- Latest available (Revised)
- Original (As adopted by EU)
Commission Regulation (EC) No 606/2009 of 10 July 2009 laying down certain detailed rules for implementing Council Regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions (repealed)
When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.
Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).
This is the original version as it was originally adopted in the EU.
This legislation may since have been updated - see the latest available (revised) version
The test sample is treated by a strongly acid cation exchanger. The cations are exchanged with H+. Total cations are expressed by the difference between the total acidity of the effluent and that of the test sample.
glass electrode, kept in distilled water,
calomel/saturated potassium chloride reference electrode, kept in a saturated solution of potassium chloride, or
a combined electrode, kept in distilled water,
Use the solution obtained by diluting the rectified concentrated must to 40 % (m/v): introduce 200 g of accurately weighed rectified concentrated must into a 500 ml volumetric flask. Make up to the mark with water and homogenise.
Introduce into the column approximately 10 ml pre-swollen ion exchanger in H + form. Rinse the column with distilled water until all acidity has been removed, using the paper indicator to monitor this.
Pass 100 ml of the rectified concentrated must solution prepared as in paragraph 4.1 through the column at the rate of one drop every second. Collect the effluent in a beaker. Rinse the column with 50 ml of distilled water. Titrate the acidity in the effluent (including the rinse water) with the 0,1 M sodium hydroxide solution until the pH is 7 at 20 °C. The alkaline solution should be added slowly and the solution continuously shaken. Let n ml be the volume of 0,1 M sodium hydroxide solution used.
The total cations are expressed in milliequivalents per kilogram of total sugar to one decimal place.
Acidity of the effluent expressed in milliequivalents per kilogram of rectified concentrated must:
Where E = The free sulphur dioxide in milligrams per litre is 2,5 n.
Total acidity of the rectified concentrated must in milliequivalents per kilogram: a.
Total cations in milliequivalents per kilogram of total sugars:
((2,5n-a)/(P)) × 100
P = percentage concentration (m/m) of total sugars.
The electrical conductivity of a column of liquid defined by two parallel platinum electrodes at its ends is measured by incorporating it in one arm of a Wheatstone bridge.
The conductivity varies with temperature and it is therefore expressed at 20 °C.
Dissolve 0,581 g of potassium chloride, KCl, previously dried to constant mass at a temperature of 105 °C, in demineralised water (paragraph 3.1). Make up to one litre with demineralised water (paragraph 3.1). This solution has a conductivity of 1 000 μS cm–1 at 20 °C. It should not be kept for more than three months.
Use the solution with a total sugar concentration of 25 % (m/m) (25° Brix): weigh a mass equal to 2 500/P and make up to 100 g with water (paragraph 3.1), where P = percentage (m/m) concentration of total sugars in the rectified concentrated must.
Bring the sample to be analysed to 20 °C by immersion in a waterbath. Maintain the temperature to within ± 0,1 °C.
Rinse the conductivity cell twice with the solution to be examined.
Measure the conductivity and express the result in µS cm–1.
The result is expressed in microsiemens per cm (µScm–1) at 20 °C to the nearest whole number for the 25 % (m/m) (25° Brix) solution of rectified concentrated must.
If the apparatus does not have temperature compensation, correct the measured conductivity using Table I. If the temperature is below 20 °C, add the correction; if the temperature is above 20 °C, subtract the correction.
Corrections to be made to the conductivity for temperatures different from 20 °C (µS cm–1)
a Subtract the correction. | ||||||||||
b Add the correction. | ||||||||||
Conductivity | Temperature (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
20,219,8 | 20,419,6 | 20,619,4 | 20,819,2 | 21,019,0 | 21,218,8 | 21,418,6 | 21,618,4 | 21,818,2 | 22,0a18,0b | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
50 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
100 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 |
150 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 |
200 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
250 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 |
300 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 |
350 | 1 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 |
400 | 2 | 3 | 5 | 7 | 9 | 11 | 12 | 14 | 16 | 18 |
450 | 2 | 3 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
500 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 |
550 | 2 | 5 | 7 | 10 | 12 | 14 | 17 | 19 | 22 | 24 |
600 | 3 | 5 | 8 | 11 | 13 | 16 | 18 | 21 | 24 | 26 |
Aldehydes derived from furan, the main one being hydroxymethylfurfural, react with barbituric acid and paratoluidine to give a red compound which is determined by colorimetry at 550 nm.
Separation through a column by reversed-phase chromatography and determination at 280 nm.
Dissolve 500 mg of barbituric acid, C4O3N2H4, in distilled water and heat slightly over a waterbath at 100 °C. Make up to 100 ml with distilled water. The solution keeps for about a week.
Place 10 g of paratoluidine, C6H4(CH3) NH2, in a 100 ml volumetric flask; add 50 ml of isopropanol, CH3CH(OH)CH3, and 10 ml of glacial acetic acid, CH3COOH (ρ20 = 1,05 g/ml). Make up to 100 ml with isopropanol. This solution should be renewed daily.
Prepare just before use.
Prepare successive dilutions containing 5, 10, 20, 30 and 40 mg/l. The 1 g/l and the diluted solutions must be freshly prepared.
Use the solution obtained by diluting the rectified concentrated must to 40 % (m/v): introduce 200 g of accurately weighed rectified concentrated must into a 500 ml volumetric flask. Make up to the mark with water and homogenise. Carry out the determination on 2 ml of this solution.
Into each of two 25 ml flasks a and b fitted with ground glass stoppers place 2 ml of the sample prepared as in paragraph 2.3.1. Place in each flask 5 ml of paratoluidine solution (paragraph 2.2.2); mix. Add 1 ml of distilled water to flask b (control) and 1 ml barbituric acid solution (paragraph 2.2.1) to flask a. Shake to homogenize. Transfer the contents of the flasks into spectrophotometer cells with optical paths of 1 cm. Zero the absorbence scale using the contents of flask b for a wavelength of 550 nm. Follow the variation in the absorbence of the contents of flask a; record the maximum value A, which is reached after two to five minutes.
Samples with hydroxymethylfurfural concentrations above 30 mg/l must be diluted before the analysis.
Place 2 ml of each of the hydroxymethylfurfural solutions with 5, 10, 20, 30 and 40 mg/l (paragraph 2.2.4) into two sets of 25 ml flasks a and b and treat them as described in paragraph 2.3.2.
The graph representing the variation of absorbence with the hydroxymethylfurfural concentration in mg/l is a straight line passing through the origin.
The hydroxymethylfurfural concentration in rectified concentrated musts is expressed in milligrams per kilogram of total sugars.
The hydroxymethylfurfural concentration C mg/l in the sample to be analysed is that concentration on the calibration curve corresponding to the absorbence A measured on the sample.
The hydroxymethylfurfural concentration in milligrams per kilogram of total sugars is given by:
250 × ((C)/(P))
P = percentage (m/m) concentration of total sugars in the rectified concentrated must.
a loop injector, 5 or 10 μl,
spectrophotometer detector for making measurements at 280 nm,
column of octadecyl-bonded silica (e.g.: Bondapak C18 — Corasil, Waters Ass.),
a recorder and, if required, an integrator,
Flow rate of mobile phase: 1,5 ml/minute.
This mobile phase must be prepared daily and outgassed before use.
Into a 100 ml volumetric flask, place 25 mg of hydroxymethylfurfural, C6H3O6, accurately weighed, and make up to the mark with methanol (paragraph 3.2.2). Dilute this solution 1/10e with methanol (paragraph 3.2.2) and filter through a membrane filter (0,45 µm).
If kept in a hermetically sealed brown glass bottle in a refrigerator, this solution will keep for two to three months.
Use the solution obtained by diluting the rectified concentrated must to 40 % (m/v) (introduce 200 g of accurately weighed rectified concentrated must into a 500 ml volumetric flask. Make up to the mark with water and homogenise) and filter it through a membrane filter (0,45 µm).
Inject 5 (or 10) µl of the sample prepared as described in paragraph 3.3.1. and 5 (or 10) µl of the reference hydroxymethylfurfural solution (paragraph 3.2.5) into the chromatograph. Record the chromatogram.
The retention time of hydroxymethylfurfural is approximately six to seven minutes.
The hydroxymethylfurfural concentration in rectified concentrated musts is expressed in milligrams per kilogram of total sugars.
Let the hydroxymethylfurfural concentration in the 40 % (m/v) solution of the rectified concentrated must be C mg/l.
The hydroxymethylfurfural concentration in milligrams per kilogram of total sugars is given by:
250 × ((C)/(P))
P = percentage (m/m) concentration of total sugars in the rectified concentrated must.
Heavy metals are revealed in the suitably diluted rectified concentrated must by the coloration produced by the formation of sulphides. They are assessed by comparison with a standard lead solution corresponding to the maximum admissible concentration.
The chelate given by lead with ammonium pyrrolidinedithiocarbamate is extracted with methylisobutylketone and the absorbence measured at 283,3 nm. The lead content is determined by using known additional amounts of lead in a set of reference solutions.
Take 70 g of hydrochloric acid, HCl (ρ20 = 1,16 to 1,19 g/ml), and make up to 100 ml with water.
Take 20 g of hydrochloric acid, HCl (ρ20 = 1,16 to 1,19 g/ml), and make up to 100 ml with water.
Take 14 g of ammonia, NH3 (ρ20 = 0,931 to 0,934 g/ml) and make up to 100 ml with water.
Dissolve 25 g of ammonium acetate (CH3COONH4), in 25 ml of water and add 38 ml of dilute hydrochloric acid (paragraph 2.1.1). Adjust the pH if necessary with the dilute hydrochloric acid (paragraph 2.1.2) or the dilute ammonia (paragraph 2.1.3) and make up to 100 ml with water.
(nD 20 °C = 1,449 to 1,455).
To 0,2 ml of thioacetamide solution (paragraph 2.1.5) add 1 ml of a mixture of 5 ml of water, 15 ml of 1 M sodium hydroxide solution and 20 ml of glycerol (paragraph 2.1.6). Heat over a waterbath at 100 °C for 20 seconds. Prepare just before use.
Prepare a 1 g/l lead solution by dissolving 0,400 g of lead nitrate, Pb (NO3)2, in water and making up to 250 ml with water. At the time of use, dilute this solution with water to two parts in 1 000 (v/v) in order to obtain a 0,002 g/l solution.
Dissolve a test sample of 10 g of the rectified concentrated must in 10 ml of water. Add 2 ml of the pH 3,5 buffer solution (paragraph 2.1.4); mix. Add 1,2 ml of the thioacetamide reagent (paragraph 2.1.7). Mix at once. Prepare the control under the same conditions by using 10 ml of the 0,002 g/l lead solution (paragraph 2.1.8).
After two minutes, any brown coloration of the rectified concentrated must solution should not be more intense than that of the control.
Under the conditions of the above procedure, the control sample corresponds to a maximum admissible heavy metal concentration expressed as lead of 2 mg/kg of rectified concentrated must.
Take 12 g of glacial acetic acid (ρ20 = 1,05 g/ml) and make up to 100 ml with water.
Dilute the 1 g/l lead solution (paragraph 2.1.8) to 1 % (v/v).
Dissolve 10 g of rectified concentrated must in a mixture of equal volumes of dilute acetic acid (paragraph 3.2.1) and water, and make up to 100 ml with this mixture.
Add 2 ml of ammonium pyrrolidinedithiocarbamate solution (paragraph 3.2.2) and 10 ml of methylisobutylketone (paragraph 3.2.3). Shake for 30 seconds while protected from bright light. Leave the two layers to separate. Use the methylisobutylketone layer.
Prepare three reference solutions containing, in addition to 10 g of rectified concentrated must, 1, 2 and 3 ml respectively of the solution containing 0,010 g/l of lead (paragraph 3.2.4). Treat these in the same way as the solution to be examined.
Prepare a control by proceeding under the same conditions as in paragraph 3.3.1, but without the addition of the rectified concentrated must.
Set the wavelength to 283,3 nm.
Atomise the methylisobutylketone from the control sample in the flame and zero the absorbence scale.
By operating with their respective solvent extracts, determine the absorbences of the solution to be examined and the reference solutions.
Express the lead content in milligrams per kilogram of rectified concentrated must to one decimal place.
Plot the curve giving the variation in absorbence as a function of the lead concentration added to the reference solutions, zero concentration corresponding to the solution to be examined.
Extrapolate the straight line joining the points until it cuts the negative part of the concentration axis. The distance of the point of intersection from the origin gives the lead concentration in the solution to be examined.
This method is used for the determination of the alcoholic strength of low-alcohol liquids such as musts, concentrated musts and rectified concentrated musts.
Simple distillation of the liquid. Oxidation of the ethanol in the distillate by potassium dichromate. Titration of the excess dichromate with an iron (II) solution.
Dissolve 33,600 g of potassium dichromate, (K2Cr2O7), in sufficient quantity of water to make one litre of solution at 20 °C.
One millilitre of this solution oxidizes 7,8924 mg of alcohol.
Dissolve 135 g of iron (II) ammonium sulphate, Fe SO4, (NH4)2SO4, 6 H2O in sufficient quantity of water to make one litre of solution and add 20 ml of concentrated sulphuric acid, (H2SO4), (ρ20 = 1,84 g/ml). This solution more or less corresponds to half its volume of dichromate solution when just prepared. Subsequently, it oxidizes slowly.
Dissolve 1,088 g of potassium permanganate, KMnO4, in a sufficient quantity of water to make one litre of solution.
A little at a time and stirring continuously, add 500 ml of sulphuric acid, (H2SO4) (ρ20 = 1,84 g/ml) to 500 ml of water.
Dissolve 0,695 g of ferrous sulphate, FeSO4, 7 H2O, in 100 ml of water, and add 1,485 g of orthophenanthroline monohydrate, C12H8N2, H2O. Heat to help the dissolution. This bright red solution keeps well.
Place 100 g of rectified concentrated must and 100 ml of water in the distillation flask. Collect the distillate in a 100 ml volumetric flask and make up to the mark with water.
Take a 300 ml flask with a ground glass stopper and with a widened neck enabling the neck to be rinsed without loss. In the flask, place 20 ml of the titrant potassium dichromate solution (paragraph 3.1) and 20 ml of the 1:2 (v/v) dilute sulphuric acid (paragraph 3.4) and shake. Add 20 ml of the distillate. Stopper the flask, shake, and wait at least 30 minutes, shaking occasionally. (This is the ‘measurement’ flask.)
Carry out the titration of the iron (II) ammonium sulphate solution (paragraph 3.2) with respect to the potassium dichromate solution by placing in an identical flask the same quantities of reagents but replacing the 20 ml of distillate by 20 ml of distilled water. (This is the ‘control’ flask.)
Add four drops of the orthophenanthroline reagent (paragraph 3.5) to the contents of the ‘measurement’ flask. Titrate the excess dichromate by adding to it the iron (II) ammonium sulphate solution (paragraph 3.2). Stop adding the ferrous solution when the mixture changes from green-blue to brown.
To judge the end-point more precisely, change the colour of the mixture back from brown to green-blue with the potassium permanganate solution (paragraph 3.3). Subtract a tenth of the volume of this solution used from the volume of the iron (II) solution added. Let the difference be n ml.
Proceed in the same way with the ‘control’ flask. Let n′ ml be the difference here.
The ethanol is expressed in grams per kilogram of total sugars and is quoted to one decimal place.
n′ ml of ferrous solution reduces 20 ml of dichromate solution which oxidizes 157,85 mg of pure ethanol.
One millilitre of iron (II) solution has the same reducing power as:
((157,85)/(n)) mg of ethanol
n-n′ ml of iron (II) solution have the same reducing power as:
157,85 × ((n′ — n)/(n)) mg of ethanol.
Ethanol concentration in g/kg of rectified concentrated must is given by:
7,892 × ((n′ — n)/(n))
Ethanol concentration in g/kg of total sugars is given by:
789,2 × ((n′ — n)/(n′ × P))
P = percentage (m/m) concentration of total sugars in the rectified concentrated must.
Gas chromatography of silylated derivatives.
Operating conditions: carrier gas: hydrogen or helium
carrier gas flow rate: about 2 ml/minute,
injector and detector temperature: 300 °C,
programming of temperature: 1 minute at 160 °C, 4 °C per minute to 260 °C, constant temperature of 260 °C for 15 minutes,
splitter ratio: about 1:20.
An accurately weighed sample of about 5 g of rectified concentrated must is placed in a 50 ml flask. 1 ml of standard solution of xylitol (paragraph 2.1) is added and water added to capacity. After mixing, 100 µl of solution is taken and placed in a flask (point 3.6) where it is dried under a gentle stream of air. 100 µl of absolute ethyl alcohol may be added if necessary to facilitate evaporation.
The residue is carefully dissolved in 100 µl of pyridine (paragraph 2.4) and 100 µl of bis(trimethylsilyl)trifluoroacetamide (paragraph 2.2) and 10 µl of trimethylchlorosilane (paragraph 2.3) are added. The flask is closed with the Teflon stopper and heated at 60 °C for one hour.
Draw off 0,5 µl of clear fluid and inject using a heated hollow needle in accordance with the stated splitter ratio.
60 g/l of glucose, 60 g/l of fructose, 1 g/l of meso-inositol and 1 g/l of sucrose.
5 g of the solution is weighed and the procedure at paragraph 4 followed. The results for meso-inositol and sucrose with respect to xylitol are calculated from the chromatogram.
In the case of scyllo-inositol, which is not commercially available and has a retention time lying between the last peak of the anomeric form of glucose and the peak for meso-inositol (see diagram), the same result as for meso-inositol is taken.
Sucrose is expressed in grams per kilogram of must.
The Whole Regulation you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.
Would you like to continue?
Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.
Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.
Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:
Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:
Click 'View More' or select 'More Resources' tab for additional information including: