit for				
		autonomo				
		emergeno	y			

ex 8526 91 20	30	car braking system for use in manufacture of goods of Chapter 87 ^b Control unit of the emergency call system containing GSM and GPS module, for use in the manufacture of goods of Chapter 87 ^b	0 %	_	31.12.2019
ex 8527 91 99 ex 8529 90 65		Assembly consisting of at least: — an audio freque amplification and a sound gener a are seed an audio freque amplification and a sound gener a are seed an audio freque amplification and a sound gener a are seed an audio freque amplification and a sound gener a are seed and a sound gener a are seed as a sound gener a are seed as a sound gener are seed a	ency ifier rising ency ifier ator, former,		31.12.2019
^g ex 8528 59 00	10	Liquid crystal display colour video	0 %	_	31.12.2023

		monitors,		
		excluding		
		those		
		combined		
		with other		
		apparatus,		
		having a DC		
		input voltage		
		of 7 V or		
		more but not		
		more than		
		30 V, with		
		a diagonal		
		measurement		
		of the screen		
		of 33,2 cm or		
		less:		
		witho	out	
		a		
		housi	ng,	
		with	0	
		back		
		cover		
		and		
		mour	iting	
		frame		
		or		
		— with		
		a		
		housi	ng,	
		used for		
		permanent		
		incorporation		
		or permanent		
		mounting,		
		during		
		industrial		
		assembly,		
		into goods of		
		Chapters 84		
		to 90 and 94 ^{bf}		
ex 8528 59 00	20	Liquid arrestal	0 %	21 12 2010
CX 0320 39 UU	20	Liquid crystal display colour	0 /0	 31.12.2019
		video monitor		
		assembly		
		mounted on a		
		frame,		
			dina	
		— exclu those		
		comb		
		with		
		with	I	

		other appar comp touch screet facilities a printer circuit board with drive circuit and power supplies for permanent incorporation or permanent mounting into entertainment systems for vehicles by touch screen apparatus to the street apparatus of	atus, rising n ties, ed t		
gex 8529 10 80	60	Filters, excluding surface acoustic wave filters, for a center frequency of 485 MHz or more but not more than 1 990 MHz with an insertion loss of not more than 3,5 dB, contained in a housing	0 %	p/st	31.12.2023
ex 8529 10 80	70	Ceramic filters: — with an applic frequerange of 10 kHz or	ency	p/st	31.12.2019

		more but no more than 100 MHz with a housi of ceran plates provi with electrof a kind used in electrical-mechanical transducer or resonator in audio visual and	ng nic ded rodes		
		communication equipment	1		
ex 8529 90 65	15	and video signa proce FPGA (Field	tt ssors a cations I ssing A I ammable ory ting ory II,	p/st	31.12.2020

		USB and RJ-45 interf socke and plugs for conne a LCD moni a LED lighti and a contr- panel	aces ecting tor,		
⁹ ex 8529 90 65 ex 8548 90 90	30 44	Parts of TV- apparatus, having micro- processor and video- processor functions, comprising at least a micro- controller and a video- processor, mounted on a leadframe and contained in a plastic housing	0 %	p/st	31.12.2023
ex 8529 90 65	45	Satellite radio receiver module transforming satellite high frequency signals to digital audio coded signal, for use in the manufacture of products falling within heading 8527 ^b	0 %	p/st	31.12.2019

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 8529 90 65	50	Tuner	0 %	p/st	31.12.2021
EX 6329 90 03	30	transforming high- frequency signals into mid- frequency signals, for use in the manufacture of products falling under heading 8528 ^b	0 70	prst	31.12.2021
ex 8529 90 65 ex 8529 90 92		Printed circuit board for distributing supply voltage and control signals directly to a control circuit on a TFT glass panel of a LCD module	0 %	p/st	31.12.2020
ex 8529 90 65	75	of drivin signa for pixel addre or — drivin	ration ng ls sssing, ng sssing	p/st	31.12.2022
ex 8529 90 65	80	Tuner transforming high-frequency signals into digital signal, for use in the	0 %	_	31.12.2019

		manufacture of products falling under heading 8527 ^b			
^g ex 8529 90	15	LCD	0 %	p/st	31.12.2023
92	60	modules: — solel			
ex 8548 90 90			sting		
		of	Stille		
		one			
		or			
		more	;		
		TFT			
		glass			
		or			
		plast			
		cells,	,		
		comb	nined		
		with			
		touch			
		scree	n		
		facili	ties,		
		— with			
		one			
		or			
		more print			
		circu			
		board			
		with			
		contr	rol		
		elect	ronics		
		for			
		pixel			
		addre	essing		
		only, with			
		or			
		witho) Dut		
		back			
		unit,			
		and			
		— with			
		or			
		witho			
		inver			
ex 8529 90 92	25	LCD	0 %	p/st	31.12.2020
		modules, not			
		combined			
		with touch			

			ight ed t oller, ge rential lling)	
ex 8529 90 92	33	LCD modules combined with touch screen facilities: — solely consist of one or more TFT cells,	y sting	31.12.2022

l—	with	
	a	
	diagonal	
	measurement	
	of	
	the	
	screen	
	of	
	10,7 cm	
	or	
	more	
	but	
	not	
	more	
	than	
	36	
	cm,	
_	with	
	or	
	without	
	LED	
	backlight,	
	with	
	control	
	electronics	
	for	
	pixel	
	addressing	
	only,	
-	without	
	an	
	EPRΦM	
	memory	
	(Erasable	
	Programmable	
	Read-	
	only	
	Memory),	
	with	
	digital	
	RGB	
	Interface	
	(Red,	
	Green,	
	Blue	
	Interface),	
1	Touch-	
1	Screen	
	Interface,	
need	micracc,	
used	or	
solely f		
installa		
in moto	or	

		vehicles of Chapter 87 ^b			
ex 8529 90 92	37	Fastening and covering ledges of aluminium alloy containing: — silico and magn with a length of 300 mm or more but not more than 2 200 mm, specifically shaped for use in the manufacture of TV sets ^b	esium,		31.12.2020
⁸ ex 8529 90 92	42	Aluminium heat sinks and cooling fins, for maintaining the operating temperature of transistors and integrated circuits, for use in the manufacture of products falling within heading 8527 or 8528b	0 %	p/st	31.12.2023
^g ex 8529 90 92	43	Plasma display module incorporating	0 %	p/st	31.12.2023

		only address and display electrodes, with or without driver and/or control electronics for pixel address only and with or without a power supply			
gex 8529 90 92	45	Integrated circuit package with TV reception functionality containing a channel decoder die, tuner die, power management die, GSM filters and discrete as well as embedded passive circuit elements for reception of digitally broadcasting videosignals of DVB-T and DVB-H formats	0 %	p/st	31.12.2023
ex 8529 90 92	47	Area image sensors ('progressive scan' Interline CCD-Sensor or CMOS-Sensor) for digital video cameras in the form of analogue or digital, monolithic	0 %	p/st	31.12.2019

	integrated circuit with pixels of not more than 12 µm × 12 µm in monochromic version with microlenses applied to each individual pixel (microlens array) or in polychromic version with a colour filter, whether or not with a lenslet (micro lens) array with one lenslet			
	mounted on each individual			
ex 8529 90 92 ex 8536 69 90	pixel AC socket with a noise filter, composed of: — AC socket (for powe cord conne of 230 V, — integration induction of capaca and induction for for socket (for powe cord conne of 230 v, — integration in the composite capaca and induction cable conne for for socket with a noise filter composite capaca and induction capaca and induction cable conne for for socket with a noise filter composite capaca and induction cable connection for socket with a noise filter composite capaca and induction cable connection for socket with a noise filter, composed of: — AC socket with a noise filter, composed of: — acceptance of the composite capaca and induction cable connection for socket with a noise filter, composed of: — acceptance of the composed of: — acceptance of the composed of: — acceptance of the composite capaca and induction cable connection for socket capaca and induction cable connection for socket capaca and induction cable connection for socket capaca and induction cable connection for socket capaca and induction cable connection for socket capaca and induction capaca and induction cable connection for socket capaca and induction capaca an	ection) rated osed sitors	p/st	31.12.2019

		conne	ecting	
		an		
		AC	,	
		socke with	t	
		the		
		PDP		
		(Plasi	ma	
		displa		
		panel		
		powe		
		suppl unit,	y 	
		whether or		
		not equipped		
		with a metal		
		support,		
		which joins the AC socket		
		to the PDP		
		TV set		
^g ex 8529 90	51	OLED	0 %	 31.12.2023
92		modules,		
		consisting of		
		one or more		
		TFT glass or		
		plastic cells: — a		
		diago	nal	
			urement	
		of		
		the		
		scree	h	
		of 121		
		cm		
		or		
		more	,	
		but		
		not		
		more than		
		224		
		cm,		
		— with		
		a		
		thicks of	ness	
		not		
		more		
		than		
		55mr	h,	
	•			

		organ mater with contre electr for pixel	rial, ol onic ssing ace ace r y,		
ex 8529 90 92	55	OLED modules, consisting of: — one or more TFT glass or plasticells,	c ining iic rial,	p/st	31.12.2019

		touch			
		scree			
		facili			
			1168,		
		and			
		— one			
		or			
		more			
		printe	d		
		circui			
		board			
		with			
		contro	1		
			onics		
			Offics		
		for			
		pixel			
		addre	ssing,		
		for use in the			
		manufacture			
		of TV			
		sets and			
		monitors or			
		for use in the			
		manufacture			
		of vehicles of			
		Chapter 87 ^b			
ev 8520 00 02	63	I CD module:	0.%	n/st	31 12 2020
ex 8529 90 92	63	LCD module:	0 %	p/st	31.12.2020
ex 8529 90 92	63	— with	0 %	p/st	31.12.2020
ex 8529 90 92	63	— with a		p/st	31.12.2020
ex 8529 90 92	63	— with a diago	nal	p/st	31.12.2020
ex 8529 90 92	63	with a diago measure		p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of	nal	p/st	31.12.2020
ex 8529 90 92	63	with a diago measure	nal	p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of	nal urement	p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of the	nal urement	p/st	31.12.2020
ex 8529 90 92	63	with a diago measi of the screen	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of the screen of 14,5 of	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of the screet of 14,5 o or more	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of the screet of 14,5 o or more but	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screen of 14,5 o or more but not	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screen of 14,5 o or more but not more	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screen of 14,5 o or more but not more than	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm,	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with	nal urement n	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with or	nal urement n em	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with	nal urement n em	p/st	31.12.2020
ex 8529 90 92	63	with a diago meast of the screen of 14,5 o or more but not more than 38,5 cm, with or witho	nal urement n em	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with or witho	nal urement n cm	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with or witho a touch	nal urement n cm	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with or witho a touch screet	nal urement n cm	p/st	31.12.2020
ex 8529 90 92	63	with a diago meass of the screet of 14,5 o or more but not more than 38,5 cm, with or witho a touch	nal urement n cm	p/st	31.12.2020

	LED	
	backlight,	
	with	
	a animated	
	printed	
	circuit	
	board	
	with	
	EEPROM,	
	microcontroller,	
	LVD\$	
	receiver	
	and	
	l l	
	other	
	active	
	and	
	passive	
	components,	
	with	
	a	
	plug	
	for	
	power	
	supply	
	and	
	CAN	
	and	
	LVD\$	
	interfaces,	
_	with	
	or	
	without	
	electronic	
	components	
	for	
	dynamic	
	adjustments	
	of	
	colour,	
	in a	
	housing,	
	with	
	or	
	without	
	mechanical,	
	touch-	
	sensitive	
	or	
	contactless	
	control	
	functions	
	and	
	with	
1	vv 1tt11	

or without active	
cooling system,	
suitable for installation in motor	
vehicles of Chapter 87 ^b	
ex 8529 90 92 65 OLED display consisting of: — the organic layer with organic LEDs, — two conductive layers on electron transfer and electron holes, — layers of transistors (TFT) with resolution of 1 920 × 1 080, — anode and cathode for power supply of organic diodes, — RGB filter, — glass or plastic	19

		for pixel	out conics essing,		
ex 8529 90 92	67	of the scree of 14,48 cm or more but not more than 31,24 cm, with or without a touch scree with backly micro contrust with a CAN	urement n gut n, ight, oller, troller	p/st	31.12.2020

	controller	
	with	
	one	
	or	
	more	
	LVD\$	
	(Low-	
	voltage	
	differential	
	signalling)	
	interfaces	
	and	
	one	
	or	
	more	
	CAN	
	power	
	supply	
	sockets	
	or	
	with	
	an	
	APIX	
	(Automotive	
	Pixel	
	Link)	
	controller	
	with	
	APIX	
	interface,	
	in a	
	housing	
	with	
	or	
	without	
	a heat	
	sink	
	at	
	the	
	back	
	of	
	the	
	housing,	
	without	
	a	
	signal-	
	processing	
	module,	
l	whether	
	or	
	not	
1	with	

0.520.00.00		hapticand acoust feedby for use in the manufacture of vehicles of Chapter 87 ^b	stical ack,		
ex 8529 90 92	70	alloy conta silico and	ining n nesium,	p/st	31.12.2022

		production of TV sets			
ex 8529 90 92	85	of 14,48 cm or more but not more than 26 cm, withouch scree with a backl and micro contr with a CAN (Con Area Netw contr an LVD (Low Volta Diffe Signa interf and a CAN powe	nurement nureme	p/st	31.12.2020

		for pixel addre only, — with a motor mech for moving the display screen for permanent installation in vehicles of Chapter 87 ^b	lle, ol onics ssing rised anism ng		
ex 8535 90 00 ex 8536 50 80		Semiconductor module switch in a casing: — consi of an IGBT transi chip and a diode chip on one or more lead frame for a voltag of 600 V or 1 200 V	sting stor	p/st	31.12.2020
ex 8536 41 10	20	Photoelectric (so called	0 %		31.12.2021

		photovoltaic) relay consisting of a GaAlAs light-emitting diode, a galvanically isolated input circuit with a photovoltaic generator and a power MOSFET output switch in a casing with connections for a voltage of 60 volts or less and a current of 2 amps or less			
gex 8536 41 90	40	A power relay with: — an electr switch function of 3 ampered or more but not exceed 16 ampered of 5 volts or more but not exceed 24 volts,	ion, int res res reding res, ge	p/st	31.12.2023

		— a distar betwee the conner pins of the load circuit not more than 12,5 mm	ector	
ex 8536 41 90	50	Photoelectric (so called photovoltaic) relay consisting of a GaAlAs light-emitting diode, a galvanically isolated input circuit with one or two photovoltaic generators and two power MOSFET output switches in a casing with connections for a maximum voltage of 60 volts and a minimum current of 2 amps	0 %	31.12.2021
ex 8536 49 00	30	Relays with: — a nomi volta; of 12 V DC		31.12.2020

l—	an	
	allowable	
	voltage	
	of	
	not	
	more	
	than	
	16	
	V	
	DC	
_	a	
	coil	
	resistance	
	at	
	20	
	°C	
	of	
	26,	
	7	
	Ohm	
	(±	
	10	
	%)	
	a	
	pick-	
	up voltage	
	at	
	60	
	°C	
	of	
	not	
	more	
	than	
	8,5 V	
	a	
	drop-	
	out	
	voltage	
	at 20	
	°C	
	of 1	
	Vor	
	more	
	a	
	nominal	
	operating	
	power	
	at	
	20	
	°C	

		of 5,4 Watts a switc voltage of not more than 400 V DC a perma curre carry capace of not more than 120 A for use in the manufacture of batteries for electric vehicles ^b	hing ge anent nt- ing	
ex 8536 49 00	40	Photoelectric (so called photovoltaic) relay consisting of two GaAlAs light-emitting diodes, two galvanically isolated input circuits with photovoltaic generator(s) and four power MOSFET output switches in a casing with connections for a voltage of more than 60 volts	0 %	31.12.2021

0.526.50.11	40	D 11	0.0/		21 12 2221
ex 8536 50 11	40	Push-button switch for keyless start for a voltage of 12 V in a plastic housing, comprising at least: — printe circuit board — LED diode — conne — brack for mount for use in the manufacture of goods of Chapter 87 ^b	t , , ector, ets		31.12.2021
gex 8536 50 19 ex 8536 50 80	93 97	Devices, having adjustable controller and switching functions, comprising one or more monolithic integrated circuits whether or not combined with semiconductor elements, mounted together on a leadframe and contained in a plastic housing	0 %	p/st	31.12.2023
ex 8536 50 80	81	Mechanical speed governer switches for connecting electrical circuits, with:	0 %	p/st	31.12.2019

		- a voltage of 240 V or more but not more than 250 V - an ampe of 4 A or more but not more than 6 A, for use in the manufacture of machines falling within heading 8467b	rage		
ex 8536 50 80	82	Mechanical switches for connecting electrical circuits, with: — a voltage of 240 V or more but not more than 300 V — an ampe of 3 A or more but not more but not more contains a second contain	rage	p/st	31.12.2019

		than 15 A, for use in the manufacture of machines falling within heading 8467 ^b			
ex 8536 69 90	51	SCART type connectors, built into a plastic or metal housing, with 21 pins in 2 rows, for use in the manufacture of products falling within headings 8521 and 8528b	0 %	p/st	31.12.2022
ex 8536 69 90	60	Electrical sockets and plugs with a length of not more than 12,7 mm or a diameter of not more than 10,8 mm, for use in the production of hearing aids and speech processors ^b	0 %	p/st	31.12.2020
ex 8536 69 90	82	Modular socket or plug for local area networks, whether or not combined with other sockets, integrating at least: — a pulse transfincture a	former,	p/st	31.12.2019

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		wide-band ferrite core, — a commode coil, — a resist — a capace for use in the manufacture of products falling within headings 8521 or 8528 ^b	e non or, citor,		
ex 8536 69 90	84	Universal serial bus (USB) socket or plug in a single or multiple form for connecting with other USB devices, for use in the manufacture of goods falling within headings 8521 or 8528b	0 %	p/st	31.12.2020
ex 8536 69 90	85	Socket or plug, built into a plastic or metal housing, with no more than 96 pins, for use in the manufacture of products falling within headings 8521 or 8528b	0 %	p/st	31.12.2021
ex 8536 69 90	86	High- Definition Multimedia Interface	0 %	p/st	31.12.2021

		(HDMI) type socket or plug, built into a plastic or metal housing, with 19 pins or 20 pins in 2 rows, for use in the manufacture of products falling within headings 8521 or 8528b			
ex 8536 70 00	10	Optical socket, plug or connector, for use in the manufacture of goods falling within headings 8521 or 8528b	0 %	p/st	31.12.2021
ex 8536 90 95	20	Semiconductor chip housing in the form of a plastic frame containing a lead frame equipped with contact pads, for voltages of not more than 1 000 V	0 %	p/st	31.12.2020
ex 8536 90 95	40	Rivet contacts: — of coppe plated with silver nicke alloy AgNi or with silver conta	d 	p/st	31.12.2020

		weight 11,2 % (± 1,0 %) of tin oxide and of indiu oxide taken toget with a thick of the platir of 0,3 mm (-0/+0,0 mm) wheth or not gilde	m her ness		
gex 8536 90 95 ex 8544 49 93	94 10	Elastomeric connector, of rubber or silicone, consisting of one or more conductor elements	0 %	p/st	31.12.2023
ex 8537 10 91	50	Fuse control module in a plastic housing with mounting brackets comprising:	put	p/st	31.12.2020

	I	ı	Lat	I	
		ports a printe circu board with embe	ed it id edded oprocessor, o		
gex 8537 10 91 ex 8537 10 98	60 45	Electronic control units, manufactured according to class 2 of IPC-A-610E standard, with at least: — an AC power input of 208 V or more but not more than 400 V, — a logic power input of 24 V DC, — an autor circu break	natic it	p/st	31.12.2023

	I	I	I.	I	l
		— a			
		main			
		powe			
		switc			
		— inter	nal		
		or			
		exter	nal		
		elect	rical		
			ectors		
		and			
		cable	· s		
		— in a	,		
		hous	inα		
		with			
			nsion		
		of			
		281			
		mm			
		×			
		180			
		mm			
		× 75			
		mm			
		or			
		more	.]		
		but]		
		not			
		more			
		than			
		630			
		mm			
		×			
		420			
		mm			
		×			
		230			
		mm,			
		of a kind			
		used for			
		manufacturing			
		recycling			
		or sorting			
		machines			
ex 8537 10 91	65	Electronic	0 %		31.12.2022
		control unit			
		for optimal			
		engine			
		performance:			
		— with			
		a			
			rammable		
		mem	ψī y,		

		 with a voltage of 8 V or more but not more than 16 V, with at least one composite connector, in a metal housing, whether or not with metal holders, for use in the manufacture 		
ex 8537 10 91	70	of motor vehicles ^b Programmable 0 % memory controller for a voltage not exceeding 1 000 V, of a kind used for the operation of a combustion motor and/ or various actuators working with a combustion motor, comprising at least: — a printed circuit with	p/st	31.12.2022

Changes to legislation: There are currently no known outstanding effective	cts for
the Council Regulation (EU) 2018/2069. (See end of Document for de	tails)

		active and passive compone an aluminiu housing, and multiple connecto	ım		
gex 8537 10 98	30	Motor bridge ICs without programmable memory consisting of: — one or more integrate circuits, not intercont on separate lead frames, also with discrete Metal Oxide Field Effect Transisto (MOSFE for controllin DC motors in cars, — mounted in a plastic housing	ors ET)	p/st	31.12.2023
ex 8537 10 98	35	Electronic control unit without memory, for a voltage of 12 V, for information	%	p/st	31.12.2020

		exchange systems in vehicles (for connection of audio, telephony, navigation, camera and wireless car service) containing: — 2 rotary knobs — 27 or more pusht — LED lights — 2 integra circuit for receiv and sendi of contre signa via the LIN- bus	outtons rated its ving ng		
ex 8537 10 98	40	Electronic control unit for monitoring car vehicle tyre pressure comprising plastic box with printed circuit board inside and with or without metal holder, of: — a length of 50	0 %	p/st	31.12.2019

		mm or more but not more than 120 r a width of 20 mm or more but not more than 40 m — a heigh of 30 mm or more but not more than 120 r of a kind used in the manufacture of goods of	nm,		
		of goods of Chapter 87			
ex 8537 10 98	50	Electronic control unit BCM (Body Control Module) comprising: — plasti box with printe circui board and metal holde	ed it i	p/st	31.12.2019

		at least wiper timin winde heatin interi lighti seat belt remir of a kind used in the manufacture	ol, ate ge ions ing ces nobile, g, ow ng, or ng,		
		of goods of Chapter 87			
ex 8537 10 98	60	Electronic assembly consisting of: — a micro — light- emitt diode (LED or liquid crysta displa	ing)) I al	p/st	31.12.2019

		— electr	ators, onic onents ited		
ex 8537 10 98	65	Lever for control module under the steering wheel: — with one or more single or multi positi electr switce (push butto rotary or other whetl or not equip with printe circuit board and electricable — for a voltary of 9 V or	ional ical hes in, her ped it is	p/st	31.12.2021

		more but not more than 16 V, of a kind used in the manufacture of motor vehicles of Chapter 87			
ex 8537 10 98	75	Control unit for keyless access to vehicle and vehicle starting, with electrical switching apparatus, in a plastic housing, for a voltage of 12 V, whether or not with: — an anten — a connormal metal holder for use in the manufacture of goods of Chapter 87b	ector,	p/st	31.12.2021
^g ex 8537 10 98	93	Electronic control units for a voltage of 12 V, for use in the manufacture of vehicle mounted temperature control systems ^b	0 %	p/st	31.12.2023
ex 8538 90 91 ex 8538 90 99		Interior antenna for a car door	0 %	p/st	31.12.2020

		cable with a plug, at least two mour brack wheth or not PCB incluinteg circuidiode and	ting ection ets, her ding rated		
ex 8538 90 99 ex 8547 20 00	30 10	Polycarbonate or acrylonitrile butadiene styrene covers and cases for steering pad switches whether or not coated on the outside with a scratch resistant paint	0 %	p/st	31.12.2019
gex 8538 90 99	40	Polycarbonate control	0 %	p/st	31.12.2019

		interface buttons for steering pad switches coated on the outside with scratch resistant paint, in immediate packages of 500 pieces or more			
ex 8538 90 99	60	Front control panel, in the form of a plastic box, with light guides, rotary switches, pressure switches and buttons switches, or other type of switches, without any electrical component, of a kind used in the dashboard of motor vehicles of Chapter 87	0 %	p/st	31.12.2021
⁸ ex 8538 90 99	95	Copper base plate, of a kind used as a heatsink in the manufacture of IGBT modules containing more components than IGBT chips and diodes with a voltage of 650 V or more but not	0 %	p/st	31.12.2023

		more than 1 200 V ^b			
ex 8540 20 80	91	Photomultiplie	r0 %	_	31.12.2021
^g ex 8540 71 00	20	Continuous wave magnetron with a fixed frequency of 2 460 MHz, packaged magnet, probe output, for use in the manufacture of products falling within subheading 8516 50 00b	0 %		31.12.2023
gex 8540 89 00	91	Displays in the form of a tube consisting of a glass housing mounted on a board the dimensions of which do not exceed 300 mm × 350 mm excluding leads. The tube contains one or more rows of characters or lines arranged in rows, each character or line consisting of fluorescent or phosphorescen elements. These elements are mounted on a metallised base which is covered with	0 %		31.12.2023

		fluorescent substances or phosphorescen salts which give off light when bombarded with electrons	t		
^g ex 8540 89 00	92	Vacuum fluorescent display tube	0 %	_	31.12.2023
ex 8540 91 00	20	Thermionic electron source (emitter point) of lanthanum hexaboride (CAS RN 12008-21-8) or cerium hexaboride (CAS RN 12008-02-5), in a metal housing with electric connectors having: — a graph carbo shield mour in a mini-Voge type syste — separ pyrol carbo block used as heatin eleme and — a catho temp of	n d d d d d d d d d d d d d d d d d d d		31.12.2022

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		less than 1 800 K at a filam curre of 1,26 A			
ex 8543 70 90	15	Laminated electrochromic film consisting of: two outer layers of polye a midd layer of acryli polyr and silico and two electr conne	sester, le ic ner ne,		31.12.2021
^g ex 8543 70 90	30	Amplifier, consisting of active and passive elements mounted on a printed circuit, contained in a housing	0 %	p/st	31.12.2023
ex 8543 70 90	33	High- frequency amplifier comprising one or more integrated circuits and one or more	0 %		31.12.2021

		discrete capacitor chips, whether or not with IPD (integrated passive devices) on a metal flange in a housing			
ex 8543 70 90	34	Gallium nitride (GaN) high- frequency amplifier consisting of one or more discrete transistors, one or more discrete capacitor chips, whether or not with IPD (integrated passive devices) on a metal flange in a housing	0 %		31.12.2021
gex 8543 70 90	35	Radio frequency (RF) modulator, operating with a frequency range of 43 MHz or more but not more than 870 MHz, capable of switching VHF and UHF signals, consisting of active and passive elements mounted on a printed circuit,	0 %	p/st	31.12.2023

		contained in a housing			
^e ex 8543 70 90	45	Piezo-electric crystal oscillator with a fixed frequency, within a frequency range of 1,8 MHz to 67 MHz, contained in a housing	0 %	p/st	31.12.2023
gex 8543 70 90	55	Opto- electronic circuit comprising one or more light-emitting diodes (LEDs), whether or not equipped with an integrated driving circuit, and one photodiode with amplifier circuit, whether or not with an integrated logic gate arrays circuit or one or more light- emitting diodes and at least 2 photodiodes with an amplifier circuit, whether or not with an integrated logic gate arrays circuit or one or more light- emitting diodes and at least 2 photodiodes with an amplifier circuit, whether or not with an integrated logic gate arrays circuit or other	0 %	p/st	31.12.2023

		integrated circuits, contained in a housing			
^g ex 8543 70 90	80	Temperature compensated oscillator, comprising a printed circuit on which are mounted at least a piezo-electric crystal and an adjustable capacitor, contained in a housing	0 %	p/st	31.12.2023
gex 8543 70 90	85	Voltage controlled oscillator (VCO), other than temperature compensated oscillators, consisting of active and passive elements mounted on a printed circuit, contained in a housing	0 %	p/st	31.12.2023
ex 8543 70 90	95	Mobile telephone view and control module comprising of: — a main powe CAN (Con area netwo outpu socke	troller ork)	p/st	31.12.2020

		unive serial bus (USB and audio IN/OUT ports, and incorpa a video switce device for the interform of smart phone opera system with the Medio Orien System Trans network (MOS for use in the manufacture of vehicles of Chapter 87b	porating hing e ace ting ms a tated ms port	
gex 8544 20 00 ex 8544 42 90 ex 8544 49 93	10 20 20	PET/PVC insulated flexible cable with: — a voltage of not more than 60 V, — a currer of not		31.12.2023

	more
	than
	1 A,
_	a
	heat
	resistance
	of
	not
	more
	than
	105
	°C,
_	individual
	wires
	of a
	thickness
	of
	not
	more
	than
	0,1 mm
	(±
	0,01
	mm)
	and
	a : 141
	width
	of
	not
	more
	than
	0,8 mm
	(±
	0,03
	mm),
	a
	distance
	between
	conductors
	of
	not
	more
	than
	0,5 mm,
	and
	a
	pitch
	distance
	from
	centreline
	to
	centreline
	of
I	ı

			uctors)		
		of			
		not			
		more			
		than			
		1,25			
		mm			
ex 8544 20 00	30	Antenna	0 %	_	31.12.2021
CA 03 11 20 00	30	connecting	0 70		31.12.2021
		cable for the			
		transmission			
		of radio (AM/			
		FM) signal			
		and whether			
		or not GPS			
		signal,			
		containing:			
		— a			
		coaxi	al		
		cable			
		— two			
		or			
		more			
			ectors,		
		and	(015,		
		_ 3 or			
		more			
		plasti			
		clips			
		for			
			nment		
		to	IIIICIIC		
		the			
			oard,		
		of a kind	Jouru,		
		used in the			
		manufacture			
		of goods of			
		Chapter 87			
		_		,	
^g ex 8544 30	30	Multi-	0 %	p/st	31.12.2023
00		measurement			
		wire harness			
		of a voltage			
		of 5 V or			
		more but not			
		more than 90			
		V capable of			
		measuring			
		some or all of			
		the following:			
		— a			
		trave	1		

		pres of not mor than 25 MPa — mas of not mor than 50 met	e de	
		50 met	ric nes	
ex 8544 30 00	35	volt of 12V	ration age , pped ered	31.12.2021

	tubin with 16 or more strand with all termi to be tin plated or equip with conne for use in the manufacture of all-terrain or utility task vehicles ^b	ds, nals d pped ectors,		
ex 8544 30 00 ex 8544 42 90	Wire harness of the steering system with an operating voltage of 12 V, equipped with connectors on both sides, having at least 3 plastic anchor clamps for mounting on a motor vehicle steering box	0 %	p/st	31.12.2019
ex 8544 30 00 ex 8544 42 90	Four-core connecting cable containing two female connectors for the transmission of digital signals from navigation	0 %		31.12.2020

		and audio systems to a USB connector, of kind used in the manufacture of goods of Chapter 87			
ex 8544 30 00	70			p/st	31.12.2019
ex 8544 30 00 ex 8544 42 90		Extension two-core cable with two connectors, containing at least: — a rubbe grom — a metal attach brack of a kind used to connect vehicle speed sensors in the manufacture	met, iment	p/st	31.12.2020

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		of vehicles of Chapter 87			
gex 8544 42 90	10	Data transmission cable capable of a bit rate transmission of 600 Mbit/s or more, with:	ectors h ins ding,	p/st	31.12.2023
^g ex 8544 42 90	15	PVC isolated flexible eight wire cable with:	0 %	_	31.12.2023

	a	
	length	
	of S	
	not	
	more	
	than	
	2	
	100	
	mm,	
	an	
	operating	
	voltage	
	of	
	5 V	
	or	
	more	
	but	
	not	
	more	
	than	
	35 V,	
	a	
	temperature	
	resistance	
	of	
	not	
	more	
	than	
	80 °C,	
	either	
	an	
	over-	
	moulded	
	7	
	pin	
	round	
	270°	
	DIN	
	male	
	connector,	
	a 6	
	pin	
	A1101	
	male	
	connector	
	or	
	a 8	
	pin	
	A1001	
	male	
	connector	
	on	
	one	
1	ı	

		end, and			1
		— at			l
		least			l
		two			l
		stripp	ed		l
		and tinne	d		l
		wires			l
		on			l
		the			l
		other			l
		end,			l
		— wheth	ner		l
		not			l
		with			l
		mour			l
		rubbe	r		l
		pad			l
		with integ	rated		l
		strair	laicu		l
		relief			l
^g ex 8544 42	25	PVC isolated	0 %	_	31.12.2023
90		flexible cable			l
		with:			l
		— a			l
		lengt of			l
		not			l
		more			l
		than			l
		1			l
		800			l
		mm, — an			l
		opera	l iting		l
		volta	ge		l
		of			l
		5V			l
		or			l
		more but	†		l
		not			l
		more			l
		than			l
		35V,			l
		— a heat			l
			ance		ı
		of			

	not	
	more	
	than	
	80	
	°C,	
	an	
	over-	
	moulded	
	8.	
	pin	
	MiniFit	
	male	
	connector	
	on	
	one	
	end,	
_	either	
	a 6	
	pin	
	MiniFit	
	socket	
	or	
	two	
	over-	
	moulded	
	AMP	
	connectors	
	on	
	the	
	other	
	end,	
_	a	
	over-	
	moulded	
	resistor	
	inside	
	the	
	connector,	
	and	
<u> </u>	a moulded	
	moulded	
	strain	
	relief	
	on	
	the	
	cable,	
	whether	
	or	
	not	
	with	
	a	
	over-	
	moulded	
I		

		diode			
		insid	e		
		a			
		conn	ector		
^g ex 8544 42	35	PVC isolated	0 %	_	31.12.2023
90		flexible six			
		or eight wire			
		cable with:			
		a			
		lengt	h		
		of			
		not			
		more			
		than			
		1			
		300			
		mm,			
		— an			
		opera	iting		
		volta	ge		
		of			
		5 V			
		or			
		more	1		
		but not			
		more			
		than			
		35 V,			
		_ a			
		heat			
		resist	ance		
		of			
		not			
		more			
		than			
		80			
		°C,			
		— eithe	r		
		an			
		over-			
		moul	ded		
		8			
		pin	Ĺ.		
		Mini			
		male			
		conn	ector		
		or			
		an			
		over-			
		moul	aea		
		6-			

		pin DIN male conne on one end, and either an over- mould 8 pin Minil socke or an 8 pin Micro male conne on the other end	ded Fit ector		
ex 8544 42 90	70	Electric conductors: — of a voltage of not more than 80 V, — with a length of not more than 120 cm, — fitted with connector use in the manufacture of hearing aids,	h	p/st	31.12.2020

		accessory kits and speech processors ^b			
ex 8544 42 90	80	12-wire connecting cable containing two connectors: — of a voltage of 5 V, — with a length of not more than 300 mm, for use in the manufacture of goods of Chapter 87b	h	p/st	31.12.2021
ex 8544 49 91	10	Insulated copper electrical wires: — with indiv condo wires of a diame exceed 0,51 mm, — for a voltage of not more than 1 0000 V, for use in the manufacture of automotive	eter eding ge	m	31.12.2019

		cable harnesses ^b			
ex 8544 49 93	30	— witho	ium- m- d tetrafluoroethylo	m ene),	31.12.2020
ex 8545 90 90	20	Carbon fibre paper of a kind used for gas diffusion layers in fuel cell electrodes	0 %		31.12.2020
^g ex 8548 10 29	10	Spent lithium-ion or nickel metal hydride electric accumulators	0 %		31.12.2023
^g ex 8548 90 90	41	Unit, consisting of a resonator operating within a frequency range of 1,8 MHz or more but not more than	0 %	p/st	31.12.2023

		40 MHz and a capacitor, contained in a housing			
^g ex 8548 90 90	43	Contact image sensor	0 %	p/st	31.12.2023
ex 8548 90 90	48	opera at a typica wave of 635 nm or more but not more than 815 nm — an optica lens — a 'Reco Photo Integ	al length al length it' (PDIC) sing	p/st	31.12.2021
gex 8548 90 90	65	LCD modules: — solely consi of one or more	sting	p/st	31.12.2023

		for pixel addre only, with or without, and with or without or without or without inver	ined n ties, ed its sol conics essing out tight		
ex 8708 10 10 ex 8708 10 90	10 10	Plastic cover for filling the space between the fog lights and the bumper whether or not with a chrome strip for use in the manufacture of goods of Chapter 87 ^b	0 %	p/st	31.12.2021
ex 8708 30 10 ex 8708 30 91 ex 8708 30 99	20 60 10	Motor powered brake actuation unit	0 %	p/st	31.12.2019

		with a rating of 13,5 V (± 0,5 V), and a ball screw mech to contr brake fluid press in the maste cylin for use in the manufacture of electric motor vehicles ^b	anism ol ure		
ex 8708 30 10 ex 8708 30 91	40 30	Body of disc type brake in BIR ('Ball in Ramp') or EPB ('Electronic Parking Brake') or with hydraulic function only, containing functional and mounting openings and guide grooves, of a kind used in the manufacture of goods of Chapter 87	0 %	p/st	31.12.2019
ex 8708 30 10 ex 8708 30 91	50 10	Drum type parking brake:	0 %	p/st	31.12.2021

0700 20 10		opera within the service brake disk, with a diamo of 170 mm or more but not more than 195 mm, for use in the manufacture of motor vehicles b	n ee eter		21.12.2010
ex 8708 30 10 ex 8708 30 91	60 20	Non-asbestos organic brake pads with friction material mounted to the band steel back plate for use in the manufacture of goods of Chapter 87 ^b	0 %	p/st	31.12.2019
ex 8708 30 10 ex 8708 30 91	70 40	Ductile cast iron brake caliper jaw, of a kind used in the manufacture of goods of Chapter 87	0 %	p/st	31.12.2020
ex 8708 40 20 ex 8708 40 50		Automatic hydrodynamic gearbox: with a hydra	0 %	p/st	31.12.2020

	torque converte de la	erter, put fer n		
ex 8708 40 20	instal for use in the manufacture of motor vehicles of heading 8703 ^b	verse tudinal lation,	p/st	31.12.2022
ex 8708 40 20 ex 8708 40 50	Gear box assembly with one or two inputs	0 %	p/st	31.12.2021

		and at least three outputs in cast aluminium housing with overall dimensions (excluding the shafts) of not more than 455 mm (width) × 462 mm (height), 680 mm length, equipped with at least: — one exteri spline output shaft, — a rotary switch to indicate gear positified. — the potent for a differ for use in the manufacture of all-terrain or utility task vehicles on the manufacture of all-terrain or utility task vehicles on the manufacture of all-terrain or utility task vehicles on the manufacture of all-terrain or utility task vehicles on the manufacture of all-terrain or utility task vehicles on the manufacture of all-terrain or utility task vehicles of the manufacture of all-terrain or utility task vehicles of the manufacture of all-terrain or utility task vehicles of the manufacture of all-terrain or utility task vehicles of the manufacture of all-terrain or utility task vehicles of the manufacture of the man	ed t / h ate on,	
ex 8708 40 20 ex 8708 40 50	50 40	Transmission assembly which houses 3 other shafts inside it and offers a rotating switch for shift position consisting: cast alumi body,		31.12.2022

		differe	ntial		
		gear,			
		2			
		electric	eal		
		motors			
		and			
		gears,			
	with the				
	dimensio	ons			
	of:				
		a			
		width			
		of			
		300			
		mm			
		or			
		more			
		but			
		not			
		more			
		than			
		350 mi	n,		
	_	a			
		height			
		of			
		420			
		mm			
		or			
		more but			
		not			
		more			
		than			
		500 mi	n		
		a	.11,		
		length			
		of			
		500			
		mm			
		or			
		more			
		but			
		not			
		more			
		than			
		600 m	n,		
	for use ir				
	manufact				
	of motor				
	vehicles				
	Chapter	87"			
_					

ex 8708 50 20 ex 8708 50 99	20 10	Transmission shaft in carbon fibre reinforced plastics consisting of a unique piece without any joint in the middle: — of a length of 1 m or more but not more than 2 m, — of a weigh of 6 kg or more but not more than 9 kg	p/st	31.12.2020
ex 8708 50 20 ex 8708 50 99 ex 8708 99 10 ex 8708 99 97	40 30 70 80	Single input, dual output gearcase (transmission) in cast aluminium housing, with overall dimensions not exceeding 148 mm (± 1 mm) × 213 mm (± 1 mm) × 273 mm (± 1 mm) comprising at least: — two electromagn one	p/st	31.12.2021

1	direction	
	clutches	
	in	
	one	
	cage,	
	working	
	in	
	both	
	directions,	
	an	
	input	
	shaft	
	with	
	outer	
	diameter	
	of	
	24	
	mm	
	$(\pm 1 \text{ mm}),$	
	ended	
	with	
	spline	
	of	
	22,	
_	a Î	
	coaxial	
	output	
	bushing	
	with	
	inner	
	diameter	
	of	
	22 mm	
	or	
	more	
	but	
	not	
	more	
	than	
	30	
	mm,	
	ended	
	with	
	spline	
	of	
	22	
	teeth	
	or	
	more	
	but	
	not	
1	more	

		than 28 tee for use in the manufacture of all-terrain or utility task vehicles ^b	eth,		
ex 8708 50 20 ex 8708 50 55 ex 8708 50 91 ex 8708 50 99	20 10	Double flange bearing of 3rd generation, for motor vehicles: — with double row ball bearing wheth or not with impuration or not with antilox brakes system (ABS) sensor wheth or not with mount screw for use in the manufacture of goods of chapter 87b	ng, ner lse der) ner ck m s) ar, ner		31.12.2022
ex 8708 80 20 ex 8708 80 35	10 10	Upper strut insulator containing: — a metal holde with three mour	r	p/st	31.12.2020

		screw and — a rubbe bump of a kind used in the manufacture of goods of Chapter 87	r		
ex 8708 80 20 ex 8708 80 91		Rear chassis arm with a protective plastic label equipped with two metal casings with pressed- in rubber silent blocks, of kind used in the manufacture of goods of Chapter 87	0 %	p/st	31.12.2020
ex 8708 80 20 ex 8708 80 91		Rear chassis arm equipped with a ball pivot and metal casing with a pressed-in rubber silent block, of kind used in the manufacture of goods of Chapter 87	0 %	p/st	31.12.2020
ex 8708 80 99	10	Stabilizer bar for front axle equipped with a ball pivot on both ends for use in the manufacture of goods of Chapter 87 ^b	0 %	p/st	31.12.2021
ex 8708 91 20 ex 8708 91 35	20 10	Aluminium cooler using compressed air with a	0 %	p/st	31.12.2019

		ribbed desig	gn		
		of a kind			
		used in the manufacture			
		of goods of			
		Chapter 87			
ex 8708 91 20		Aluminium		p/st	31.12.2020
ex 8708 91 99	30	alloy inlet o outlet air tar	or 1-		
		manufacture			
		to standard	Cu		
		EN AC			
		42100 with:	:		
		— an			
			sulating ea		
			atness		
		of			
		no			
			ore		
		0,	an 1		
			m,		
		_ a	,		
		pe	ermissible		
			article		
		qu of	iantity		
		0,.			
		m			
		pe	er		
			nk,		
		— a	stance		
			etween		
			ores		
		of	[2]		
		m			
		or m	ore,		
			ore		
		siz	zes		
		of			
		no			
			ore an		
		0,4			
		m	m,		
		an			
		— no			
			ore an		
	I		w		I

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		pores larger than 0,2 mm, of a kind used in heat exchangers for car cooling systems		
ex 8708 91 99 ex 8708 99 97	40 55	Assembly for supplying compressed air, whether or not with a resonator, comprising at least: — one solid alumn tube wheth or not with mour brack — one flexist rubbe hose, and — one metal clip, for use in the manufacture of goods of Chapter 87b	inium her ting et, ole	31.12.2022
ex 8708 93 10 ex 8708 93 90	10 10	Mechanically operated clutch for use with an elastomeric belt in a dry environment in a CVT (Continuously Variable	0 %	31.12.2021

Transmi	ssion)	
gear cas		
_	designed	
	to	
	be	
	bolted	
	onto	
	a	
	splined	
	shaft	
	of	
	outer	
	diameter	
	23	
	mm,	
_	with	
	an	
	overall	
	diameter	
	of	
	not	
	more	
	than	
	266	
	mm	
	(± 1	
	mm),	
_	comprised	
	of 2	
	sheaves	
	with	
	tapered	
	faces,	
	sheaves	
	having	
	taper	
	of	
	13	
	degrees	
	each,	
	having	
	a .	
	main	
	compression	
	spring	
	used	
	to	
	resist	
	displacement	
	between	
	sheaves,	
	and	

	compof a cam or spring to maint proper belt tension for use in the manufacture of all-terrain vehicles or utility task vehicles b	g tain er		
ex 8708 93 10 ex 8708 93 90	Mechanically operated centrifugal clutch for use with an elastomeric belt in a dry environment in a continuously variable transmission (CVT), equipped with: — element that activate the clutch at given rotating and gener (in this way) centre force shaft ended with 5 or more but	ate h on rate ifugal	p/st	31.12.2021

777

Status: Point in time view as at 20/12/2018.

	not more than 6 degree taper, 3 weight and — 1 compaspring for use in the manufacture of all-terrain or utility task vehicles ^b	nts,		
ex 8708 94 20 ex 8708 94 35	Rack steering gear in aluminium housing with homokinetic hinges of a kind used in the manufacture of goods of Chapter 87	0 %	p/st	31.12.2019
ex 8708 95 10 ex 8708 95 99	Inflatable safety cushion of high strength polyamide fibre — sewn — folde into three- dime packi form, fixed by therm	d nsional ng nal	p/st	31.12.2020
ex 8708 95 10 ex 8708 95 99	Inflatable safety cushion of high strength polyamide fibre:	0 %	p/st	31.12.2020

	I.	i	ı	ı	1
		applic silico bondi for air bag cavity formi and load-regulair bag sealir — suital for cool inflat	d, nsionally ed ne ing y ng ated		
ex 8708 99 10	10	Six-layer	0 %	_	31.12.2021
ex 8708 99 97	60	composite fuel tank assembly comprising of: — a fuel inlet, — a pump flang assen (PFA — a	e hbly), ation		

		threat holes for PFA assen for use in the manufacture of all-terrain or utility task vehicles b			
gex 8708 99 10 ex 8708 99 97	25 45	Plastic air guide for directing air flow to the surface of interfor use in the production of motor vehicles ^b	0 %		31.12.2023
ex 8708 99 10 ex 8708 99 97	35 35	Holder of front radiator or intercooler whether or not with rubber cushioning for use in the manufacture of goods of Chapter 87 ^b	0 %	p/st	31.12.2021
ex 8708 99 10 ex 8708 99 97		Support bracket of iron or steel, with mounting holes, whether or not with fixation nuts, for connecting the gearbox to the car body for use in the manufacture of goods of Chapter 87 ^b	0 %	p/st	31.12.2021
ex 8708 99 97	85	Electroplated interior or	0 %	p/st	31.12.2022

		of acryle butad styrer (ABS wheth or not mixer with polyc layers of coppe nicke and	ne), her d arbonate, s er, l		
ex 8714 10 90	10	Inner tubes: — of SAE: carbo steel — with a hard chror layer of 20	n nium 5 μm) g	p/st	31.12.2020

		more but not more than			
		1,5 mm havin an elong at break of 15 % perfo of a kind used for the production of	ation		
		motorcycle fork rods			
ex 8714 10 90	20	Radiators of a kind used in motor bikes for fitting of attachments ^b	0 %	p/st	31.12.2020
ex 8714 10 90	50	Suspension damper tubes: of 7050- t73 alumi alloy, anodi on the inner surfac with a mean rough (Ra) of the inner surfac of not more than	sed ce, nness		31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		— 0,4 and a maximough heigh (Rt) of the inner surfact of not more than 4,0	iness t		
gex 8714 91 10 ex 8714 91 10 ex 8714 91 10	23 33 70	Frame, constructed from aluminium or aluminium and carbon fibres, for the use in the manufacture of bicycles (including e-bikes) ^b	0 %		31.12.2023
^g ex 8714 91 30 ex 8714 91 30 ex 8714 91 30	25 35 72	Front forks, except rigid (non-telescopic) front forks made entirely of steel, for use in the manufacture of bicycles ^b	0 %		31.12.2023
ex 8714 96 10	10	Pedals, for use in the manufacture of bicycles ^b	0 %	_	31.12.2020
^g ex 8714 99 10 ex 8714 99 10	20 89	Bicycle handlebars: with or withc integ stem,	rated	_	31.12.2022

		— either made out of carbo fibres and synth resin or made of alum for use in the manufacture of bicycles ^b	n etic		
ex 8714 99 90	30	Seat posts, for use in the manufacture of bicycles ^b	0 %	p/st	31.12.2020
^g ex 9001 10 90	10	Image reverser made up from an assembly of optical fibres	0 %	_	31.12.2023
ex 9001 10 90	30	methodore, a cladd of	nated ner, eter		31.12.2021

Status: Point in time view as at 20/12/2018. **Changes to legislation:** There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

ex 9001 10 90 ex 9001 90 00		 of a width of 7 mm or more but not more than 28 mm and of a heigh of 0,5 m or more but not more than 3 mm of a kind used 	nted, n m , mm, t m		31.12.2021
ex 9001 20 00	10	in dental x- ray systems Material consisting of	0 %	_	31.12.2022
		a polarising			

		film, whether or not on rolls, supported on one or both sides by transparent material, whether or not with an adhesive layer, covered on one side or on both sides with a release film			
gex 9001 20 00 ex 9001 90 00	20 55	Optical, diffuser, reflector or prism sheets, unprinted diffuser plates, whether or not possessing polarising properties, specifically cut	0 %		31.12.2023
ex 9001 50 41 ex 9001 50 49		Organic uncut corrective eyeglass lens, finished on both sides, to undergo a coating, colouring, edging, mounting or any other substantial process for use in the manufacture of corrective glasses ^b	0 %		31.12.2022
ex 9001 50 80	30	Round organic uncut, semi-finished eyeglass	0 %	_	31.12.2021

Changes to legislation: The	re are currently no known	outstanding effects for
the Council Regulation (EU	I) 2018/2069. (See end of	Document for details)

		lens with corrective effect, finished on one side, of a kind used for the manufacture of finished eyeglass lenses			
^g ex 9001 90 00	35	Rear projection screen, comprising a lenticular plastic plate	0 %	p/st	31.12.2023
^g ex 9001 90 00	45	Rod of neodymium- doped yttrium- aluminium garnet (YAG) material, polished at both ends	0 %	p/st	31.12.2023
ex 9001 90 00	65	Optical film with a minimum of 5 multi-layer structures, including a back side reflector, a front side coating and a contrast filter with a pitch of not more than 0,65 µm, for use in the manufacture of front projection screens ^b	0 %		31.12.2019
ex 9001 90 00	70	Poly(ethylene terephthalate) film with a thickness of less than 300 µm according	0 %	_	31.12.2021

		to ASTM D2103, having on one side prisms of acrylic resin with a prism angle of 90° and a prism pitch of 50 µm		
ex 9001 90 00	85	Light guide panel made of poly(methyl methacrylate): — whetl or not cut, — whetl or not printe for use in the manufacture of backlight units for flat screen TVs ^b	ner	31.12.2020
ex 9002 11 00 ex 9002 19 00		Infrared lens with motorised focus adjustment, — using wave of 3 µm or more but not more than 5 µm, provi a clear picture from 50 m to infini	ding	31.12.2020

	ı	ı			I.	1
		v	with			
		l t	fields			
		C	of			
			vision			
		S	sizes			
		C	of			
		3	3° ×			
			2,25°			
			and			
			9° ×			
			6,75			
			0,73			
			o, with			
		a	a 🗼			
		V	weigh	t		
			of			
			not			
			more			
		t	than			
		2	230			
		g	g,			
		v	g, with			
			a			
			length			
			of	•		
			not			
			more			
			than			
		٥	88			
		1.	mm, with			
			a	4		
		C	diame	ter		
			of			
			not			
			more			
			than			
			46			
		r	mm,			
		a	athern	nalised,		
		for use in t	the			
		manufactu				
		of thermal	1			
		imaging				
		cameras,				
		infrared				
		binoculars				
		weapons	-,			
		scopes ^b				
		scopes				
ex 9002 11 00	20	Lenses:		0 %	_	31.12.2022
			measu			
			not	-		
	1	1	'		1	ı

		more than 80 mm × 55 mm × 55 mm × 50 mm × 50 mm of 160 lines/ mm or better and with a zoom ratio of 18 times of a kind used for the production of visualizers or live image cameras	m, ation	
ex 9002 11 00 ex 9002 19 00	25 20	silico lens with a diame of 84 m (± 0,1 mm), and — a mono	eter m	31.12.2021

		a diame of 62 mm (± 0,05 mm), assembled on a machined aluminum alloy support, of a kind used for thermal imaging cameras			
ex 9002 11 00	35	Infrared	0 %	_	31.12.2021
ex 9002 11 00 ex 9002 19 00		optical unit	0 /0		J1.12.2021
		composed of:			
		— a silico	n		
		lens	11		
		with			
		a	4		
		diamo of	eter		
		29			
		mm			
		(± 0.0))5 mm),		
		and a			
		mono	crystalline		
		calciu	ım		
		fluori lens	de		
		with			
		a			
		diamo of	eter		
		26			
		mm			
		(±			
		0,05 mm),			
		assembled on			
		a machined			
		aluminum			
		alloy support, of kind a used			
		for thermal			
		imaging			
		cameras			

ex 9002 11 00 ex 9002 19 00		Infrared optical unit:	eter 05 mm), ited ined inum	31.12.2021
gex 9002 11 00	50	Lens unit: — havin a focal lengt of 25 mm or more but not more than 150 mm,	sting ic s,	31.12.2023

	not more than 190 mm		
ex 9002 11 00 ex 9002 19 00	Infrared optical unit composed of: — a germ lens with a diame of 11 mm (± 0,0 a mono calciu fluori lens with a diame of 14 mm (± 0,05 mm), and — a silico lens with a diame of 17 mm	oerystalline im ide eter	31.12.2021
	cameras		

0002 11 00	(5	T., C., 1	0.0/	21 12 2021
ex 9002 11 00 ex 9002 19 00		Infrared optical unit:	0 %	 31.12.2021
CX 9002 19 00	00	— with		
		a		
		silico) n	
		lens		
		with		
		a		
		diam	eter	
		of		
		26		
		mm		
			1 mm),	
		— mour	ited	
		on a	inad	
		mach alum		
		alloy		
		suppo		
		of a kind used	,	
		for thermal		
		imaging		
		cameras		
ex 9002 11 00	75	Infrared	0 %	31.12.2021
ex 9002 11 00		optical unit	0 70	31.12.2021
• y 0 0 2 1 y 0 0	, 0	composed of:		
		_ a		
		germ	anium	
		lens		
		with		
		a		
		diam	eter	
		of		
		19		
		mm (+ 0 ()5 mm),	
		— (± 0,0	J. 111111),	
			crystalline	
		calci	um	
		fluor	ide	
		lens		
		with		
		a		
		diam	eter	
		of		
		18		
		mm		
		(±		
		0,05		
		mm),		
		— a	anium	
		germ	anium	

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		lens with a diamo of 20,6 mm (± 0,0 assembled on a machined aluminum alloy support, of a kind used for thermal imaging cameras)5 mm),	
gex 9002 11 00	85	Lens assembly with: — a horiz field of view range of 50 deg or more but not more than 200 deg, — a focal lengtl of 1,16 mm or more but not more than s,45 mm, — a relati	h	31.12.2019

		apertor of F/1,8 or more but not more than F/2,6 a diamon of 5 mm or more but not more than 18,5 mm, for use in the manufacture of CMOS automotive cameras ^b	eter		
gex 9002 90 00	30	Optical unit, comprising 1 or 2 rows of optical glass fibres in the form of lenses and with a diameter of 0,85 mm or more but not more than 1,15 mm, embedded between 2 plastic plates	0 %	p/st	31.12.2023
ex 9002 90 00	40	Mounted lenses made from infrared transmitting chalcogenide glass, or a combination of infrared transmitting	0 %	p/st	31.12.2022

		chalcogenide glass and another lens material			
ex 9013 80 90	30	mirro (ME) manu with semid techn with a drive arran in three- dimes struct on the semid mater wheth or not in a comb	pelectromechanions MS) Ifactured conductor cology, ged nsional tures conductor rial, her iination	p/st	31.12.2019

		of a kind used for incorporation into products of Chapters 84-90 and 95			
gex 9025 80 40	30	Electronic barometric semiconductor pressure sensor in a housing, mainly consisting of: — a combo of one or more mono applic specific integ circu (ASI and — at least one or more microsenso element (MEI manu with semicon sensor element techn with mech comparrant in three dimestruction the semicon the semicon sensor element three dimestruction on the semicon element	pelectromechaniar ents MS) Ifactured conductor cology, anical conents ged msional tures	p/st	31.12.2023
		mate	141		<u> </u>

ex 9025 80 40	50	Electronic	0 %	p/st	31.12.2019
		semiconduc	tor		
		sensor for			
		measuring a			
		least two of			
		the followin	g		
		quantities:			
			mospheric		
			essure,		
		ter	nperature,		
			so		
		for	r		
		ter	nperature		
		co	mpensation),		
		hu	midity,		
		or			
		vo	latile		
			ganic		
		co	mpounds,		
		in	a		
		ho	using		
		su	itable		
		for	r		
		the	e		
		au	tomatic		
		pri	inting		
		of			
		co	nductor		
		bo	ards		
		or			
		Ва	ıre		
		Di	e		
		tec	chnology,		
			ntaining:		
		— on	_		
		or			
		mo			
			onolithic		
			plication-		
			ecific		
			egrated		
			cuits		
			SIC),		
		— on			
		or			
		mo			
			croelectromechai	nical	
			nsor		
			ements		
			IEMS)		
			anufactured		
		wi			
			miconductor		

		with mech comp arran in three- dimen struct on the	nsional ures conductor		
gex 9027 10 90	10	Sensor element for gas or smoke analysis in motor vehicles, essentially consisting of a zirconium- ceramic element in a metal housing	0 %		31.12.2019
ex 9029 10 00	30	Speed sensor using the Hall effect for measuring wheels rotation in a motor vehicle equipped with plastic housing and attached to connecting cable with a joining connector and mounting holders of a kind used in the manufacture	0 %	p/st	31.12.2019

		of goods of Chapter 87			
ex 9029 20 31 ex 9029 90 00		— engin	e utions, e erature,	p/st	31.12.2019
gex 9030 31 00	20	Automotive battery sensor for measuring voltage, current and temperature with: — a meas unit, volta regul micro contrand LIN-Trans — a batter pole termi	ge ator,)- oller sceiver,		31.12.2023

		LIN- conne and grour cable for use in the manufacture of motor vehicles ^b	ector		
^g ex 9032 89 00	30	Electronic controller of electric power steering (EPS controller)	0 %	p/st	31.12.2023
ex 9032 89 00	40	Digital valve controller for controlling liquids and gases	0 %	p/st	31.12.2022
ex 9032 89 00	50	Gas panel for regulating and controlling of the gas flow rate, working with plasma technology, comprising: — an electric mass flow regulations and sending of analo and digital signal of two or more press valve	ator, ble ving ng gue ll ls, ure ducers,		31.12.2021

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

		 electrinterfand sever conner for gas lines, suitable for insitu plasm bonding proces or for multi frequence bond activation 	aces, al ectors ole ing sses ency		
ex 9401 90 80	10	Ratchet disk of a kind used in the manufacture of reclining car seats	0 %	p/st	31.12.2020
ex 9401 90 80	60	Outer part of a headrest made of perforated bovine leather, lined with a scrim- reinforced lamination liner and without foam padding, after reworking (stitching of the leather and embroidery application) used in manufacture of seats of motor vehicles	0 %		31.12.2020

ex 9503 00 75 ex 9503 00 95		Plastic cable car scale models, whether or not with a motor, for printing ^b	0 %	p/st	31.12.2020
ex 9607 20 10	10	Sliders, narrow tape with mounted zipper teeth, pin/boxes and other parts of slide fasteners, of base metal for use in the manufacture of zippers ^b	0 %		31.12.2020
ex 9607 20 90	10	Narrow strips mounted with plastic chain scoops for use in the manufacture of zippers ^b	0 %	_	31.12.2020
^g ex 9608 91 00	10	Non-fibrous plastic pen- tips with an internal canal	0 %	_	31.12.2023
^g ex 9608 91 00	20	Felt tips and other porous-tips for markers, without internal canal	0 %	_	31.12.2023
gex 9612 10 10	10	Ribbons of plastic with segments of different colours, providing the penetration of dyes by heat into a support (so called dyesublimation)	0 %		31.12.2023

suspending...
Document Generated: 2023-09-19

Status: Point in time view as at 20/12/2018.

Changes to legislation: There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069. (See end of Document for details)

- a However, the suspension of tariff duties does not apply where the processing is carried out by retail or catering undertakings
- b Suspension of duties is subject to end-use customs supervision in accordance with Article 254 of Regulation (EU) No 952/2013 of the European Parliament and of the Council of 9 October 2013 laying down the Union Customs Code (OJ L 269, 10.10.2013, p. 1)
- c Only the ad valorem duty is suspended. The specific duty shall continue to apply.
- d A surveillance of imports of goods covered by this tariff suspension shall be established in accordance with the procedure laid down in Articles 55 and 56 of Commission Implementing Regulation (EU) 2015/2447 of 24 November 2015 laying down detailed rules for implementing certain provisions of Regulation (EU) No 952/2013 of the European Parliament and of the Council laying down the Union Customs Code (OJ L 343, 29.12.2015, p. 558).
- e CUS (Customs Union and Statistics Number) is assigned to each ECICS record (product). ECICS (European Customs Inventory of Chemical Substances) is an information tool managed by the European Commission, General Directorate for Taxation and Customs Union. More information can be found via the following link: http://ec.europa.eu/taxation_customs/common/databases/ecics/index_en.htm
- f The expression 'industrial assembly' refers to the production of new items in an assembly plant or manufacturing plant.
- g New or amended position or position with prolonged validity

- Council Regulation (EU) No 1387/2013 of 17 December 2013 suspending the autonomous Common Customs Tariff duties on certain agricultural and industrial products and repealing Regulation (EU) No 1344/2011 (OJ L 354, 28.12.2013, p. 201).
- OJ C 363, 13.12.2011, p. 6. **(2)**

Status:

Point in time view as at 20/12/2018.

Changes to legislation:

There are currently no known outstanding effects for the Council Regulation (EU) 2018/2069.