Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilisers (Text with EEA relevance)

REGULATION (EC) No 2003/2003 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 13 October 2003

relating to fertilisers

(Text with EEA relevance)

THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION,

Having regard to the Treaty establishing the European Community, and in particular Article 95 thereof,

Having regard to the proposal from the Commission⁽¹⁾,

Having regard to the Opinion of the European Economic and Social Committee⁽²⁾,

Acting in accordance with the procedure laid down in Article 251 of the Treaty⁽³⁾,

Whereas:

- (1) Council Directive 76/116/EEC of 18 December 1975 on the approximation of the laws of the Member States relating to fertilisers⁽⁴⁾, Council Directive 80/876/EEC of 15 July 1980 on the approximation of the laws of the Member States relating to straight ammonium nitrate fertilisers of high nitrogen content⁽⁵⁾, Commission Directive 87/94/ EEC of 8 December 1986 on the approximation of the laws of the Member States relating to procedures for the control of characteristics of, limits for and resistance to detonation of straight ammonium nitrate fertilisers of high nitrogen content⁽⁶⁾, and Commission Directive 77/535/EEC of 22 June 1977 on the approximation of the laws of the Member States relating to methods of sampling and analysis for fertilisers⁽⁷⁾, have been substantially amended several times. In accordance with the communication from the Commission to the European Parliament and the Council 'Simpler legislation for the internal market' (SLIM) and the Action Plan for the Single Market those Directives should be repealed and replaced by a single legal instrument, in the interests of clarity.
- (2) The Community legislation on fertilisers is very technical in its content. A Regulation is therefore the most appropriate legal instrument, as it imposes directly on manufacturers precise requirements to be applied at the same time and in the same manner throughout the Community.
- (3) In each Member State fertilisers must display certain technical characteristics laid down by mandatory provisions. These provisions, concerning more particularly the composition and definition types of fertilisers, the designations of these types, their identification and their packaging, differ from one Member State to another. By their disparity they hinder trade within the Community and should therefore be harmonised.

- (4) Since the objective of the proposed action, namely to ensure the internal market in fertilisers, cannot be sufficiently achieved by the Member States if there are no common technical criteria and can therefore, by reason of the scale of the action, be better achieved at Community level, the Community may adopt measures in accordance with the principle of subsidiarity as set out in Article 5 of the Treaty. In accordance with the principle of proportionality, as set out in that Article, this Regulation does not go beyond what is necessary in order to achieve this objective.
- (5) It is necessary to determine at Community level the designation, definition and composition of certain fertilisers (EC fertilisers).
- (6) Community rules on the identification, traceability and labelling of EC fertilisers and on the closure of the packages should also be laid down.
- (7) A procedure should be established at Community level to be followed in cases where a Member State deems it necessary to restrict the placing on the market of EC fertilisers.
- (8) The production of fertilisers is subject to varying degrees of fluctuation due to manufacturing techniques or basic materials. Sampling and analytical procedures may also contain variations. It is therefore necessary to authorise tolerances on the declared nutrient contents. In the interest of the agricultural user, it is advisable to keep these tolerances within narrow limits.
- (9) Official controls on the compliance of EC fertilisers with requirements of this Regulation concerning quality and composition should be carried out by laboratories that are approved by the Member States and notified to the Commission.
- (10) Ammonium nitrate is the essential ingredient of a variety of products, some of which are intended for use as fertilisers and others as explosives. It is necessary, having regard to the particular nature of ammonium nitrate fertilisers of high nitrogen content and to the consequent requirements regarding public safety, health and protection of workers, to lay down additional Community rules for EC fertilisers of this type.
- (11) Certain of those products could be hazardous and could in certain instances be used for purposes other than those for which they were intended. This could well endanger the security of persons and property. Manufacturers should therefore be obliged to take appropriate steps to avoid such use, and in particular to ensure the traceability of such fertilisers.
- (12) In the interest of public safety, it is particularly important to determine at Community level the characteristics and properties distinguishing ammonium nitrate EC fertilisers of high nitrogen content from varieties of ammonium nitrate used in the manufacture of products used as explosives.
- (13) Ammonium nitrate EC fertilisers of high nitrogen content should conform to certain characteristics to ensure that they are harmless. Manufacturers should ensure that all high nitrogen content ammonium nitrate fertilisers have passed a test of resistance to detonation before those fertilisers are placed on the market.

- (14) It is necessary to establish rules on the methods of the closed thermal cycles even if these methods may not necessarily simulate all conditions arising during transport and storage.
- (15) Fertilisers can be contaminated by substances that can potentially pose a risk to human and animal health and the environment. Further to the opinion of the Scientific Committee on Toxicity, Ecotoxicity and the Environment (SCTEE), the Commission intends to address the issue of unintentional cadmium content in mineral fertilisers and will, where appropriate, draw up a proposal for a Regulation, which it intends to present to the European Parliament and the Council. Where appropriate, a similar review will be undertaken for other contaminants.
- (16) It is appropriate to establish a procedure, to be observed by any manufacturer or its representative that wishes to include a new type of fertiliser in Annex I in order to use the marking 'EC fertiliser'.
- (17) The measures necessary for the implementation of this Regulation should be adopted in accordance with Council Decision 1999/468/EC of 28 June 1999 laying down the procedures for the exercise of implementing powers conferred on the Commission⁽⁸⁾.
- (18) Member States should lay down penalties in respect of infringements of the provisions of this Regulation. They may provide that a manufacturer which infringes Article 27 can be fined an amount equivalent to ten times the market value of the shipment that fails to comply.
- (19) Directives 76/116/EEC, 77/535/EEC, 80/876/EEC and 87/94/EEC should be repealed,

HAVE ADOPTED THIS REGULATION:

Modifications etc. (not altering text)

- C1 Regulation: power to amend or modify conferred (11.11.2020 for specified purposes, 11.1.2021 in so far as not already in force) by Agriculture Act 2020 (c. 21), ss. 33(4), 57(1)(b)(c)(6)
- C2 Regulation applied (with modifications) (27.2.2021) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2021 (S.I. 2021/207), reg. 3(1)(3) (with reg. 3(2))

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

TITLE I

GENERAL PROVISIONS

CHAPTER I

Scope and definitions

Article 1

Scope

This Regulation shall apply to products which are placed on the market as fertilisers designated '[^{F1}UK fertiliser]'.

Textual Amendments
F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)

Article 2

Definitions

- $([^{F2}1])$ For the purposes of this Regulation the following definitions shall apply:
- (a) 'Fertiliser' means material, the main function of which is to provide nutrients for plants.
- (b) 'Primary nutrient' means the elements nitrogen, phosphorus and potassium only.
- (c) 'Secondary nutrient' means the elements calcium, magnesium, sodium and sulphur.
- (d) 'Micro-nutrients' means the elements boron, cobalt, copper, iron, manganese, molybdenum and zinc, essential for plant growth in quantities that are small compared with those of primary and secondary nutrients.
- (e) 'Inorganic fertiliser' means a fertiliser in which the declared nutrients are in the form of minerals obtained by extraction or by physical and/or chemical industrial processes. Calcium cyanamide, urea and its condensation and association products, and fertilisers containing chelated or complexed micro-nutrients may, by convention, be classed as inorganic fertilisers.
- (f) 'Chelated micro-nutrient' means a micro-nutrient that is held by one of the organic molecules listed in section E.3.1 of Annex I.
- (g) 'Complexed micro-nutrient' means a micro-nutrient that is held by one of the molecules listed in section E.3.2 of Annex I.
- (h) 'Type of fertilisers' means fertilisers with a common type designation as indicated in Annex I.

- (i) 'Straight fertiliser' means a nitrogenous, phosphatic or potassic fertiliser having a declarable content of only one of the primary nutrients.
- (j) 'Compound fertiliser' means a fertiliser having a declarable content of at least two of the primary nutrients and obtained chemically or by blending or by a combination of both.
- (k) 'Complex fertiliser' means a compound fertiliser, obtained by chemical reaction, by solution, or in its solid state by granulation, having a declarable content of at least two of the primary nutrients. In its solid state each granule contains all the nutrients in their declared composition.
- (1) 'Blended fertiliser' means a fertiliser obtained by dry mixing of several fertilisers, with no chemical reaction.
- (m) 'Foliar fertiliser' means a fertiliser suitable for application to and nutrient uptake by the foliage of a crop.
- (n) 'Fluid fertiliser' means a fertiliser in suspension or solution.
- (o) 'Solution fertiliser' means a fluid fertiliser that is free of solid particles.
- (p) 'Suspension fertiliser' means a two-phase fertiliser in which solid particles are maintained in suspension in the liquid phase.
- (q) 'Declaration' means a statement of the amount of nutrients, including their forms and solubility, guaranteed within specified tolerances.
- (r) 'Declared content' means the content of an element, or its oxide, which, in accordance with [^{F3}retained EU law], is given on a label of an [^{F1}UK fertiliser] or on the relevant accompanying document.
- (s) 'Tolerance' means the permitted deviation of the measured value of a nutrient content from its declared value.
- (t) [^{F4} Recognised standard' means either of the following standards:
 - (i) CEN (European Committee for Standardisation);
 - (ii) BSI (the British Standards Institution).]
- (u) 'Package' means a sealable receptacle used to hold, protect, handle, and distribute fertilisers and holding not more than 1 000 kg.
- (v) 'Bulk' means a fertiliser not packaged as prescribed by this Regulation.
- (w) 'Placing on the market' means the supply of fertiliser, whether in return for payment or free of charge, or storage for the purpose of supply. Importation of a fertiliser into the [^{F5}United Kingdom] shall be deemed to constitute placing on the market.
- (x) 'Manufacturer' means the natural or legal person responsible for placing a fertiliser on the market; in particular a producer, an importer, a packager working for its own account, or any person changing the characteristics of a fertiliser, shall be deemed to be a manufacturer. However, a distributor who does not change the characteristics of the fertiliser shall not be deemed to be a manufacturer.
- (y) [^{F6}"Appropriate authority" means:

- (i) in relation to a decision in respect of ammonium nitrate fertilisers of high nitrogen content where the decision is outside devolved competence, the Secretary of State;
- (ii) in relation to a decision in respect of other fertilisers:
- in relation to England, the Secretary of State;
- in relation to Wales, the Welsh Ministers;
- in relation to Scotland, the Scottish Ministers.
- (z) "Enforcement authority" means:
 - (i) in England and Wales, an enforcement authority specified in regulation 11 of the EC Fertilisers (England and Wales) Regulations 2006;
 - (ii) in Scotland, a council constituted under section 2 of the Local Government etc. (Scotland) Act 1994;
- (zl) "Relevant authority" means:
 - (i) in relation to Wales, the Welsh Ministers;
 - (ii) in relation to Scotland, the Scottish Ministers.]

[^{F7}2. References in this Regulation to devolved competence are to be read in accordance with the following provisions:

- a it is outside devolved competence to make any provision by subordinate legislation which would not be within the legislative competence of:
 - i in relation to Wales, Senedd Cymru if it were contained in an Act of Senedd Cymru (assuming, in the case of provision that could only be made with the consent of a Minister of the Crown within the meaning of the Ministers of the Crown Act 1975, that such consent were given);
 - ii in relation to Scotland, the Scottish Parliament if it were included in an Act of the Parliament (see section 29 of the Scotland Act 1998);
- b in the case of any function other than a function of making, confirming or approving subordinate legislation, it is outside devolved competence to exercise the function (or to exercise it in a particular way) if or to the extent that:
 - i in relation to Wales, a provision of an Act of Senedd Cymru conferring the function (or conferring it so as to be exercisable in that way) would not be within the legislative competence of Senedd Cymru if it were contained in an Act of Senedd Cymru (assuming, in the case of provision that could only be made with the consent of a Minister of the Crown within the meaning of the Ministers of the Crown Act 1975, that such consent were given);
 - ii in relation to Scotland, a provision of an Act of the Scottish Parliament conferring the function (or conferring it so as to be exercisable in that way) would be outside the legislative competence of the Parliament.]

Textual Amendments

F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)

- F2 Art. 2 renumbered as Art. 2(1) (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(3)(a); 2020 c. 1, Sch. 5 para. 1(1)
- **F3** Words in Art. 2(1)(r) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(3)(b)(i)**; 2020 c. 1, Sch. 5 para. 1(1)
- F4 Art. 2(1)(t) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(3)(b)(ii); 2020 c. 1, Sch. 5 para. 1(1)
- F5 Words in Art. 2(1)(w) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(3)(b)(iii); 2020 c. 1, Sch. 5 para. 1(1)
- F6 Art. 2(1)(y)-(z1) inserted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(3)(b)(iv); (as amended (27.2.2021) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2021 (S.I. 2021/207), regs. 1(1), 2(2)(a)); 2020 c. 1, Sch. 5 para. 1(1)
- F7 Art. 2(2) inserted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(3)(c) (as amended (27.2.2021) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2021 (S.I. 2021/207), regs. 1(1), 2(2)(b)); 2020 c. 1, Sch. 5 para. 1(1)

CHAPTER II

Placing on the market

Article 3

[^{F1}UK fertiliser]

A fertiliser belonging to a type of fertilisers listed in Annex I and complying with the conditions laid down in this Regulation, may be designated '[^{F1}UK fertiliser]'.

The designation '[^{F1}UK fertiliser]' shall not be used for a fertiliser which does not comply with this Regulation.

Textual Amendments

```
    F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)
```

Article 4

Establishment within the [^{F8}United Kingdom]

The manufacturer shall be established within the [^{F9}United Kingdom] and shall be responsible for the conformity of the '[^{F1}UK fertiliser]' with the provisions of this Regulation.

Textual Amendments

- F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)
- **F8** Words in Art. 4 heading substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(4)**; 2020 c. 1, Sch. 5 para. 1(1)
- **F9** Words in Art. 4 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(4)**; 2020 c. 1, Sch. 5 para. 1(1)

F10 Article 5

Free circulation

Textual Amendments

F10 Art. 5 omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(5); 2020 c. 1, Sch. 5 para. 1(1)

Article 6

Compulsory statements

1 [^{F11}Nothing in this Regulation prevents the appropriate authority, in order to satisfy the requirements of Article 9, from using any power the appropriate authority has to] prescribe that the indication of the nitrogen, phosphorus and potassium contents of fertilisers placed on [^{F12}the market] is to be expressed in the following way:

- a nitrogen solely in the elemental form (N); and either
- b phosphorus and potassium solely in the elemental form (P, K); or
- c phosphorus and potassium solely in the oxide form (P_2O_5, K_2O) ; or
- d phosphorus and potassium in both elemental and oxide forms simultaneously.

Where the option is chosen to prescribe that the phosphorus and potassium contents be expressed in the form of elements, all references in the Annexes to the oxide form shall be read as being in elemental form and the numerical values shall be converted using the following factors:

- a phosphorus (P) = phosphorus pentoxide (P_2O_5) × 0,436;
- b potassium (K) = potassium oxide (K₂O) \times 0,830.

2 [^{F13}Nothing in this Regulation prevents the appropriate authority from using any power the appropriate authority has to] prescribe that the calcium, magnesium, sodium and sulphur contents of secondary nutrient fertilisers and, where the conditions of Article 17 are fulfilled, of primary nutrient fertilisers placed on [^{F14}the market] are to be expressed:

- a in the oxide form (CaO, MgO, Na₂O, SO₃); or
- b in the elemental form (Ca, Mg, Na, S); or
- c in both of these forms.

To convert the calcium oxide, magnesium oxide, sodium oxide and sulphur trioxide contents into calcium, magnesium, sodium and sulphur contents, the following factors shall be used:

- a calcium (Ca) = calcium oxide (CaO) \times 0,715;
- b magnesium (Mg) = magnesium oxide (MgO) \times 0,603;
- c sodium (Na) = sodium oxide (Na₂O) \times 0,742;
- d sulphur (S) = sulphur trioxide (SO₃) \times 0,400.

For the calculated oxide or elemental content, the figure declared shall be rounded to the nearest decimal place.

3 [^{F15}The appropriate authority] shall not prevent the placing on the market of an '[^{F1}UK fertiliser]' labelled in both of the forms mentioned in paragraphs 1 and 2.

4 The content of one or more of the micro-nutrients boron, cobalt, copper, iron, manganese, molybdenum, or zinc in the [^{F16}UK fertilisers] belonging to the types of fertilisers listed in sections A, B, C and D of Annex I shall be declared where the following conditions are fulfilled:

- a the micro-nutrients are added at least in the minimum quantities specified in section E.2.2 and E.2.3 of Annex I;
- b the [^{F1}UK fertiliser] continues to satisfy the requirements of sections A, B, C and D of Annex I.

5 Where the micro-nutrients are the normal ingredients of the raw materials intended to supply primary (N, P, K) and secondary (Ca, Mg, Na, S) nutrients, they may be declared, provided that these micro-nutrients are present at least in the minimum quantities specified in sections E.2.2 and E.2.3 of Annex I.

6 The micro-nutrient content shall be declared in the following manner:

- a for fertilisers belonging to the types of fertilisers listed in section E.1 of Annex I, in accordance with the requirements set out in column 6 of that section;
- b for mixtures of fertilisers referred to in (a) containing at least two different micronutrients and meeting the requirements of section E.2.1 of Annex I and for fertilisers belonging to the types of fertilisers listed in sections A, B, C and D of Annex I, by indicating:
 - (i) the total content, expressed as a percentage of the fertiliser by mass,
 - (ii) the water-soluble content, expressed as a percentage of the fertiliser by mass, where the soluble content is at least half of the total content.

Where a micro-nutrient is totally water-soluble, only the water-soluble content shall be declared.

Where a micro-nutrient is chemically linked with an organic molecule, the content of the micro-nutrient present in the fertiliser shall be declared immediately following the water-soluble content as a percentage by mass of the product, followed by one of the terms 'chelated by', or 'complexed by', with the name of the organic molecule as set out in section E.3 of Annex I. The name of the organic molecule may be replaced by its initials.

Textual Amendments

- F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)
- F11 Words in Art. 6(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(6)(a)(i); 2020 c. 1, Sch. 5 para. 1(1)
- F12 Words in Art. 6(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(6)(a)(ii); 2020 c. 1, Sch. 5 para. 1(1)
- F13 Words in Art. 6(2) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(6)(b)(i); 2020 c. 1, Sch. 5 para. 1(1)
- F14 Words in Art. 6(2) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(6)(b)(ii); 2020 c. 1, Sch. 5 para. 1(1)
- F15 Words in Art. 6(3) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(6)(c); 2020 c. 1, Sch. 5 para. 1(1)
- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)

Article 7

Identification

1 The manufacturer shall provide [^{F16}UK fertilisers] with the identification markings listed in Article 9.

2 If the fertilisers are packed, these identification markings shall appear on the packages or labels attached. If the fertilisers are in bulk, these markings shall appear on the accompanying documents.

Textual Amendments

F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)

Article 8

Traceability

Without prejudice to Article 26(3), the manufacturer shall, to ensure traceability of $[^{F16}UK$ fertilisers], maintain records of the origin of the fertilisers. These records shall be available for inspection by $[^{F17}$ the enforcement authority] for as long as the fertiliser is being supplied to the market, and for a further period of 2 years after the manufacturer stopped supplying it.

Textual Amendments

- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
- F17 Words in Art. 8 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(7); 2020 c. 1, Sch. 5 para. 1(1)

Article 9

Markings

1 ^{F18}... The packages, labels and accompanying documents, referred to in Article 7 shall bear the following markings:

- a Compulsory identification
 - The words '[^{F1}UK FERTILISER]' in capital letters;
 - Where it exists, the designation of the type of fertiliser as set out in Annex 1;
 - For blended fertilisers, the marking 'blend' after the designation of the type;
 - The additional markings specified in Article 19, 21 or 23;
 - Nutrients shall be indicated both in words and by the appropriate chemical symbols, e.g. nitrogen (N), phosphorus (P), phosphorus pentoxide (P₂O₅), potassium (K), potassium oxide (K₂O), calcium (Ca), calcium oxide (CaO), magnesium (Mg), magnesium oxide (MgO), sodium (Na), sodium oxide (Na₂O), sulphur (S), sulphur trioxide (SO₃), boron (B), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), zinc (Zn);
 - If the fertiliser contains micro-nutrients of which all or part are chemically linked with an organic molecule, the name of the micro-nutrient shall be followed by one of the following qualifiers:
 - (i) 'chelated by ...' (name of chelating agent or its abbreviation as set out in section E.3.1 of Annex I);
 - (ii) 'complexed by ...' (name of complexing agent as set out in section E.3.2 of Annex I);
 - Micro-nutrients contained in the fertiliser, listed in the alphabetical order of their chemical symbols: B, Co, Cu, Fe, Mn, Mo, Zn;
 - For products listed in sections E.1 and E.2 of Annex I, the specific directions for use;
 - Quantities of fluid fertilisers, expressed by mass. The expression of quantities of fluid fertilisers by volume or in terms of mass versus volume (kilograms per hectolitre or grams per litre) shall be optional;
 - Net or gross mass and, optionally, volume for fluid fertilisers. If the gross
 mass is given, the tare mass must be indicated beside it;
 - The name or trade name and the address of the manufacturer.
- b Optional identification
 - As listed in Annex I;
 - The directions for the storage and handling, and for fertilisers not listed in Annex I, sections E.1 and E.2, the specific directions for the use of the fertiliser;

- Indications of the dose rates and conditions of use suitable for the soil and crop conditions under which the fertiliser is used;
- The mark of the manufacturer and the trade description of the product.

The indications referred to in (b) must not conflict with those referred to in (a) and must be clearly separated from them.

2 All the markings referred to in paragraph 1 must be clearly separated from any other information on the packages, labels and accompanying documents.

3 Fluid fertilisers may be placed on the market only if the manufacturer provides suitable additional instructions covering, in particular, storage temperature and prevention of accidents during storage.

[^{F19}4 The Secretary of State may make regulations in relation to the application of this Article.]

Textual Amendments

- F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)
- F18 Words in Art. 9(1) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(8)(a); 2020 c. 1, Sch. 5 para. 1(1)
- **F19** Art. 9(4) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(8)(b)**; 2020 c. 1, Sch. 5 para. 1(1)

Article 10

Labelling

1 The labels or markings printed on the package and giving the particulars mentioned under Article 9 must be placed in a conspicuous position. Labels must be attached to the package or to whatever system is used for closing it. If this system consists of a seal, that seal must bear the name or mark of the packager.

2 The markings referred to in paragraph 1 must be and must remain indelible and clearly legible.

3 In the cases of fertilisers in bulk referred to in the second sentence of Article 7(2) a copy of the documents containing the identification markings must accompany the goods and be accessible for inspection purposes.

Article 11

Languages

The label, the markings on the package and the accompanying documents must appear in [^{F20}English and may also appear in other languages].

Textual Amendments

F20 Words in Art. 11 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(9); 2020 c. 1, Sch. 5 para. 1(1)

Article 12

Packaging

In the case of packaged [^{F16}UK fertilisers], the package must be closed in such a way or by such a device that, when it is opened, the fastening, fastening seal or the package itself is irreparably damaged. Valve sacks may be used.

Textual Amendments

F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)

Article 13

Tolerances

1 The nutrient content of [^{F16}UK fertilisers] shall comply with the tolerances established in Annex II, which are intended to allow for deviations in manufacture, sampling and analysis.

2 The manufacturer shall not take systematic advantage of the tolerances given in Annex II.

3 No tolerances are allowed in respect of the minimum and maximum contents specified in Annex I.

Textual Amendments

```
F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
```

Article 14

Fertiliser requirements

A type of fertiliser may only be included in Annex I if:

- (a) it provides nutrients in an effective manner;
- (b) relevant sampling, analysis, and if required, test methods are being provided;
- (c) under normal conditions of use it does not adversely affect human, animal, or plant health, or the environment.

Article 15

Safeguard clause

1 Where [^{F21}the appropriate authority] has justifiable grounds for believing that a specific [^{F1}UK fertiliser], although satisfying the requirements of this Regulation, constitutes a risk to safety or health of humans, animals or plants or a risk to the environment, [^{F22}nothing in this Regulation prevents the appropriate authority from using any power the appropriate authority has to] temporarily prohibit the placing on the market of that fertiliser in its territory or make it subject to special conditions. [^{F23}Except in the case of a decision in respect of ammonium nitrate fertilisers of high nitrogen content where the decision is outside devolved competence, the appropriate authority shall immediately inform the other appropriate authorities, giving the reasons for the decision.]

[^{F24}2 The Secretary of State may, by regulations, in relation to a fertiliser which has been temporarily prohibited from the market under paragraph 1:

- a amend Annex 1 to impose special conditions in relation to the fertiliser, or
- b remove the fertiliser from Annex 1.

2A. Regulations under paragraph 2 must be made as soon as reasonably practicable—

- a after the date of receipt of the information referred to in paragraph 1, or
- b where there is no such information, after the date on which the temporary prohibition begins or special conditions are imposed, as the case may be.

2B. Except in the case of a decision in respect of ammonium nitrate fertilisers of high nitrogen content where the decision is outside devolved competence, if a decision is made not to make regulations under paragraph 2, the Secretary of State must immediately inform the other appropriate authorities. After the date of a decision not to make regulations under paragraph 2, the prohibition or special conditions imposed under paragraph 1 no longer have effect.]

3 The provisions of this Regulation shall not preclude the taking of measures by the $[^{F25}$ appropriate authority] which are justified on grounds of public security to prohibit, restrict or hinder the placing on the market of $[^{F16}$ UK fertilisers].

- F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)
- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
- F21 Words in Art. 15(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(10)(a)(i)(aa); 2020 c. 1, Sch. 5 para. 1(1)
- F22 Words in Art. 15(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(10)(a)(i)(bb); 2020 c. 1, Sch. 5 para. 1(1)
- F23 Words in Art. 15(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(10)(a)(ii); 2020 c. 1, Sch. 5 para. 1(1)

- F24 Art. 15(2)-(2B) substituted for Art. 15(2) (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(10)(b); 2020 c. 1, Sch. 5 para. 1(1)
- F25 Words in Art. 15(3) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(10)(c); 2020 c. 1, Sch. 5 para. 1(1)

TITLE II

PROVISIONS FOR SPECIFIC TYPES OF FERTILISERS

CHAPTER I

Inorganic primary nutrient fertilisers

Article 16

Scope

This chapter shall apply to inorganic primary nutrient fertilisers, solid or fluid, straight or compound, including those containing secondary nutrients and/or micro-nutrients, with the minimum nutrient content established in sections A, B, C, E.2.2 or E.2.3 of Annex I.

Article 17

Declaration of secondary nutrients in primary nutrient fertilisers

Calcium, magnesium, sodium and sulphur content may be declared as secondary nutrient content of [^{F16}UK fertilisers] belonging to the types of fertiliser listed in sections A, B and C of Annex I, provided that these elements are present in at least the following minimum quantities:

- (a) 2% calcium oxide (CaO), i.e. 1,4 % Ca;
- (b) 2 % of magnesium oxide (MgO), i.e. 1,2 % Mg;
- (c) 3% of sodium oxide (Na₂O), i.e. 2,2 % Na;
- (d) 5% of sulphur trioxide (SO₃), i.e. 2% S.

In such a case, the additional marking specified in Article 19(2)(ii) shall be added to the type designation.

Textual Amendments

F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)

Article 18

Calcium, magnesium, sodium and sulphur

1 The declaration of the magnesium, sodium and sulphur content of the fertilisers listed in sections A, B, and C of Annex I shall be expressed in one of the following ways:

- a the total content expressed as a percentage of the fertiliser by mass;
- b the total content and the content soluble in water, expressed as a percentage of the fertiliser by mass where the soluble content is at least a quarter of the total content;
- c where an element is totally soluble in water, only the content soluble in water shall be declared as a percentage of the mass.

2 Unless otherwise stated in Annex I, a declaration of the calcium content shall only be made if it is soluble in water and shall be expressed as a percentage of the fertiliser by mass.

Article 19

Identification

1 In addition to the compulsory identification markings referred to in Article 9(1)(a), the markings set out in paragraphs 2, 3, 4, 5 and 6 of this Article shall be stated.

2 The following shall be stated after the type designation of compound fertilisers:

- (i) The chemical symbols of the declared secondary nutrients, between brackets and after the symbols of the primary nutrients.
- (ii) Numbers indicating the primary nutrient content. The declared secondary nutrient content shall be indicated between brackets after the primary nutrient content.

3 The fertiliser type designation shall only be followed by figures indicating primary and secondary nutrient content.

4 Where micro-nutrients are declared, the words 'with micro-nutrients' or the word 'with' followed by the name or names and chemical symbols of the micro-nutrients present shall be given.

5 The declared content of primary nutrients and secondary nutrients shall be given as a percentage by mass, as whole numbers or, where necessary, where an appropriate method of analysis exists, to one decimal place.

In fertilisers containing more than one declared nutrient, the order shall be for primary nutrients: N, P₂O₅ and/or P, K₂O and/or K, and for secondary nutrients: CaO and/or Ca, MgO and/or Mg, Na₂O and/or Na, SO₃ and/or S.

The declared content of micro-nutrients shall give the name and symbol of each micronutrient, indicating the percentage by mass as specified in sections E.2.2 and E.2.3 of Annex I and according to solubility.

6 The forms and solubility of the nutrients shall also be expressed as a percentage by mass of fertiliser, except where Annex I explicitly provides that this content shall be otherwise expressed.

The number of decimal places shall be one, except for micro-nutrients where it shall be as specified in sections E.2.2 and E.2.3 of Annex I.

CHAPTER II

Inorganic secondary nutrient fertilisers

Article 20

Scope

This chapter shall apply to inorganic secondary nutrient fertilisers, solid or fluid, including those containing micro-nutrients, with the minimum nutrient content established in sections D, E.2.2, and E.2.3 of Annex I.

Article 21

Identification

1 In addition to the compulsory identification markings referred to in Article 9(1)(a), the markings set out in paragraphs 2, 3, 4 and 5 of this Article shall be stated.

2 Where micro-nutrients are declared, the words 'with micro-nutrients' or the word 'with', followed by the name or names and chemical symbols of the micro-nutrients present, shall be given.

3 The declared content of secondary nutrients shall be given as a percentage by mass, as whole numbers or, where necessary, where an appropriate method of analysis exists, to one decimal place.

Where more than one secondary nutrient is present, the order shall be:

CaO and/or Ca, MgO and/or Mg, Na₂O and/or Na, SO₃ and/or S.

The declared content of micro-nutrients shall give the name and symbol of each micronutrient, indicating the percentage by mass as specified in sections E.2.2 and E.2.3 of Annex I and according to solubility.

4 The forms and solubility of the nutrients shall also be expressed as a percentage by mass of fertiliser, except where Annex I explicitly provides that this content shall be otherwise expressed.

The number of decimal places shall be one, except for micro-nutrients where it shall be as specified in sections E.2.2 and E.2.3 of Annex I.

5 Unless otherwise stated in Annex I, a declaration of the calcium content shall only be made if it is soluble in water and shall be expressed as a percentage of the fertiliser by mass.

CHAPTER III

Inorganic micro-nutrient fertilisers

Article 22

Scope

This chapter shall apply to inorganic micro-nutrient fertilisers, solid or fluid, with the minimum nutrient content established in sections E.1 and E.2.1 of Annex I.

Article 23

Identification

1 In addition to the compulsory identification markings referred to in Article 9(1)(a) the markings set out in paragraphs 2, 3, 4 and 5 of this Article shall be stated.

2 Where the fertiliser contains more than one micro-nutrient, the type designation 'mixture of micro-nutrients' followed by the names of the micro-nutrients present and their chemical symbols, shall be given.

3 For fertilisers containing only one micro-nutrient (section E.1 of Annex I), the declared micro-nutrient content shall be given as a percentage by mass, in whole numbers or, where necessary, to one decimal place.

4 The forms and solubility of micro-nutrients shall be expressed as a percentage by mass of fertiliser, except where Annex I explicitly provides that this content shall be otherwise expressed.

The number of decimal places for micro-nutrients shall be as specified in section E.2.1 of Annex I.

5 Below the compulsory or optional declarations the following shall be entered on the label and accompanying documents with regard to the products appearing in sections E.1 and E.2.1 of Annex I:

To be used only where there is a recognised need. Do not exceed the appropriate dose rates.

Article 24

Packaging

[^{F16}UK fertilisers] covered by the provisions of this chapter shall be packaged.

```
Textual Amendments
F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
```

CHAPTER IV

Ammonium nitrate fertilisers of high nitrogen content

Article 25

Scope

For the purpose of this chapter, ammonium nitrate fertilisers of high nitrogen content, straight or compound, are ammonium nitrate based products manufactured for use as fertilisers and containing more than 28 % by mass of nitrogen in relation to ammonium nitrate.

This type of fertiliser may contain inorganic or inert substances.

The substances used in the manufacturing of this type of fertiliser must not increase its sensitivity to heat or its tendency to detonate.

Article 26

Safety measures and controls

1 The manufacturer shall ensure that straight ammonium nitrate fertilisers of high nitrogen content comply with the provisions of section 1 of Annex III.

2 The checking, analysis and testing for official controls of straight ammonium nitrate fertilisers of high nitrogen content provided for by this chapter shall be carried out in accordance with the methods described in section 3 of Annex III.

3 To ensure the traceability of ammonium nitrate $[^{F16}UK$ fertilisers] of high nitrogen content placed on the market, the manufacturer shall maintain records of the names and addresses of the sites, and of the operators of the sites, at which the fertiliser and its principal components were produced. These records shall be available for inspection by $[^{F26}$ the enforcement authority] for as long as the fertiliser is being supplied to the market, and for a further period of 2 years after the manufacturer stopped supplying it.

Textual Amendments

- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
- F26 Words in Art. 26(3) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(11); 2020 c. 1, Sch. 5 para. 1(1)

Article 27

Test of resistance to detonation

Without prejudice to the measures referred to in Article 26, the manufacturer shall ensure that each type of $[^{F27}UK]$ high nitrogen content ammonium nitrate fertiliser placed on the market has passed the test of resistance to detonation described in sections

2, 3 (method 1, point 3) and 4 of Annex III of this Regulation. This test shall be carried out by one of the approved laboratories referred to in Article $30(1)^{F28}$ Manufacturers shall submit the results of the test to the [^{F29}appropriate authority] at least 5 days before placing the fertiliser on the market, or at least 5 days before the arrival of the fertiliser at the borders of the [^{F30}United Kingdom] in the case of imports. Thereafter, the manufacturer shall continue to guarantee that all supplies of the fertiliser placed on the market are capable of passing the abovementioned test.

Textual Amendments

- F27 Word in Art. 27 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(12)(a); 2020 c. 1, Sch. 5 para. 1(1)
- **F28** Words in Art. 27 omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(12)(b)**; 2020 c. 1, Sch. 5 para. 1(1)
- F29 Words in Art. 27 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(12)(c)(i); 2020 c. 1, Sch. 5 para. 1(1)
- **F30** Words in Art. 27 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(12)(c)(ii)**; 2020 c. 1, Sch. 5 para. 1(1)

Article 28

Packaging

Ammonium nitrate fertilisers of high nitrogen content shall be made available to the final user only in packaged form.

TITLE III

CONFORMITY ASSESSMENT OF FERTILISERS

Article 29

Control measures

1 [^{F31}Nothing in this Regulation prevents the appropriate authority from using any power the appropriate authority has to] subject fertilisers marked '[^{F1}UK fertiliser]' to official control measures for the purpose of verifying that they comply with this Regulation.

[^{F32}Nothing in this Regulation prevents the appropriate authority from using any power the appropriate authority has to] charge fees not exceeding the cost of tests needed for such control measures, but this shall not oblige manufacturers to repeat tests or to pay for repeated tests where the first test was made by a laboratory which fulfilled the conditions of Article 30 and where the test showed compliance of the fertiliser in question.

2 [^{F33}The enforcement authority] shall ensure that sampling and analysis for official controls of [^{F16}UK fertilisers] belonging to types of fertilisers listed in Annex I are carried out in accordance with the methods described in Annex III and IV.

3 Compliance with this Regulation in respect of conformity to types of fertiliser and compliance with the declared nutrient content and/or the declared content expressed as forms and solubilities of such nutrients may be verified at official inspections only by means of sampling and analysis methods established in accordance with Annex III and IV and taking into account the tolerances specified in Annex II.

[^{F34}4 The [^{F35}Secretary of State may, by regulations,] adapt and modernise the measuring, sampling and analysis methods and shall, wherever possible, use [^{F36}recognised standards]. ^{F37}... The [^{F38}Secretary of State may, by regulations,] specify the control measures provided for in this Article and in Articles 8, 26 and 27. [^{F39}Regulations] shall in particular address the question of the frequency with which tests need to be repeated, as well as measures that are designed to ensure that the fertiliser put on the market is identical with the fertiliser tested.]

- F1 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)
- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
- **F31** Words in Art. 29(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(a)(i)**; 2020 c. 1, Sch. 5 para. 1(1)
- **F32** Words in Art. 29(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(a)(ii)**; 2020 c. 1, Sch. 5 para. 1(1)
- **F33** Words in Art. 29(2) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(b)**; 2020 c. 1, Sch. 5 para. 1(1)
- F34 Substituted by Regulation (EC) No 219/2009 of the European Parliament and of the Council of 11 March 2009 adapting a number of instruments subject to the procedure referred to in Article 251 of the Treaty to Council Decision 1999/468/EC with regard to the regulatory procedure with scrutiny Adaptation to the regulatory procedure with scrutiny — Part Two.
- **F35** Words in Art. 29(4) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(c)(i)**; 2020 c. 1, Sch. 5 para. 1(1)
- F36 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(d); 2020 c. 1, Sch. 5 para. 1(1)
- **F37** Words in Art. 29(4) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(c)(ii)**; 2020 c. 1, Sch. 5 para. 1(1)
- **F38** Words in Art. 29(4) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(c)(iii)**; 2020 c. 1, Sch. 5 para. 1(1)
- **F39** Word in Art. 29(4) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(13)(c)(iv)**; 2020 c. 1, Sch. 5 para. 1(1)

Article 30

Laboratories

1 [^{F40}The Secretary of State must publish a list of approved laboratories] that are competent to provide the necessary services for checking compliance of [^{F16}UK fertilisers] with the requirements of this Regulation. Such laboratories must meet the standards mentioned in section B of Annex V. ^{F41}...

^{F42}2

Where [^{F43}the Secretary of State] has justifiable grounds for believing that an approved laboratory does not meet the standards referred to in paragraph 1, [^{F44}the Secretary of State must remove the name from the list referred to in that paragraph]. ^{F45}...

[^{F46}3A. The Secretary of State may only act under this Article with the consent of each person who is a relevant authority.]

^{F47}4 ^{F47}5

- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
- **F40** Words in Art. 30(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(14)(a)(i)**; 2020 c. 1, Sch. 5 para. 1(1)
- F41 Words in Art. 30(1) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(14)(a)(ii); 2020 c. 1, Sch. 5 para. 1(1)
- F42 Art. 30(2) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(14)(b); 2020 c. 1, Sch. 5 para. 1(1)
- **F43** Words in Art. 30(3) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(14)(aa)(c)(i); 2020 c. 1, Sch. 5 para. 1(1)
- F44 Words in Art. 30(3) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(14)(bb)(c)(i); 2020 c. 1, Sch. 5 para. 1(1)
- F45 Words in Art. 30(3) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(14)(c)(ii); 2020 c. 1, Sch. 5 para. 1(1)
- **F46** Art. 30(3A) inserted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(14)(d)**; 2020 c. 1, Sch. 5 para. 1(1)
- F47 Art. 30(4)(5) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(14)(e); 2020 c. 1, Sch. 5 para. 1(1)

TITLE IV

FINAL PROVISIONS

CHAPTER I

Adaptation of the Annexes

Article 31

New [^{F16}UK fertilisers][^{F48}and technical adaptations]

[^{F34}1 The [^{F49}Secretary of State may, by regulations,] adapt Annex I to include new types of fertilisers.]

2 A manufacturer or its representative which wishes to propose a new type of fertiliser for inclusion in Annex I and is required to compile a technical file for that purpose shall do so by taking into account [^{F50}any relevant guidance and the provisions of Regulation (EC) No 1907/2006].

[^{F34}3 The [^{F51}Secretary of State may, by regulations,] adapt the Annexes to take account of technical progress.]

^{F52}4

- F16 Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(b); 2020 c. 1, Sch. 5 para. 1(1)
- F34 Substituted by Regulation (EC) No 219/2009 of the European Parliament and of the Council of 11 March 2009 adapting a number of instruments subject to the procedure referred to in Article 251 of the Treaty to Council Decision 1999/468/EC with regard to the regulatory procedure with scrutiny Adaptation to the regulatory procedure with scrutiny — Part Two.
- F48 Words in Art. 31 heading inserted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(15)(a); 2020 c. 1, Sch. 5 para. 1(1)
- F49 Words in Art. 31(1) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(15)(b); 2020 c. 1, Sch. 5 para. 1(1)
- **F50** Words in Art. 31(2) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(15)(c)**; 2020 c. 1, Sch. 5 para. 1(1)
- F51 Words in Art. 31(3) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(15)(d); 2020 c. 1, Sch. 5 para. 1(1)
- F52 Art. 31(4) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(15)(e); 2020 c. 1, Sch. 5 para. 1(1)

[^{F53}Article 32

Regulations

1 Regulations made under this Regulation are to be made by statutory instrument.

2 Any power to make regulations conferred by this Regulation is the power to make regulations in relation to Great Britain.

3 Except in relation to regulations in respect of ammonium nitrate fertilisers of high nitrogen content where the regulations are outside devolved competence, the Secretary of State may not make regulations under this Regulation without the consent of each person who is a relevant authority.

4. Except in relation to regulations in respect of ammonium nitrate fertilisers of high nitrogen content where the regulations are outside devolved competence, where any of the relevant authorities requests that the Secretary of State make regulations under this Regulation, the Secretary of State must have regard to that request.

5. A statutory instrument containing regulations made under this Regulation is subject to annulment in pursuance of a resolution of either House of Parliament.

- 6. Such regulations may
 - a contain consequential, incidental, supplementary, transitional or saving provision (including provision amending, repealing or revoking enactments (which has the meaning given by section 20(1) of the European Union (Withdrawal) Act 2018));
 - b make different provision for different purposes.]

Textual Amendments

F53 Art. 32 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(16) (as amended (27.2.2021) by S.I. 2021/207, regs. 1(1), 2(2)(c)); 2020 c. 1, Sch. 5 para. 1(1)

F54CHAPTER II

Transitional provisions

Article 33

Competent laboratories

Article 34

Packaging and labelling

Textual Amendments

F54 Title 4 Ch. 2 omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(17)**; 2020 c. 1, Sch. 5 para. 1(1)

CHAPTER III

Final provisions

Article 35

Repealed Directives

^{F56}1

2 References to [^{F57}Directives 76/116/EEC, 77/535/EEC, 80/876/EEC and 87/94/EEC] shall be construed as references to this Regulation. ^{F58}...

Textual Amendments

- F56 Art. 35(1) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(18)(a); 2020 c. 1, Sch. 5 para. 1(1)
- **F57** Words in Art. 35(2) substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(18)(b)(i)**; 2020 c. 1, Sch. 5 para. 1(1)
- F58 Words in Art. 35(2) omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(18)(b)(ii); 2020 c. 1, Sch. 5 para. 1(1)

F59 Article 36

Penalties

Textual Amendments

F59 Arts. 36-38 omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(19); 2020 c. 1, Sch. 5 para. 1(1)

F59Article 37

National provisions

Textual Amendments

F59 Arts. 36-38 omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(19); 2020 c. 1, Sch. 5 para. 1(1)

F59Article 38

Entry into force

Textual Amendments F59 Arts. 36-38 omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(19); 2020 c. 1, Sch. 5 para. 1(1)

F60

1(1)

Textual Amendments F60 Words in Signature omitted (31.12.2020) by virtue of The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(20); 2020 c. 1, Sch. 5 para.

TABLE OF CONTENTS

ANNEX I

LIST OF TYPES OF [^{F16}UK FERTILISERS]

A. Inorganic straight primary nutrient fertilisers

A.1. Nitrogenous fertilisers

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
1(a)	Calcium nitrate (nitrate of lime)	Chemically obtained product containing calcium nitrate as its essential ingredient and possibly ammonium nitrate	15 % N Nitrogen expressed as total nitrogen or as nitric and ammoniacal nitrogen. Maximum content of ammoniacal nitrogen: 1,5 % N		Total nitrogen Additional optional particulars: Nitric nitrogen Ammoniaca nitrogen
1(b) a F61	Calcium magnesium nitrate (nitrate of lime and magnesium)	Chemically obtained product containing calcium nitrate and magnesium nitrate as essential ingredients	13 % N Nitrogen expressed as nitric nitrogen. Minimum content of magnesium in the form of water- soluble salts expressed as magnesium		Nitric nitrogen Water-soluble magnesium oxide

			oxide: 5 % MgO		
1(c)	Magnesium nitrate	Chemically obtained product containing as its essential ingredient hexahydrated magnesium nitrate	10 % N Nitrogen expressed as nitric nitrogen 14 % MgO Magnesium expressed as water-soluble magnesium oxide	When marketed in the form of crystals as note 'in crystallised form' may be added	Nitric nitrogen Water-soluble magnesium oxide
2(a)	Sodium nitrate (nitrate of soda)	Chemically obtained product containing sodium nitrate as its essential ingredient	15 % N Nitrogen expressed as nitric nitrogen		Nitric nitrogen
2(b)	Chile nitrate	Product prepared from caliche, containing sodium nitrate as its essential ingredient	15 % N Nitrogen expressed as nitric nitrogen		Nitric nitrogen
3(a)	Calcium cyanamide	Chemically obtained product containing calcium cyanamide as its essential ingredient, calcium oxide and possibly small quantities of ammonium salts and urea	18 % N Nitrogen expressed as total nitrogen, at least 75 % of the nitrogen declared being bound in the form of cyanamide		Total nitrogen
3(b)	Nitrogenous calcium cyanamide	Chemically obtained product containing calcium cyanamide as	18 % N Nitrogen expressed as total nitrogen, at least 75 % of the non-		Total nitrogen Nitric nitrogen

		its essential ingredient, and calcium oxide and possibly small quantities of ammonium salts and urea, plus added nitrate	nitric nitrogen declared being bound in the form of cyanamide. Nitric nitrogen content: — minin 1 % N — maxin 3 % N		
[^{F62} 4	Sulphate of ammonia	Chemically obtained product containing ammonium sulphate as its essential ingredient, possibly with up to 15 % calcium nitrate (nitrate of lime).	19,7 % N Nitrogen expressed as total nitrogen. Maximum content of nitric nitrogen 2,2 % N if calcium nitrate (nitrate of lime) is added.	When marketed in the form of a combination of ammonium sulphate and calcium nitrate (nitrate of lime), the designation must include ' with up to 15 % calcium nitrate (nitrate of lime) '.	Ammoniacal nitrogen. Total nitrogen if calcium nitrate (nitrate of lime) is added]
5	Ammonium nitrate or calcium ammonium nitrate	Chemically obtained product containing ammonium nitrate as its essential ingredient, which may contain fillers such as ground limestone, calcium sulphate, ground dolomite, magnesium sulphate, kieserite	20 % N Nitrogen expressed as nitric nitrogen and ammoniacal nitrogen, each of these two forms of nitrogen accounting for about half the nitrogen present. See Annexes III.1 and III.2 of this regulation, if required.	The designation 'calcium ammonium nitrate' is exclusively reserved for a fertiliser containing only calcium carbonate (for instance limestone) and/or magnesium carbonate and calcium carbonate (for instance dolomite) in addition to	Total nitrogen Nitric nitrogen Ammoniacal nitrogen

			ammonium nitrate. The minimum content of these carbonates must be 20 % and their purity level at least 90 %	
Ammonium sulphate- nitrate	Chemically obtained product containing as essential ingredients ammonium nitrate and ammonium sulphate	25 % N Nitrogen expressed as ammoniacal and nitric nitrogen. Minimum nitric nitrogen content: 5 %		Total nitrogen Ammoniacal nitrogen Nitric nitrogen
Magnesium sulphonitrate	Chemically obtained product containing ammonium nitrate, ammonium sulphate and magnesium sulphate as	19 % N Nitrogen expressed as ammoniacal and nitric nitrogen. Minimum nitric nitrogen content: 6 % N		Total nitrogen Ammoniacal nitrogen
	essential ingredients	5 % MgO Magnesium in the form of water- soluble salts expressed as magnesium oxide		Nitric nitrogen Water-soluble magnesium oxide
Magnesium ammonium nitrate	Chemically obtained product containing ammonium nitrates and magnesium compound salts (dolomite magnesium	19 % N Nitrogen expressed as ammoniacal nitrogen and nitric nitrogen. Minimum nitric nitrogen content 6 % N		Total nitrogen Ammoniacal nitrogen Nitric nitrogen
	sulphate- nitrate Magnesium sulphonitrate Magnesium ammonium	sulphate- nitrateobtained product containing as essential ingredients ammonium nitrate and ammonium sulphateMagnesium sulphonitrateChemically obtained product containing ammonium nitrate, ammonium sulphate and magnesium sulphate as essential ingredientsMagnesium nitrateChemically obtained product containing ammonium nitrate, ammonium sulphate and magnesium sulphate as essential ingredientsMagnesium ammonium nitrateChemically obtained product containing ammonium nitrates and magnesium compound salts (dolomite	sulphate- nitrateobtained product containing as essential ingredients ammonium nitrate and ammonium sulphateNitrogen expressed as ammoniacal and nitric nitrogen. Minimum nitrate and ammonium sulphateMagnesium sulphonitrateChemically obtained product containing ammonium nitrate, ammonium sulphate and magnesium sulphate as essential ingredients19 % N Nitrogen expressed as ammoniacal and nitric nitrogen. Minimum nitrate, ammonium sulphate and magnesium sulphate as essential ingredients19 % N Nitrogen expressed as ammoniacal and nitric nitrogen. Minimum nitric nitrogen. Minimum nitric nitrogen content: 6 % NMagnesium ammonium nitrateChemically obtained product content: 6 %Magnesium ammonium nitrateChemically obtained product containing ammonium nitrates and magnesium compound salts (dolomite19 % N Nitrogen expressed as ammoniacal and nitric nitrogen ammoniacal nitrogen and nitric nitrogen	Magnesium nitrateChemically product containing as essential ingredients ammonium sulphate25 % N Nitrogen expressed as ammoniacal and nitric nitrogen.Magnesium sulphanitrateChemically product containing as essential ingredients ammonium sulphate25 % N Nitrogen expressed as ammoniacal and nitric nitrogen.Magnesium sulphanitrateChemically obtained product containing ammonium nitrate and ammonium sulphate19 % N Nitrogen expressed as ammoniacal and nitric nitrogen.Magnesium sulphateChemically obtained product containing ammonium nitrate, ammonium sulphate as essential ingredients19 % N Nitrogen expressed as ammoniacal and nitric nitrogen.Magnesium ammonium nitrateChemically obtained product content: 6 % N5 % MgO Magnesium in the form of water- soluble salts expressed as magnesium oxideMagnesium ammonium nitrateChemically obtained product containing ammonium nitrates and magnesium salts (dolomite19 % N Nitrogen ammoniacal and nitric nitrogen ammoniacal ammonia

		carbonate and/or magnesium sulphate) as essential ingredients	5 % MgO Magnesium expressed as total magnesium oxide	Total magnesium oxide and possibly, water-soluble magnesium oxide
9	Urea	Chemically obtained product containing carbonyl diamide (carbamide) as its essential ingredient	44 % N Total ureic nitrogen (including biuret). Maximum biuret content: 1,2 %	Total nitrogen, expressed as ureic nitrogen
10	Crotonylidene diurea	Product obtained by reaction of urea with crotonaldehyde Monomeric compound	28 % N Nitrogen expressed as total nitrogen At least 25 % N from the crotonylidene diurea Maximum ureic nitrogen content: 3 %	Total nitrogen Ureic nitrogen where this is at least 1 % by weight Nitrogen from crotonylidene diurea
11	Isobutylidene diurea	Product obtained by reaction of urea with isobutyraldehy Monomeric compound Monomeric compound	28 % N Nitrogen expressed as total nitrogen dAt least 25 % N from isobutylidene diurea Maximum ureic nitrogen content: 3 %	Total nitrogen Ureic nitrogen where this is at least 1 % by weight Nitrogen from isobutylidene diurea
12	Urea formaldehyde	Product obtained by reaction of urea with formaldehyde and containing as its essential ingredients molecules	36 % N total nitrogen Nitrogen expressed as total nitrogen At least 3/5 of the declared total nitrogen content must	Total nitrogen Ureic nitrogen where this is at least 1 % by weight Nitrogen from formaldehyde urea that is

Regulation (EC) No 2003/2003 of the European Parliament and of the Council of... Document Generated: 2024-04-09

		of urea formaldehyde Polymeric compound	be soluble in hot water At least 31 % N from urea formaldehyde Maximum ureic nitrogen content: 5 %	soluble in cold water Nitrogen from formaldehyde urea that is only soluble in hot water
13	Nitrogenous fertiliser containing crotonylidene diurea	Product obtained chemically containing crotonylidene diurea and a straight nitrogen fertiliser [List A-1, excluding products 3(a), 3(b) and 5]	18 % N expressed as total nitrogen At least 3 % nitrogen in ammoniacal and/or nitric and/or ureic form At least 1/3 of the declared total nitrogen content must be derived from crotonylidene diurea Maximum biuret content: (ureic N + crotonylidene diurea N) × 0,026	Total nitrogen For each form amounting to at least 1 %: — nitric — ammoniacal nitrogen — ureic nitrogen from crotonylidene diurea
14 a ^{F61}	Nitrogenous fertiliser containing isobutylidene diurea	Product obtained chemically containing isobutylidene diurea and a straight nitrogenous fertiliser [List A-1, excluding products 3(a), 3(b) and 5]	18 % N expressed as total nitrogen At least 3 % nitrogen in ammoniacal and/or nitric and/or ureic form A least 1/3 of the declared total nitrogen content must derive from isobutylidene diurea	Total nitrogen For each form amounting to at least 1 %: — nitric — ammoniaca nitrogen — ureic nitrogen from isobutylidene diurea

			Maximum biuret content: (Ureic N + isobutylidene diurea N) × 0,026	
15	Nitrogenous fertiliser containing urea formaldehyde	Product obtained chemically containing urea formaldehyde and a straight nitrogenous fertiliser [List A-1, excluding products 3(a), 3(b) and 5]	18 % N expressed as total nitrogen At least 3 % nitrogen in ammoniacal and/or nitric and/or ureic form At least 1/3 of the declared total nitrogen content must derive from urea formaldehyde The nitrogen from the urea formaldehyde must contain at least 3/5 nitrogen that is soluble in hot water Maximum biuret content: (Ureic N + urea formaldehyde) \times 0,026	Total nitrogen For each form amounting to at least 1 %: — nitric — ammoniacal nitrogen — ureic nitrogen from urea formaldehyde Nitrogen from urea formaldehyde that is soluble in cold water Nitrogen from urea formaldehyde that is soluble in cold water Nitrogen from urea formaldehyde that is only soluble in hot water

F61

F61

[^{F62} 16]	Urea-	Product	30 % N	Total nitrogen
1 1	ammonium	obtained	Nitrogen	Ammoniacal
	sulphate	chemically	expressed as	nitrogen
		from urea and	ammoniacal	Ureic
		ammonium	and ureic	nitrogen
		sulphate	nitrogen	Water-soluble
		-	Minimum	sulphur
			ammoniacal	trioxide

	nitrogen content: 4 % Minimum sulphur content expressed as sulphur trioxide: 12 % Maximum biuret content: 0,9 %
--	---

a

F61

Textual Amendments

- F61 Deleted by Commission Regulation (EC) No 1107/2008 of 7 November 2008 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).
- **F62** Substituted by Commission Regulation (EC) No 1107/2008 of 7 November 2008 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).

A.2. Phosphatic fertilisers

Where a particle size criterion is prescribed for the basic constituent materials of fertilisers sold in granular form (fertilisers 1, 3, 4, 5, 6 and 7), it will be established by an appropriate analytical method.

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOthe requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
1	phosp	Product national in hatenssmelting hasy treatment of the phosphorus melts and containing calcium	12 % P ₂ O ₅ Phosphorus expressed as phosphorus pentoxide soluble in mineral acids, at least 75 % of the		Total phosphorus pentoxide (soluble in mineral acids) 75 % of which (to be indicated as % by weight)

ailiaankaankat	alaolarad		is soluble in
silicophosphate	content of		
as its			2 % citric
essential	phosphorus		acid (for
ingredients	pentoxide		marketing
	being soluble		in France,
	in 2 % citric		Italy, Spain,
	acid		Portugal ^{[F63} ,]
	or P_2O_5		Greece ^{[F64} ,
	Phosphorus		Czech
	expressed as		Republic,
	phosphorus		Estonia,
	pentoxide		Cyprus,
	soluble in		Latvia,
	2 % citric		Lithuania,
	acid		Hungary,
	Particle size:		Malta,
	— at		Poland,
	least		Slovenia ^{[F65} ,]
	75 %		Slovakia[^{F66} ,]][^{F66} Bulgaria
	able		and
	to		Romania])
	pass		Total
	throu	gh	phosphorus
	a _.		pentoxide
	sieve		(soluble
	with		in mineral
	a		acids) and
	mesh		phosphorus
	of		pentoxide
	0,160	mm	soluble in
	— at		2 % citric
	least		acid (for
	96 %		marketing in
	able		the United
	to		Kingdom)
	pass	ah	Phosphorus
	throu	gii	pentoxide
	a sieve		soluble in
	with		2 % citric
	a		acid (for
	mesh		marketing
	of		in Germany,
	0,630	mm	Belgium,
	0,050	111111	Denmark,
			Ireland,
			Luxembourg,
			the
			Netherlands
			[^{F67} Iceland,
			Liechtenstein,
			Norway] and
			Austria)
l			<u>L</u>

2(a)	Single superphosphate	Product obtained	16 % P ₂ O ₅ Phosphorus	Phosphorus pentoxide
	f f f f f f f f f f f	by reaction of ground mineral phosphate with sulphuric acid and containing monocalcium phosphate as an essential ingredient as well as calcium sulphate	expressed as P_2O_5 soluble in neutral ammonium citrate, at least 93 % of the declared content of P_2O_5 being water-soluble Test sample: 1 g	soluble in neutral ammonium citrate Water-soluble phosphorus pentoxide
2(b)	Concentrated superphosphate	Product	25 % P_2O_5 Phosphorus expressed as P_2O_5 soluble in neutral ammonium citrate, at least 93 % of the declared content of P_2O_5 being water-soluble Test sample: 1 g	Phosphorus pentoxide soluble in neutral ammonium citrate Water-soluble phosphorus pentoxide
[^{F68} 2(c)	Triple superphosphate	Product obtained by reaction of ground mineral phosphate with phosphoric acid and containing monocalcium phosphate as its essential ingredient	38 % P ₂ O ₅ Phosphorus expressed as P ₂ O $_5$ soluble in neutral ammonium citrate, at least 85 % of the declared content of P $_2O_5$ being water-soluble Test sample: 3 g	Phosphorus pentoxide soluble in neutral ammonium citrate Water-soluble phosphorus pentoxide]

3	Partially solubilised rock phosphate	Product obtained by partial solubilisation of ground rock phosphate with sulphuric acid or phosphoric acid and containing as essential ingredients monocalcium phosphate, tricalcium phosphate	20 % P_2O_5 Phosphorus expressed as P_2O_5 soluble in mineral acids, at least 40 % of the declared content of P_2O_5 being water-soluble Particle size: — at least 90 % able to pass		Total phosphorus pentoxide (soluble in mineral acids) Phosphorus pentoxide soluble in water
		and calcium sulphate	pass throu a sieve with a mesh of 0,160 at least 98 % able to pass throu a sieve with a sieve 0,160 at least 98 % able to pass throu a sieve 0,160 a f 0,160 a f 0,160 a f 0,160 a f o f 0,160 a f o f 0,160 a f o f 0,160 a f o f o f 0,160 a f o f o f o f o f o f o f o f o f o f	9 mm	
[^{F69} 3(a)	Partially solubilised rock phosphate with magnesium	Product obtained by partial solubilisation of ground rock phosphate with sulphuric acid or phosphoric acid with the addition of	16 % P ₂ O ₅ 6 % MgO Phosphorus expressed as P ₂ O 5 soluble in mineral acids, at least 40 % of the declared content of P		Total phosphorus pentoxide (soluble in mineral acids) Phosphorus pentoxide soluble in water Total magnesium oxide

		magnesium sulphate or magnesium oxide, and containing as essential ingredients monocalcium phosphate, tricalcium sulphate and magnesium sulphate	2 O 5 being water-soluble Particle size: — at least 90 % able to pass throu, a sieve with a mesh of 0,160 — at least 98 % able to pass throu, a sieve with a mesh of 0,160 a sieve with a sieve with a mesh of 0,160 a sieve vithrou, a sieve with a sieve si si si si si si si si si si si si si	gh mm	Water-soluble magnesium oxide]
4	Dicalcium phosphate	Product obtained by precipitation of solubilised phosphoric acid from mineral phosphates or bones, and containing dicalcium phosphate dihydrate as its essential ingredient	$38 \% P_2O_5$ Phosphorus expressed as P_2O_5 soluble in alkaline ammonium citrate (Petermann) Particle size: 	gh	Phosphorus pentoxide soluble in alkaline ammonium citrate

			- of 0,160 at least 98 % able to pass throu a sieve with a mesh of 0,630	gh	
5	Calcined phosphate	Product obtained by heat treatment of ground rock phosphate with alkaline compounds and silicic acid, and containing alkaline calcium phosphate and calcium silicate as essential ingredients	$25 \% P_2O_5$ Phosphorus expressed as P_2O_5 soluble in alkaline ammonium citrate (Petermann) Particle size: — at least 75 % able to pass throu a sieve with a mesh of 0,160 — at least 96 % able to pass throu a sieve with a sieve with a sieve with a sieve with a sieve with a sieve	gh 9 mm	Phosphorus pentoxide soluble in alkaline ammonium citrate

			of 0,630 mn	n
6	Aluminium- calcium phosphate	Product obtained in amorphous form by heat treatment and grinding, containing aluminium and calcium phosphates as essential ingredients	$30 \% P_2O_5$ Phosphorus expressed as P_2O_5 soluble in mineral acids, at least 75 % of the declared content of P_2O_5 being soluble in alkaline ammonium citrate (Joulie) Particle size: — at least 90 % able to pass through a sieve with a mesh of 0,160 mm a sieve with a sieve with a sieve with a mesh of 0,160 mm a sieve with a sieve with a mesh of 0,160 mm a sieve with a sieve with a sieve with a sieve with a mesh of 0,160 mm a sieve with a mesh of 0,160 mm a sieve with a mesh of 0,160 mm a sieve with a mesh of 0,160 mm a sieve with a mesh of 0,160 mm a sieve with a mesh of 0,630 mm	
7	Soft ground rock phosphate	Product obtained by grinding soft mineral phosphates	$25 \% P_2O_5$ Phosphorus expressed as P_2O_5 soluble in mineral	Total phosphorus pentoxide (soluble in mineral acids)

containing 55 % tricalcium decla phosphate conta and calcium P ₂ O ₅ carbonate solut as essential 2 % ingredients acid	ent of 2 % formic acid ble in Percentage formic by weight
--	--

Textual Amendments

- F63 Substituted by Council Regulation (EC) No 885/2004 of 26 April 2004 adapting Regulation (EC) No 2003/2003 of the European Parliament and of the Council, Council Regulations (EC) No 1334/2000, (EC) No 2157/2001, (EC) No 152/2002, (EC) No 1499/2002, (EC) No 1500/2003 and (EC) No 1798/2003, Decisions No 1719/1999/EC, No 1720/1999/EC, No 253/2000/EC, No 508/2000/EC, No 1031/2000/EC, No 163/2001/EC, No 2235/2002/EC and No 291/2003/EC of the European Parliament and of the Council, and Council Decisions 1999/382/EC, 2000/821/EC, 2003/17/EC and 2003/893/EC in the fields of free movement of goods, company law, agriculture, taxation, education and training, culture and audiovisual policy and external relations, by reason of the accession of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovenia and Slovakia.
- F64 Inserted by Council Regulation (EC) No 885/2004 of 26 April 2004 adapting Regulation (EC) No 2003/2003 of the European Parliament and of the Council, Council Regulations (EC) No 1334/2000, (EC) No 2157/2001, (EC) No 152/2002, (EC) No 1499/2002, (EC) No 1500/2003 and (EC) No 1798/2003,

Decisions No 1719/1999/EC, No 1720/1999/EC, No 253/2000/EC, No 508/2000/EC, No 1031/2000/EC, No 163/2001/EC, No 2235/2002/EC and No 291/2003/EC of the European Parliament and of the Council, and Council Decisions 1999/382/EC, 2000/821/EC, 2003/17/EC and 2003/893/EC in the fields of free movement of goods, company law, agriculture, taxation, education and training, culture and audiovisual policy and external relations, by reason of the accession of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovenia and Slovakia.

- **F65** Substituted by Council Regulation (EC) No 1791/2006 of 20 November 2006 adapting certain Regulations and Decisions in the fields of free movement of goods, freedom of movement of persons, company law, competition policy, agriculture (including veterinary and phytosanitary legislation), transport policy, taxation, statistics, energy, environment, cooperation in the fields of justice and home affairs, customs union, external relations, common foreign and security policy and institutions, by reason of the accession of Bulgaria and Romania.
- **F66** Inserted by Council Regulation (EC) No 1791/2006 of 20 November 2006 adapting certain Regulations and Decisions in the fields of free movement of goods, freedom of movement of persons, company law, competition policy, agriculture (including veterinary and phytosanitary legislation), transport policy, taxation, statistics, energy, environment, cooperation in the fields of justice and home affairs, customs union, external relations, common foreign and security policy and institutions, by reason of the accession of Bulgaria and Romania.
- F67 Words in Annex 1 s. A.2 Table Item 1 inserted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(21)(a); 2020 c. 1, Sch. 5 para. 1(1)
- **F68** Substituted by Commission Regulation (EC) No 2076/2004 of 3 December 2004 adapting for the first time Annex I of Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers (EDDHSA and triple superphosphate) (Text with EEA relevance).
- F69 Inserted by Commission Regulation (EC) No 1020/2009 of 28 October 2009 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I, III, IV and V thereto to technical progress (Text with EEA relevance).

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
[^{F70} [^{F71} 1	Crude potassium salt	Product obtained from crude potassium salts	9 % $K_2 O$ Potassium expressed as water-soluble $K_2 O$ 2 % MgO Magnesium in the form of water-	Usual trade names may be added	Water-soluble potassium oxide Water-soluble magnesium oxide Total sodium oxide

A.3. Potassic fertilisers

			soluble salts, expressed as magnesium oxide		Chloride content must be declared]
2	Enriched crude potassium salt	Product obtained from crude potassium salts enriched by blending with potassium chloride	18 % K ₂ O Potassium expressed as water-soluble K ₂ O	Usual trade names may be added	Water-soluble potassium oxide Optional mention of the water- soluble magnesium oxide content where higher than 5 % MgO]
3	Muriate of potash	Product obtained from crude potassium salts and containing potassium chloride as its essential ingredient	37 % K ₂ O Potassium expressed as water-soluble K ₂ O	Usual trade names may be added	Water-soluble potassium oxide
4	Potassium chloride containing magnesium salts	Product obtained from crude potassium salts with added	37 % K ₂ O Potassium expressed as water-soluble K ₂ O 5 % MgO		Water-soluble potassium oxide Water-soluble magnesium oxide
		magnesium salts and containing potassium chloride and magnesium salts as essential ingredients	Magnesium in the form of water- soluble salts, expressed as magnesium oxide		
5	Sulphate of potash	Product obtained chemically from potassium salts and containing potassium sulphate as	47 % K ₂ O Potassium expressed as water-soluble K ₂ O Maximum chloride content: 3 % Cl		Water-soluble potassium oxide Optional mention of the chloride content

		its essential ingredient			
6	Sulphate of potash containing magnesium salt	Product obtained chemically from potassium salts, possibly with addition of magnesium salts, and containing potassium sulphate and magnesium sulphate as essential ingredients	22 % K ₂ O Potassium expressed as water-soluble K ₂ O 8 % MgO Magnesium in the form of water- soluble salts, expressed as magnesium oxide Maximum chloride content: 3 % Cl	Usual trade names may be added	Water-soluble potassium oxide Water-soluble magnesium oxide Optional mention of the chloride content
7	Kieserite with potassium sulphate	Product obtained from Kieserite with potassium sulphate added	8 % MgO Magnesium expressed as water-soluble MgO 6 % K ₂ O Potassium expressed as water-soluble K ₂ O Total MgO + K ₂ O: 20 % Maximum chloride content: 3 % Cl	Usual trade names may be added	Water-soluble magnesium oxide Water-soluble potassium oxide Optional mention of the chloride content

Textual Amendments

- F70 Substituted by Commission Regulation (EU) No 463/2013 of 17 May 2013 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I, II and IV thereto to technical progress (Text with EEA relevance).
- **F71** Substituted by Commission Regulation (EU) No 1257/2014 of 24 November 2014 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV (Text with EEA relevance).
- B. Inorganic compound primary nutrient fertilisers
- B.1. NPK fertilisers

B.1.1.	Type designation:	NPK fertilisers.
	Data on method of production:	Product obtained chemically or by blending, without addition of organic nutrients of animal or vegetable origin.
	Minimum content of nutrients (percentage by weight):	$\begin{array}{ccc} - & \text{Total: } 20 \% (\text{N} + \\ P_2\text{O}_5 + K_2\text{O}); \\ - & \text{For each of the} \\ & \text{nutrients: } 3 \% \text{N}, \\ & 5 \% P_2\text{O}_5, 5 \% K_2\text{O}. \end{array}$

Forms, solubilities and nutrient content to be declared as specified in columns 4, 5 and 6Particle size			Data for identification of the fertilisersOther requirements					
Ν	P ₂ O ₅	K ₂ O	N		P ₂ O ₅		K ₂ O	
1	2	3	4		5		6	
 (1) (2) (3) (4) (5) 	Total (1) nitrogen Nitric nitrogen Ureic nitrogen Cyanafa)de nitrogen (4)	Water solubleWaterWater soluble F_2O_5 Soluble p_2O_5 solubleinneutralammoniumcitrate P_2O_5 solubleinneutralammoniumcitrateandinneutralammoniumcitrateandandinmoniumcitrateandinmineralacidsacidsonly P_2O_5 solubleinalkalineammonium	 (1) (2) (3) 	Total nitrog If any of the forms of nitrog (2) to (5) amoun to at least 1 % by weigh it must be declar If above 28 %, see Anney III.2	en nts nt, red	alumi calcin phosp partia solub rock phosp and soft grour rock phosp must be decla in accor with	nds) ned phate, inium- um phate, illy ilised phate	Water- soluble potassium oxide The indication 'low in chloride' is linked to a maximum content of 2 % Cl Chloride content may be declared

1	•	I	1	1 1
	citrate		—	when
	(Petermann)			the
(6a)	DO			water-
(6a)	P_2O_5			soluble
	soluble			P_2O_5
	in			does
	mineral			not
	acids,			amount
	of			to
	which			2%
	at			solubility
	least			(2)
	75 %			
	of			only
	the			shall
	declared			be
	P_2O_5			declared;
	content		—	when
				the
	is			water-
	soluble			soluble
				P_2O_5
	2 %			is at
	citric			least
	acid			2 %,
(6b)	P_2O_5			solubility
(00)	-			(3)
	soluble			shall
	in			be
	2 %			declared,
	citric			and
	acid			the
(7)	P_2O_5			water-
$\left(\right)$	-			soluble
	soluble			P_2O_5
	in min anal			-
	mineral			content
	acids,			must
	of			be
	which			indicated
	at			[solubility
	least			(1)].
	75 %		The P ₂ O	5
	of		content	
	the		soluble i	
	declared		mineral a	
	P_2O_5		only mus	
	content		exceed 2	
	is		For this	type
	soluble		1, the tes	t
	in		sample f	
	alkaline		determin	
	ammonium		solubiliti	
I		I	1	I

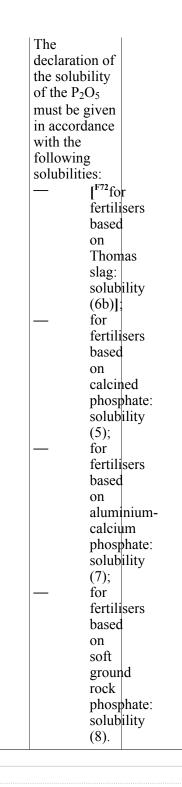
citrate (Joulie)	(2) and (3 shall be 1	
P_2O_5 soluble in mineral acids, of which at least 55% of the declared P_2O_5 content is soluble in 2 % formic acid	This type fertiliser r contain:	

		[solubility
		(4)];
		— at
		least
		5 %
		P ₂ O ₅
		soluble
		in
		water
		and
		neutral
		ammonium
		citrate
		[solubility
		(3)];
		— at
		least
		2,5 %
		water-
		soluble
		P ₂ O ₅
		[solubility
		(1)].
		This type of
		fertiliser must
		be marketed
		under the
		designation
		'NPK
		fertiliser
		containing
		soft ground
		rock
		phosphate'
		or 'NPK
		fertiliser
		containing
		partially
		solubilised
		rock
		phosphate'.
		For this type
		2(a), the test
		sample for
		determining
		solubility (3)
		shall be 3 g.
Particle size of the basic	c phosphatic	
ingredients	1 I	2 (b) An
-		NPK
	able to pass through	fertiliser
slag a sieve with	a mesh of 0,160 mm	containing
	I	

Aluminiumat least 90 % able to pass through calcium a sieve with a mesh of 0,160 mm phosphate Calcined : at least 75 % able to pass through

phosphate a sieve with a mesh of 0,160 mm Soft : at least 90 % able to pass through ground a sieve with a mesh of 0,063 mm

rock


phosphate

Partially : at least 90 % able to pass through solubilised a sieve with a mesh of 0,160 mm rock phosphate

aluminiumcalcium phosphate must be free from Thomas slag, calcined phosphate, soft ground rock phosphate and partially solubilised rock phosphate. It shall be declared in accordance with solubilities (1) and (7), the latter applying after deduction of the solubility in water. This type of fertiliser must contain: at least 2 % of watersoluble P_2O_5 [solubility (1)];at least 5 % of P_2O_5 according to solubility (7).

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

This type of fertiliser must be marketed under the designation 'NPK fertiliser containing aluminiumcalcium phosphate'. 3. In the case of NPK fertilisers containing only one of the following types of phosphatic fertiliser: Thomas slag, calcined phosphate, aluminiumcalcium phosphate, soft ground rock phosphate, the type designation must be followed by an indication of the phosphate ingredient.

Textual Amendments

F72 Words in Annex 1 s. B.1 Table substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(21)(b); 2020 c. 1, Sch. 5 para. 1(1)

Type designation:	NPK fertiliser containing crotonylidene diurea or isobutylidene diurea or urea formaldehyde (as appropriate).
Data on method of production:	Product obtained chemically without addition of organic nutrients of animal or vegetable origin and containing crotonylidene diurea or isobutylidene diurea or urea formaldehyde.
Minimum content of nutrients (percentage by weight):	$\begin{array}{cccc} - & \mbox{Total: } 20 \% (N + \\ P_2O_5 + K_2O); \\ - & \mbox{For each of the} \\ & \mbox{nutrients:} \\ - & 5 \% N. \\ & \mbox{At least} \\ & \begin{subarray}{lll} \label{eq:action} $

Forms, solubilities and nutrient content to be declared as specified in columns 4, 5 and 6Particle size		Data for identification of the fertilisersOther requirements							
Ν		P ₂ O ₅		K ₂ O	N		P ₂ O ₅	K ₂ O	
1		2		3	4		5	6	
(1)	Total nitrog		Water solub P ₂ O ₅	Water-soluble ${\rm K_2O}$ le	(1)	Total nitrog	An NPK fertiliser free ffom Thomas slag, calcined	(1)	Water- soluble

B.1.2.

I	1	1		nhosphat	e		potassium
Nitric (2) nitrogen	P ₂ O ₅ soluble	(2)	If any	aluminiu			oxide
Ammoniacal nitrogen	in neutral ammonium		the forms	phosphat partially		(2)	The indication 'low
Ureic nitrogen	citrate P ₂ O ₅		nitrog	rock phosphat	te		in chloride' is
Nitrogen from crotonylidene diurea	soluble in neutral ammonium		to (4) amou to at	phosphat must be ntsclared	te in		linked to a maximum content
Nitrogen from isobutylidene diurea	and in water		1 % by weigh	solubiliti (1) , (2) o	r (3): when	(3)	of 2 % Cl Chloride
Nitrogen from urea formaldehyde		(2)	must be decla	red	water solub P ₂ O ₅		content may be declared
Nitrogen from urea formaldehyde that is only soluble in hot water		(3)	of the forms of nitros (5) to (7) (as appro Nitro	gen priate).	not amou 2 %, solub (2) only shall be	ility red,	
Nitrogen from urea formaldehyde that is soluble in cold water			(7) must be decla in the form of		solub P_2O_5 is at least 2 %, solub (3) shall be decla and the water solub P_2O_5 conte must	le ility red, - le	
	nitrogen Ammoniacal nitrogen Ureic nitrogen from crotonylidene diurea Nitrogen from isobutylidene diurea Nitrogen from urea formaldehyde Nitrogen from urea formaldehyde that is only soluble in hot water Nitrogen from urea formaldehyde that is soluble in form aldehyde that is soluble in form aldehyde	nitrogen soluble in neutral ammonium Ureic citrate nitrogen soluble from in crotonylidene neutral diurea and from in isobutylidene water diurea Nitrogen and from in isobutylidene water diurea Nitrogen from urea formaldehyde that is only soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water	nitrogen soluble Ammoniacal nitrogen citrate nitrogen soluble from citrate nitrogen soluble from in crotonylidene neutral ammonium citrate Nitrogen and from in isobutylidene water diurea Nitrogen from urea formaldehyde that is only soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in hot water Nitrogen from urea formaldehyde that is soluble in cold	nitrogensolubleany ofAmmoniacal nitrogenin neutral ammoniumof neutral ammoniumUreiccitrateof nitrog (2)Nitrogensolubleto of nitrog (2)Nitrogensolubleto of nitrog (2)Nitrogenand in(4) amonium citratediureaammonium citrateto at least leastNitrogenand in in isobutylidene diurea1% by waterNitrogen from urea formaldehyde(3)One of the declaNitrogen from urea formaldehyde(3)One of of the declaNitrogen from urea formaldehyde(7) in (as appro Nitro gen formaldehyde(3)Nitrogen from urea formaldehyde(7) in (as appro Nitro gen form in hot water(7) (as appro (7) from urea formaldehydeNitrogen formaldehyde(7) (as appro (7) from urea formaldehyde(3)Nitrogen form in in(7) (as appro (7) (as (7) (as (7) (as (7) (as (7) (as (7) (as (7) (as (7) (7) (as (7)	Nitric (2)P2O5(2)If aluminia any of phosphat partially solubile form in crotonylidene diureaP2O5(2)If aluminia any phosphat partially solubile form in (2)aluminia any phosphat phosphat (2)Nitrogen from urea formaldehydeP2O5(2)aluminia calcium phosphat and rock phosphat (2)Nitrogen from urea formaldehydeneutral ammonium citratealuminia aluminia phosphat (2)Nitrogen from urea formaldehydeneutral amonium citratealuminia phosphat and rock phosphat (2)Nitrogen from urea formaldehydeand citrate1% be declaredNitrogen from urea formaldehyde(3)One of the formNitrogen from urea formaldehyde(3)One of the formNitrogen from urea formaldehyde(3)One of the formNitrogen form(7) must be(3)Nitrogen form(7) must beNitrogen form(7) must beNitrogen form(7) must beNitrogen form in in cold(8) and	nitrogen soluble in neutral ammonium Ureic citrate nitrogen soluble from in soluble from in citrate Nitrogen and citrate Nitrogen and citrate Nitrogen and from in solubilities from in in solubile from in in solubile from in in solubilities from in solubile from in in solubilities from and citrate Nitrogen and from in solubilities from in solubile from in solubilities from diurea Nitrogen formaldehyde that is solubile in hot hot water Nitrogen from urea formaldehyde hot water Nitrogen from in solubile in form solubile in contant solubile	NitrogenIt manoniacal in eutral ammoniacal nitrogenIt in meutral ammoniam citrateIt any caticium partially solubilised form in crotonylidene in citrateIt any caticium partially solubilised iorock mitrogen must be and rock to phosphate must be and rock to phosphate (1) (2) or (3): (3)(2)Nitrogen from urea in hot water from urea in hot(3)One does of not the that is (5)(3)One does of not the the (3)One does of not the (3)(3)One declared in hot(3)One does of in (7)shall in in in (3) in i

		indica [solul (1)]. The P_2O_5 content soluble in mineral acids only must not exceed 2 %. The test sample for determining solubilities (2) and (3)	
		shall be 1 g.	

B.2. NP fertilisers

B.2.1.	Type designation:	NP fertilisers.	
	Data on method of production:	Product obtained chemically or by blending without addition of organic nutrients of animal or vegetable origin.	
	Minimum content of nutrients (percentage by weight):	$\begin{array}{ccc} & & \text{Total: 18 \% (N + } \\ P_2O_5); \\ - & & \text{For each of the} \\ & & \text{nutrients: 3 \% N,} \\ & & 5 \% P_2O_5. \end{array}$	

Forms, solubilities and nutrient content to be declared as specified in columns 4, 5 and 6Particle size			Data for identification of the fertilisersOther requirements			
Ν	P ₂ O ₅	K ₂ O	Ν		P_2O_5	K ₂ (
1	2	3	4		5	6
(1)(2)(3)	Total (1) nitrogen Nitric nitrog€2) Ammoniacal	Water- soluble P_2O_5 P_2O_5 soluble	(1) (2)	Total nitrog If any of the		An NP fertiliser free from Thomas
(4)	nitrogen Ureic nitrogen	in neutral ammonium citrate		forms of nitrog (2)		slag, calcined phosphate, aluminium
(5)	Cyana(A)de nitrogen	P ₂ O ₅ soluble in neutral		to (5) amou to at	nts	calcium phosphate, partially solubilised

	ammonium citrate and in water	least 1 % by weight, it must	rock phosphate and soft ground rock
(4)	P ₂ O ₅ soluble in mineral acids only	be declared	phosphate must be declared in accordance
(5)	P ₂ O ₅ soluble in alkaline ammonium citrate (Petermann)	_	with solubilities (1), (2) or (3): when the
(6a)	P_2O_5 soluble in mineral acids, of which at least 75 % of the declared P_2O_5 content is soluble in 2 % citric acid		water- soluble P_2O_5 does not amount to 2 %, solubility (2) only shall be declared; when the water- soluble P_2O_5 is at least 2 %,
(6b)	P ₂ O ₅ soluble in 2 % citric acid		solubility (3) shall be declared, and
(7)	P ₂ O ₅ soluble in		the water- soluble P_2O_5 content

1	minetal	1	must
	acids		be
	of		indicated
	which		[solubility
	at		(1)].
	least	The P ₂ O	
	75 %	content	5
	of	soluble i	n
	the	mineral	
	declared	only mu	
	P_2O_5	exceed 2	
	content	For this	
	is	1, the tes	
	soluble	sample f	
	in	determin	
	alkaline	solubilit	
	ammonium	(2) and $($	
	citrate	shall be	
	(Joulie)		- 8.
		2 (a)	A
(8)	P ₂ O ₅		NP
	soluble		fertiliser
	in		containing
	mineral		soft
	acids		ground
	of		rock
	which		phosphate
	at		or partially
	least 55 %		solubilised
	of		rock
	the		phosphate
	declared		must
	P_2O_5		be
	content		free
	is		from
	soluble		Thomas
	in		slag,
	2%		calcined
	formic		phosphate
	acid		and
			aluminium-
			calcium
		.	phosphate.
		It shall b	
		declared	
		accordar	nce
		with	
		solubilit	
		(1), (3) a	ma
		(4).	

This type of fertiliser must contain: at least 2 % P_2O_5 soluble in mineral acids only [solubility (4)]; at least 5 % $P_2O_5 \\$ soluble in water and neutral ammonium citrate [solubility (3]; at least 2,5 % water soluble P_2O_5 [solubility (1)].This type of fertiliser must be marketed under the designation 'NP fertiliser containing soft ground rock phosphate' or 'NP fertiliser containing partially solubilised rock phosphate'. For this type 2(a), the test

			sample for	
			determining	
			solubility (3)	
			shall be 3 g.	
			shan oe o g.	
	the basic phosp	ohatic	2 (h) A	
ingredients:			2 (b) A	
Thomas at l	east 75 % able t	o pass through	NP	
	eve with a mesh			iliser
				taining
	east 90 % able to			ninium-
	eve with a mesh	1 01 0,100 11111		ium
phosphate	+750/-1-1-+			sphate,
	east 75 % able t		mus	st
	eve with a mesh		be	
	east 90 % able t		free	
•	eve with a mesh	n of 0,063 mm	from	
rock			Tho	mas
phosphate			slag	-
	east 90 % able t		calc	ined
	eve with a mesh	n of 0,160 mm	pho	sphate,
rock			soft	
phosphate			grou	und
			rocl	κ (
			pho	sphate
			and	^
			part	ially
				bilised
			rocl	
				sphate.
			It shall be	Spinet.
			declared in	
			accordance	
			with	
			solubilities	
			(1) and (7) ,	
			the latter	
			applying after	r
			deduction of	
			the solubility	
			in water.	
			This type of	
			fertiliser mus	+
			contain:	L
			— at	+
			leas	
			2 %	
			wat	
			solu	
			P ₂ O	
				ubility
			(1)]	;
			— at	
			leas	t

> 5 % P_2O_5 according to solubility (7). This type of fertiliser must be marketed under the designation 'NP fertiliser containing aluminiumcalcium phosphate'. 3. In the case of NP fertilisers containing only one of the following types of phosphatic fertiliser: Thomas slag, calcined phosphate, aluminiumcalcium phosphate, soft ground rock phosphate, the type designation must be followed by an indication

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

of the phosphate ingredient. The declaration of the solubility of the P_2O_5 must be given in accordance with the following solubilities: [^{F73}for fertilisers based on Thomas slag: solubility (6b)]; for fertilisers based on calcined phosphate: solubility (5); for fertilisers based on aluminiumcalcium phosphate: solubility (7); for fertilisers based on soft ground rock phosphate: solubility (8).

Textual Amendments

F73 Words in Annex 1 s. B.2 Table substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(21)(b); 2020 c. 1, Sch. 5 para. 1(1)

B.2.2.	Type designation:	NP fertiliser containing crotonylidene diurea or isobutylidene diurea or urea formaldehyde (as appropriate)	
	Data on method of production:	Product obtained chemically without addition of organic nutrients of animal or vegetable origin and containing crotonylidene diurea or isobutylidene diurea or urea formaldehyde	
	Minimum content of nutrients (percentage by weight):	$\begin{array}{cccc} - & & \text{Total: 18 \% (N +} \\ P_2O_5); \\ - & \text{For each of the} \\ & & \text{nutrients:} \\ - & & 5 \% N. \\ & & \text{At least} \\ & & \sqrt[4]{4 \text{ of the}} \\ & & \text{declared} \\ & & \text{content} \\ & & \text{of total} \\ & & \text{nitrogen} \\ & & \text{must} \\ & & \text{derive} \\ & & \text{from} \\ & & \text{nitrogen} \\ & & \text{form (5)} \\ & & \text{or (6) or} \\ & & (7). \\ & & \text{At least} \\ & & 3/5 \text{ of the} \\ & & \text{declared} \\ & & \text{nitrogen} \\ & & \text{content (7)} \\ & & \text{must be} \\ & & \text{soluble in} \\ & & \text{hot water,} \\ & & - & & 5 \% P_2O_5. \end{array}$	

,	ilities and nutr d as specified i cle size			tification of the er requiremen	
Ν	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O

1	2	3	4	5	6	
(1)	Total (1) nitrogen	Water- soluble	(1)	Total An ferti nitrogen T	liser free	
(2)	Nitric nitrog ∉⊉)	$\begin{array}{c} P_2O_5 \\ P_2O_5 \end{array}$	(2)	If slag any phot	, calcined sphate, ninium-	
(3)	Ammoniacal nitrogen	soluble in neutral		the calc forms pho	ium sphate,	
(4)	Ureic nitrogen	ammonium citrate		nitrogeniu (2)	L	
(5)	Nitrogen from crotonylidene diurea	neutral		to photo (4) and amounts to at mus	sphate rock sphate t be ared in	
(6)	Nitrogen from isobutylidene diurea	ammonium citrate and in water		1 % acco by weighsolu	brdance bilities (2) or (3):	
(7)	Nitrogen from urea formaldehydd	2	(3)	must — be declared One	when the water- soluble P_2O_5	
(8)	Nitrogen from urea formaldehydd that is only soluble in hot water	2		of the forms of nitrogen (5) to (7) (as appropriat Nitrogen form	does not amount to 2 %, solubility (2) only shall e). be declared; when	
(9)	Nitrogen from urea formaldehydd that is soluble in cold water			 (7) must be declared in the form of nitrogen (8) and (9) 	the water- soluble P ₂ O ₅ is at least 2 %, solubility (3) shall be declared, and the	

			water solub P_2O_5 conte must be indica [solul (1)]. The P_2O_5 content soluble in mineral acids only must not exceed 2 %. The test sample for determining solubilities (2) and (3) shall be 1 g.	le nt ated
--	--	--	---	------------------

B.3. NK fertilisers

B.3.1.	Type designation:	NK fertilisers.Product obtained chemically or by blending, without addition of organic nutrients of animal or vegetable origin.		
	Data on method of production:			
	Minimum content of nutrients (percentage by weight):	$\begin{array}{ccc} - & \text{Total: 18 \% (N + } \\ \text{K}_2\text{O}\text{);} \\ - & \text{For each of the} \\ & \text{nutrients: 3 \% N,} \\ & 5 \% \text{K}_2\text{O}. \end{array}$		

Forms, solubilities and nutrient content to be declared as specified in columns 4, 5 and 6Particle size			Data for identification of the fertilisersOther requirements				
Ν	P ₂ O ₅	K ₂ O	Ν		P ₂ O ₅	K ₂ O	
1	2	3	4		5	6	
(1)	Total nitrogen	Water-soluble K ₂ O	(1)	Total nitrog		(1)	Water- soluble
(2)	Nitric nitrogen		(2)	If any			potassiun oxide
(3)	Ammoniacal nitrogen			of the forms	5	(2)	The indication 'low

0	0		~			0 00	0	0	(/
No 2003/20	003 of the Ei	uropean P	arliament	and of the	Council.	(See e	end of	Document f	or details)

(4) (5)	Ureic nitrogen Cyanamide nitrogen	of nitrogen (2) to (5) amounts to at least 1 % by weight, it must be dealared (3)	in chloride' is linked to a maximum content of 2 % Cl Chloride content may be
		declared	be declared

B.3.2.

Type designation:	NK fertiliser containing crotonylidene diurea or isobutylidene diurea or urea formaldehyde (as appropriate).
Data on method of production:	Product obtained chemically without addition of organic nutrients of animal or vegetable origin and containing crotonylidene diurea or isobutylidene diurea or urea formaldehyde.
Minimum content of nutrients (percentage by weight):	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	_	content (7) must be soluble in hot water, 5 % K ₂ O.
--	---	---

Forms, solubilities and nutrient content to be declared as specified in columns 4, 5 and 6Particle size			Data for identification of the fertilisersOther requirements				-
Ν	P ₂ O ₅	K ₂ O	N	P ₂ C) ₅	K ₂ O	-
1	2	3	4	5	6	5	-
(1)	Total nitrogen	Water-soluble K ₂ O	(1)	Total nitrogen	((1) Wate solut	
(2)	Nitric nitrogen		(2)	If any		oxid	
(3)	Ammoniacal nitrogen			of the forms		'low	ation
(4)	Ureic nitrogen			of nitrogen (2)		in chloi is	ide'
(5)	Nitrogen from crotonylidene diurea			to (4) amounts to at		conte	mum
(6)	Nitrogen from isobutylidene diurea			least 1 % by weight, it		of 2 % Cl (3) Chlo	
(7)	Nitrogen from urea formaldehyde		(3)	must be declared One		conto may be decla	
(8)	Nitrogen from urea formaldehyde that is only soluble in hot water			of the forms of nitrogen (5) to (7) (as appropriate Nitrogen form	e).		
(9)	Nitrogen from urea			(7) must be			

formaldehyde	declared	
that	in	
is	the	
soluble	form	
in	of	
cold	nitrogen	
water	(8)	
	and	
	(9)	

B.4. PK fertilisers

Type designation:	PK fertilisers.		
Data on method of production:	Product obtained chemically or by blending, without addition of organic nutrients of animal or vegetable origin.		
Minimum content of nutrients (percentage by weight):	$\begin{array}{ccc} - & \text{Total: 18 \% (P_2O_5 + K_2O);} \\ - & \text{For each of the nutrients: 5 \% P_2O_5,} \\ & 5 \% K_2O. \end{array}$		

to be de		nd nutrient content cified in columns 4,	Data for identification of the fertilisersOther requirements			
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
1	2	3	4	5	6	
-	(1) (2) (3)	Water soluble Water K_2O soluble P_2O_5 P_2O_5 soluble in neutral ammonium citrate P_2O_5 soluble in neutral ammonium citrate ammonium citrate and in		1.	A (1) PK fertiliser free from Thomas slag, calcined phosphate, aluminium- calcium phosphate, partially solubilised rock phosphate and soft	Water- soluble potassiu oxide The indicatio 'low in chloride is linked to a maximu content of 2 % Cl
	(4)	water P_2O_5 soluble in			ground ₃₎ rock phosphate must be	Chloride content may be declared

I	• 1	I	1	1 1 1 1
	mineral			declared
	acids			in
	only			accordance
(5)	D O			with
(5)	P_2O_5			solubilities
	soluble			(1),
	in			(2)
	alkaline			or
	ammonium			(3):
	citrate		<u> </u>	when
	(Petermann)			the
(\mathbf{C})	D O			water-
(6a)	P_2O_5			soluble
	soluble			P_2O_5
	in			does
	mineral			
	acids,			not
	of			amount
	which			to
	at			2 %
	least			solubility
	75 %			(2)
	of			only
	the			shall
	declared			be
	P_2O_5			declared;
			<u> </u>	when
	content			the
	is			water-
	soluble			soluble
	in 2 0/			P_2O_5
	2 %			is at
	citric			least
	acid			2 %
(6b)	P.O			solubility
(00)	P_2O_5			(3)
	soluble			shall
	in 2 0/			be
	2 %			
	citric			declared
	acid			and the
(7)	P_2O_5			
(\prime)				water-
	soluble			soluble
	in			P_2O_5
	mineral			content
	acids			must
	of			be
	which			indicated
	at			[solubility
	least			(1)].
	75 %		The P_2C) ₅
	of		content	
	the		soluble	in
I	I	I	1	I

Regulation (EC) No 2003/2003 of the European Parliament and of the Council of... Document Generated: 2024-04-09 islation: There are currently no known outstanding effects for the Regulation (EC)

I	1 1 1 1	1	· 1	• 1	I
	declared		mineral a		
	P ₂ O ₅		only mus		
	content		exceed 2		
	is		For this t		
	soluble		1, the tes	t	
	in		sample for	or	
	alkaline		determin	ing	
	ammonium		solubiliti	es	
	citrate		(2) and (.	3)	
	(Joulie)		shall be 1	g.	
(8)	P ₂ O ₅		2 (a)	A	
	soluble			PK	
	in			fertili	
	mineral			conta	ining
	acids			soft	
	of			grour	ıd
	which			rock	
	at			phosp	hate
	least			or	
	55 %			partia	llv
	of				ilised
	the			rock	
	declared			phosp	hate
	P_2O_5			must	
	-			be	
	content			free	
	is			from	
	soluble			Thom	195
	in				145
	2 %			slag, calcir	ad
	formic				
	acid			phosp	mate
				and	
					nium-
				calciu	
			T. 1 11 1	phosp	onate.
			It shall b		
			declared		
			accordan	ce	
			with		
			solubiliti		
			(1), (3) a	nd	
			(4)		
			This type		
			fertiliser	must	
			contain:		
				at	
				least	
				2 %	
				P_2O_5	
				solub	le
				in	
				mine	al
				miller	u

			I		
				aci	
				on	ly
				[sc	olubility
				(4)];
				— at	-
				lea	st
				5 %	
				P ₂	
					uble
				in	
				wa	
				an	d
				ne	utral
				am	imonium
					rate
					lubility
				(3)	, ,
				— at	-4
				lea	
					5 % 0
					ter-
				sol	uble
				P ₂	O_5
					lubility
				(1)	
				This type of	·]·
				This type of	-4
				fertiliser mu	
				be marketed	
				under the	
				designation	
				'PK fertilise	r
				containing	
				soft ground	
				rock	
					Nr.
				phosphate' of	
				'PK fertilise	1
				containing	
				partially	
				solubilised	
				rock	
				phosphate'.	
				For this type	
				2(a), the test	
				sample for	
				determining	
				solubility (3	
					/
				shall be 3 g	
Particle size of	the basic phosp	hatic			
ingredients:	r - "r			2 (b) A	
-				PK	
	east 75 % able to			fer	tiliser
slag a si	eve with a mesh	of 0,160 mm			ntaining
-			I		8

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

Aluminiumat least 90 % able to pass through calcium a sieve with a mesh of 0,160 mm phosphate at least 75 % able to pass through Calcined phosphate a sieve with a mesh of 0,160 mm Soft at least 90 % able to pass through ground a sieve with a mesh of 0,063 mm rock phosphate Partially at least 90 % able to pass through solubilised a sieve with a mesh of 0,160 mm rock phosphate

aluminiumcalcium phosphate must be free from Thomas slag, calcined phosphate and partially solubilised rock phosphate. It shall be declared in accordance with solubilities (1) and (7), the latter applying after deduction of the solubility in water. This type of fertiliser must contain: at least 2 % watersoluble P_2O_5 [solubility (1)]; at least 5 % P_2O_5 according to solubility (7). This type of fertiliser must be marketed under the designation 'PK fertiliser containing

> aluminiumcalcium phosphate'. 3. In the case of PK fertilisers containing only one of the following types of phosphatic fertiliser: Thomas slag, calcined phosphate, aluminiumcalcium phosphate, soft ground rock phosphate, the type designation must be followed by an indication of the phosphate ingredient. The declaration of the solubility of the P₂O₅ must be given in accordance with the following solubilities:

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

[^{F74}for fertilisers based on Thomas slag: solubility (6b)] for fertilisers based on calcined phosphate: solubility (5); for fertilisers based on aluminiumcalcium phosphate: solubility (7); for fertilisers based on soft ground rock phosphate: solubility (8).

Textual Amendments

- F74 Words in Annex 1 s. B.4 Table substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(21)(b); 2020 c. 1, Sch. 5 para. 1(1)
- C. Inorganic fluid fertilisers
- C.1. Straight fluid fertilisers

No	Type designation	Data on method of production and essential	Minimum content of nutrients (percentage by weight)Date	Other data or type designation	Nutrient content to be declaredForms and colubilities
		ingredients	weight)Data		solubilities

			on the expression of nutrientsOth requirements		of the nutrientsOther criteria
1	2	3	4	5	6
1	Nitrogen fertiliser solution	Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of organic nutrients of animal or vegetable origin	15 % N Nitrogen expressed as total nitrogen or, if there is only one form, nitric nitrogen or ammoniacal nitrogen or ureic nitrogen Maximum biuret content: ureic N × 0,026		Total nitrogen and, for any form that amounts to not less than 1 %, nitric nitrogen, ammoniacal nitrogen and/or ureic nitrogen If the biuret content is less than 0,2 %, the words 'low in biuret' may be added
2	Urea Ammonium nitrate fertiliser solution	Product obtained chemically and by dissolution in water, containing ammonium nitrate and urea	26 % N Nitrogen expressed as total nitrogen, where the ureic nitrogen accounts for about half of the nitrogen present Maximum biuret content: 0,5 %		Total nitrogen Nitric nitrogen, ammoniacal nitrogen and ureic nitrogen If the biuret content is less than 0,2 %, the words 'low in biuret' may be added
3	Calcium nitrate solution	Product obtained by dissolving calcium nitrate in water	8 % N Nitrogen expressed as nitrogen in nitric form with a maximum 1 % nitrogen as ammonia Calcium expressed as water soluble CaO	The type designation may be followed, as appropriate, by one of the following indications: — for folian appli — for maki	cation; form;

4	Magnesium nitrate solution	Product obtained chemically	6 % N Nitrogen expressed as	nutrie soluti — for ferti- irriga	ons; as ammonia.
		and by dissolving magnesium nitrate in water	nitric nitrogen 9 % MgO Magnesium expressed as water-soluble magnesium oxide Minimum pH: 4		magnesium oxide
5	Calcium nitrate suspension	Product obtained by suspension of calcium nitrate in water	8 % N Nitrogen expressed as total nitrogen or nitric and ammoniacal nitrogen maximum content of ammoniacal nitrogen: 1,0 % 14 % CaO Calcium expressed as water soluble	— for makin nutric soluti and	cation; ng nt
6	Nitrogen fertiliser solution with urea formaldehyde	Product obtained chemically or by dissolution in water of urea formaldehyde and a nitrogenous fertiliser from list A-1 in this regulation, excluding products 3(a), 3(b), and 5	CaO 18 % N expressed as total nitrogen At least one third of the declared total nitrogen content must derive from urea formaldehyde Maximum biuret content: (ureic N + urea	fertig	ation. Total nitrogen For each form amounting to at least 1 %: — Nitric nitrogen; — Ammoniacal nitrogen; — Ureic nitrogen. Nitrogen from urea formaldehyde

			formaldehyde N) \times 0,026		
7	Nitrogen fertiliser suspension with urea formaldehyde	Product obtained chemically or by suspension in water of urea formaldehyde and a nitrogenous fertiliser from list A-1 in this regulation, excluding products 3(a), 3(b), and 5	18 % N expressed as total nitrogen At least one third of the declared total nitrogen content must derive from urea formaldehyde of which at least three fifths has to be soluble in hot water Maximum biuret content: (ureic N + urea formaldehyde N) \times 0,026	_	form g to % Nitric nitrogen; Ammoniacal nitrogen; Ureic nitrogen. hyde hyde luble ater hyde ly

C.2. Compound fluid fertilisers

to be declared as specified in columns 4,

5 and 6Particle size

C.2.1.	Type designation:	NPK-fertiliser solution.		
	Data on method of production:	Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of organic nutrients of animal or vegetable origin.		
	Minimum content of nutrients (percentage by weight) and other requirements:	$\begin{array}{cccc} & & & \text{Total: 15 \%, (N +} \\ & & P_2O_5 + K_2O); \\ & - & & \text{For each of the} \\ & & & \text{nutrients: 2 \% N,} \\ & & & 3 \% P_2O_5, 3 \% \\ & & & K_2O; \\ & - & & \text{Maximum biuret} \\ & & & \text{content: ureic N } \times \\ & & & 0,026. \end{array}$		

fertilisersOther requirements

Ν		P ₂ O ₅	K ₂ O	N		P ₂ O ₅	K ₂ O	
1		2	3	4		5	6	
(1)	Total nitrog	Water-soluble P_2O_5	Water-soluble K ₂ O	(1)	Total nitrog	Water-soluble P_2O_5	(1)	Water- soluble
(2)	Nitrio nitrog			(2)	If any			potassiu oxide
(3)		ioniacal gen			of the forms	5	(2)	The words 'low
(4) Ureic nitrogen		of nitrog (2) to (4) amout to not less than 1 % by weigh it must be decla	gen ints ht,	(3)	in chloride may be used only where the Cl content does not exceed 2 % The chloride			
				(3)	If the biure conte is less than 0,2 % the word 'low in biure may be addeo	nt , s t'		content may be declared

[^{F71} C.2.2	Type designation:	NPK-fertiliser solution containing urea formaldehyde
	Data on method of production:	Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of

						of animal or veg ing urea formale		
	Minimum content of nutrients (percentage by weight) and other requirements:			— F — 5 c d — 3 — 3	For each $\%$ N, a ontent c erive fr $\%$ P 2 C $\%$ K 2 C biuret c) content: (ureic N	: he declare must m (5)	ed
decla	is, solubilities an red as specified cle size				the fe	for identification for identification rtilisers — Oth rements		
Ν		P ₂ O ₅	K 2 O		Ν	P 2 O 5	K 2 O	
1		2	3		4	5	6	
(1)	Total nitrogen	Water- soluble P ₂ O ₅	Water-solu	ble K ₂ O	(1)	Water- Totaluble P nitrogen	(1)	Water- soluble
(2)	Nitric nitrogen				(2)	If any		potassiun oxide
(3)	Ammoniacal nitrogen					of the førms	(2)	The words 'low
(4)	Ureic nitrogen					of nitrogen		in chloride' may
(5)	Nitrogen from urea formaldehyde					 (2), (3) and (4) amounts to not less than 1 % by weight, it 	(3)	be used only where the Cl content does not exceed 2 % The
					(3)	must be declared Nitrogen from urea formaldehyd If the		chloride content may be declared

	bjuret
	content
	is
	less
	than
	0,2 %,
	the
	words
	·low
	in
	biuret'
	may
	be
	added

Type desig	Type designation:			NPK-fertiliser suspension				
			nutrients and in suspension without add	re derive ion in th dition of	ed from e wate f organ	n substan r and in s ic nutrier	ces both olution	
(percentage	Minimum content of nutrients (percentage by weight) and other requirements:			Fotal: 20 For each $\sim \% P_2 O$	%, (N of the 0_{5} , 4%	+ $P_2 O_5$ nutrients: $_{6} K_2 O$	3%N,	 ×
				the fe	rtiliser	s — Oth		
	P ₂ O ₅	K 2 O	_	N	F	$P_{2} O_{5}$	K ₂ O	
	2	3		4	5	5	6	
Total nitrogen	S	oluble	ible K $_2$ O	(1)	Tota nitro	ttilisers	(1)	Water solub
Nitric nitrogen	2			(2)	anv	homas		potass oxide
Ammoniacal nitrogen					the for	uminium Jçium		The words 'low
Ureic nitrogen	C 5 s in n	oluble n eutral			nitit (2 pl (3 pa (3 pa and (4 pl and	licined nosphates artially olubilised nosphates	3. 5	in chlori may be used only where the
	Data on me Data on me Minimum of (percentage requirement s, solubilities ar red as specified ele size Total nitrogen Nitric nitrogen Ammoniacal nitrogen Ureic	Data on method of proData on method of proMinimum content of n (percentage by weight requirements:s, solubilities and nutrient requirements:S, solubilities and nutrient red as specified in columns ele sizeP 2 O 5ZTotal nitrogenNitric nitrogen(1) S P (2)Nitric nitrogen(2) S S (2)Ureic nitrogen2Ureic s nitrogen2Same product (2)3Nitric s (2)3Optimized (2)3Nitric s (2)3Same product (2)3Nitric s s (2)3Nitric s s (2)3Nitric s <br< td=""><td>Data on method of production:Data on method of production:Minimum content of nutrients (percentage by weight) and other requirements:solubilities and nutrient content to red as specified in columns 4, 5 and 6 ele sizeP 2 O 5K 2 OZ3Total nitrogenNitric nitrogenP 2SolubleNitric nitrogenP CK 2 OAmmoniacal nitrogen5 CUreic2</br></br></br></br></br></br></br></br></br></br></td><td>Production:Product in nutrients a in suspensive without ad animal or viMinimum content of nutrients (percentage by weight) and other requirements:—Image: Colspan="2">The second second</br></br></br></br></br></br></td><td>Production:Product in liquid for nutrients are derived in suspension in the without addition of animal or vegetableMinimum content of nutrients (percentage by weight) and other requirements:—Total: 20 —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 —Maximum 0,026—Total: 20 —Maximum 0,026—Maximum 0,026s, solubilities and nutrient content to be red as specified in columns 4, 5 and 6 —Data for the ference requirementsP 2 O 5K 2 ONNitric nitrogenPQNitric nitrogenPQQSolubleQNitric nitrogenPQPQSolubleQInitrogenQSolublePUreic nitrogen2Soluble in nitrogenPQPUreic nitrogen2Soluble in nitrogenPUreic nitrogen2Soluble in nitrogenSoluble in neutral</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>Data on method of production:Product in liquid form, in nutrients are derived from in suspension in the wate without addition of organ animal or vegetable originMinimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, (N —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, (N ———Total: 20 %, (N ———For each of the 4 % P 2 O 5, 4 % ———Maximum biure 0,026s, solubilities and nutrient content to be red as specified in columns 4, 5 and 6 —Data for ide the fertiliser requirement123423423411Water-soluble K 2 O soluble11Water-soluble K 2 O soluble11Water-soluble K 2 O of Si nitrogen11Water-soluble K 2 O of Si of Si difficie11Water-soluble K 2 O of Si of Si of</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>Data on method of production:Product in liquid form, in which th nutrients are derived from substan- in suspension in the water and in s without addition of organic nutrier animal or vegetable originMinimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content to be red as specified in columns 4, 5 and 6 ——Maximum biuret content 0,026S, solubilities and nutrient content to be red as specified in columns 4, 5 and 6 —Data for identification the fertilisers — Oth requirementsMinimum requirements1Water-soluble K 2 O NNP 2 O 5Total nitrogen2345Nitric nitrogen2345QQNP 2 O 51The requirementsQ1Water-soluble K 2 O Soluble1The requirementsNitric nitrogen2911Q29111Q2111Nitric nitrogen5111Q29111Nitric nitrogen5</td><td>Data on method of production:Product in liquid form, in which the nutrients are derived from substances both in suspension in the water and in solution without addition of organic nutrients of animal or vegetable originMinimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2O_5 + K_2O)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2O_5 + K_2O)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2O_5 + K_2O)$ ——For each of the nutrients: 3 % N, 4 % P_2O_5, 4 % K_2O ———Maximum biuret content: ureic N i 0,026s, solubilities and nutrient content to be red as specified in columns 4, 5 and 6 —Data for identification of the fertilisers — Other requirements$\mathbf{V} = 2 O_5$K $_2 O$NP $_2 O_5$K $_2 O$23456Total nitrogen(1)Water-soluble K $_2 O$ N(1)Total mitrogen an Thomas of slag, tialuminium formation an Thomas an Th</td></br<>	Data on method of production:Data on method of production:Minimum content of nutrients (percentage by weight) and other 	Production:Product in 	Production:Product in liquid for 	Data on method of production:Product in liquid form, in 	Data on method of production:Product in liquid form, in which th nutrients are derived from substan- in suspension in the water and in s without addition of organic nutrier animal or vegetable originMinimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2 O_5)$ —Minimum content to be red as specified in columns 4, 5 and 6 ——Maximum biuret content 0,026S, solubilities and nutrient content to be red as specified in columns 4, 5 and 6 —Data for identification the fertilisers — Oth requirementsMinimum requirements1Water-soluble K 2 O NNP 2 O 5Total nitrogen2345Nitric nitrogen2345QQNP 2 O 51The requirementsQ1Water-soluble K 2 O Soluble1The requirementsNitric nitrogen2911Q29111Q2111Nitric nitrogen5111Q29111Nitric nitrogen5	Data on method of production:Product in liquid form, in which the nutrients are derived from substances both in suspension in the water and in solution without addition of organic nutrients of animal or vegetable originMinimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2O_5 + K_2O)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2O_5 + K_2O)$ —Minimum content of nutrients (percentage by weight) and other requirements:—Total: 20 %, $(N + P_2O_5 + K_2O)$ ——For each of the nutrients: 3 % N, 4 % P_2O_5, 4 % K_2O ———Maximum biuret content: ureic N i 0,026s, solubilities and nutrient content to be red as specified in columns 4, 5 and 6 —Data for identification of the fertilisers — Other requirements $\mathbf{V} = 2 O_5$ K $_2 O$ NP $_2 O_5$ K $_2 O$ 23456Total nitrogen(1)Water-soluble K $_2 O$ N(1)Total mitrogen an Thomas of slag, tialuminium formation an Thomas an Th

(3) P ² O ⁵ solul in neut amm citra and wate	tral nonium ite (3)	lian 1 % by weight, it must be declared If the biuret content is less than 0,2 %, the words 1d(x) in biuret' may be	If the water- soluble P 2 (3) O 5 is less	content does not exceed 2 % The chloride content may be declared
--	---------------------------	---	--	--

C.2.4	Type designation:	NPK-fertiliser suspension containing urea formaldehyde		
	Data on method of production:	Product in liquid form, in which the nutrients are derived from substances both in solution and in suspension in water, without addition		

	of organic nutrients of animal or vegetable origin and containing urea formaldehyde
Minimum content of nutrients (percentage by weight) and other requirements:	 Total 20 % (N +P₂O₅ +K₂O) For each of the nutrients: 5 % N, at least 25 % of the declared content of total nitrogen must derive from nitrogen form (5) At least 3/5 of the declared nitrogen content (5) must be soluble in hot water 4 % P₂O₅ 4 % K₂O Maximum biuret content: (ureic N + urea formaldehyde N) × 0,026

Forms, solubilities and nutrient content to be declared as specified in columns 4, 5 and 6 — Particle size		content to be 4, 5 and 6 —	Data for the fertil requirem	_			
Ν	P	20_{5}	K ₂ O	N	P ₂ O ₅	K ₂ O	
1	2		3	4	5	6	
(1) Tota nitro	ul (1 ogen		Water-soluble K ₂ O Vater- bluble	r	The Otal itrogen musthot	(1)	Water- soluble
(2) Nitr nitro	ic ogen	P 2 O			f contain Thomas f slag,		potassium oxide
	moniacal ogen (2	5 2) P		t	haluminium Calcium		The words 'low
(4) Ure nitro	ic ogen	2 O		r	phosphate, fphosphate, calcined phosphates		in chloride' may
from	ogen n urea naldehyde	in ne ar ci	oluble eutral nmonium trate	2 (2 t	$\frac{3}{10}$ phosphates $\frac{3}{10}$ phosphates	5	be used only where the Cl
	(3	2 O 5 sc in ne ar ci ar in	eutral nmonium trate nd	(3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ess th han w % so by P veight, 2 t C nust 5 leclared le Nitrogen th rom 2	ne vater- oluble (3) ess nan %, nly	content does not exceed 2 % The chloride content may be declared

		biuret content is (2) less than 0,2 %, the words 'low in biuret' may be	(2) shall be declared If the water- soluble P 2 O 5 is at least 2 %,
			 (3) and the water-soluble P 2 O 5 content shall be declared

C.2.5	Type desig	Type designation: Data on method of production:			NP-fertiliser solution				
	Data on m				Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of organic nutrients of animal or vegetable origin				
	Minimum content of nutrients (percentage by weight) and other requirements:			— F 5 — N	Fotal: 18 %, For each of t $5 \% P_2 O_5$ Maximum bi 0,026	he nutrients:	: 3 % N,		
	solubilities and as specified e size					identificatio sers — Oth ents			
N		P 2 O 5	K 2 O	_	N	P 2 O 5	K 2 O		
1		2	3		4	5	6		

Changes to legislation: There are cu	rrently no known outstanding effects for the Regulation (EC)	
No 2003/2003 of the European Parli	iament and of the Council. (See end of Document for details)	

(1)	Total nitrogen	Water- soluble P 2 O 5		(1)	Water- Totaluble P nitrogen
(2)	Nitric nitrogen			(2)	If any
(3)	Ammoniacal nitrogen				of the forms
(4)	Ureic nitrogen				of nitrogen (2), (3) and (4) amounts to not less than 1 % by weight, it must be declared
				(3)	If the biuret content is less than 0,2 %, the words 'low in biuret' may be added

C.2.6	Type designation:	NP-fertiliser solution containing urea formaldehyde		
	Data on method of production:	Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of organic nutrients of animal or vegetable origin and containing urea formaldehyde		

	(percentage	Minimum content of nutrients (percentage by weight) and other requirements:			 Total 18 % (N +P₂O₅) For each of the nutrients: 5 % N, at least 25 % of the declared content of total nitrogen must derive from nitrogen form (5) 5 % P₂O₅ Maximum biuret content: (ureic N + urea formaldehyde N) × 0,026 			
decla	ns, solubilities an ared as specified icle size				the fertili	identificatio sers — Oth		
N Parti	icie size	P ₂ O ₅	K ₂ O		requirem N	$\begin{array}{c c} \text{P}_2 \text{ O}_5 \end{array}$	K 2 O	
1		2	X 2 U 3		4	1 2 0 5 5	<u>6</u>	
(1)	Total nitrogen	Water- soluble P ₂ O ₅			(1) 7	Water- otal soluble P itrogen 2 Sen	-	
(2)	Nitric nitrogen					ny		
(3)	Ammoniacal nitrogen				t	f ne orms		
(4)	Ureic nitrogen				n	f itrogen		
(5)	Nitrogen from urea formaldehyde				(a t t l l t t t t t t t t t t t t t t t	ot ess han % y veight, t nust e eclared		
					f	litrogen rom rea ormaldehyde	2	
					b	ne iuret ontent		

1	less
	than
	0,2 %,
	the
	words
	'low
	in
	biuret'
	may
	be
	added
	added

C.2.7	Type desig	Type designation: Data on method of production: Minimum content of nutrients (percentage by weight) and other requirements:			NP-fertiliser suspension				
	Data on me				Product in liquid form, in which the nutrients are derived from substances both in solution and in suspension in the water, without addition of organic nutrients of animal or vegetable originTotal: 18 %, $(N + P_2 O_5)$ For each of the nutrients: 3 % N, 5 % P_2 O_5Maximum biuret content: ureic N ×				
	(percentage								
	s, solubilities an ed as specified le size			be	of the	for identifications fertilisers. Oth rements			
Ν		P ₂ O ₅	K ₂ O		N	P 2 O 5	K 2 O		
1		2	3		4	5	6		
(1)	Total nitrogen	S	Vater- oluble		(1)	The Total nitrogen nitrogen nitrogen they hot			
(2)	Nitric nitrogen	P 2 C			(2)	If contain any homas of ^{slag} ,			
(3)	Ammoniacal nitrogen	5 (2) P				the aluminium forms of phosphate,			
(4)	Ureic nitrogen	2 C 5)			nitrogen phosphates			
		s ir	oluble 1 eutral			(3) partially anolubilised (4) phosphate			
			mmonium itrate			a_{to} phosphates a_{to} phosphates a_{to} a_{t} a_{t} a_{t}			

	soluble in neutral ammonium citrate and water	(3) If the second secon	veight, nust e eclared f he iuret ontent s ss han 2 %, he votds low h iuret' hay e dded	soluble P 2 O 5 is less than 2 % only solubility 2 shall be declared If the water- soluble P 2 O 5 is at least 2 %, solubility 3 will be declared and the water- solubility 3 will be declared and the water- solubility 3 will be declared 5 is at least 2 %, solubility 3 will be declared Solubility 3 will be declared Solubility 3 will be declared Solubility 3 will be declared Solubility 3 will be declared and the water- soluble P 2 O 5 is at least 2 %, solubility 3 will be declared and the water- soluble P 2 O 5 is at least 2 %, solubility 3 will be soluble P 2 O 5 is solubility 3 will be soluble P 2 O 5 soluble P 2 O 5 solubility 3 solubile P 2 O 5 solubile P 2 O 5 solubile P 2 O 5 solubile P 2 O 5 solubile P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble P 2 O 5 soluble B S soluble B S S S S S S S S S S S S S
--	---	--	--	--

C.2.8	Type designation:	NP-fertiliser suspension containing urea formaldehyde
	Data on method of production:	Product in liquid form, in which the nutrients are derived from substances both in solution and in suspension in water, without addition

	Minimum content of nutrients (percentage by weight) and other requirements:			 For each of the nutrients: 5 % N, at least 25 % of the declared content of total nitrogen must derive from nitrogen form (5) At least 3/5 of the declared nitrogen content (5) must be soluble in hot water 5 % P₂O₅ Maximum biuret content: (ureic N + urea formaldehyde N) × 0,026 			
declared Particle	l as specified	in columns			the fertili requirem	sers — Oth ents	
Ν		P ₂ O ₅	K 2 O		Ν	P ₂ O ₅	K 2 O
1		2	3		4	5	6
(2)(3)(4)	Total nitrogen Nitric nitrogen Ammoniacal nitrogen Ureic nitrogen Nitrogen from urea formaldehyde	(2) P (2) P (2) P (2) P (3) P (3) P (3) P (3) P (3) C (3) C (3	oluble n eutral mmonium itrate oluble n eutral mmonium itrate nd		(2) I a o tti f o o n (((((((((((((((((% v y s veight, F nust C e clared 5 litrogen litrom t	f he vater- oluble sss han %,

	1	1	I	alka 11
		(4)	If	shall be
			the	declared
			biuret	declared
			contrent	If
			is	the
			less	water-
			than	soluble
			0,2 %,	Р
			the	2
			words	2 O
			'low	5
			in	5 is
			biuret'	at
			may	least
			be	2 %,
			added	solubility
				(3)
				and
				the
				water-
				soluble
				Р
				2 O
				0
				5
				content
				shall
				be
				declared]

[^{F75} C.2.9	Type desig	nation:		NK-fertiliser solution					
	Data on me	ethod of pro	duction:	Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of organic nutrients of animal or vegetable origin					
	Minimum content of nutrients (percentage by weight) and other requirements:				$- Total: 15 \% (N + K_2 O)$ $- For each of the nutrients: 3 % N, 5 % K_2 O$ $- Maximum biuret content: ureic N × 0,026$				
· · · · · ·	olubilities ar as specified								
Particle s			.,		requirements				
Ν		P ₂ O ₅	K 2 O		Ν	P 2 O 5	K 2 O		
1		2	3	4 5 6					

(1)	Total nitrogen	Water-soluble K ₂ O	(1)	Total nitrogen	(1)	Water- soluble
(2)	Nitric nitrogen		(2)	If any		potassium oxide
(3)	Ammoniacal nitrogen			of the forms	(2)	The words 'low
(4)	Ureic nitrogen		(3)	of nitrogen (2), (3) and (4) amounts to not less than 1 % by weight, it must be declared If the biuret content is less than 0,2 %, the words 'low in biuret' may be added	(3)	in chloride' may be used only where the Cl content does not exceed 2 % The chloride content may be declared

Textual Amendments

F75 Inserted by Commission Regulation (EU) No 1257/2014 of 24 November 2014 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV (Text with EEA relevance).

C.2.10	Type design	nation:		NK-fertiliser solution containing urea formaldehyde						
	Data on me	ethod of pro	oduction:	dissolution atmospher organic nu	Product obtained chemically and by dissolution in water, in a form stable at atmospheric pressure, without addition of organic nutrients of animal or vegetable origin and containing urea formaldehyde					
	Minimum o (percentage requiremen	e by weight		 Total 15 % (N + K₂ O) For each of the nutrients: 5 % N, at least 25 % of the declared content of total nitrogen must derive from nitrogen form (5) 5 % K₂ O Maximum biuret content: (ureic N + urea formaldehyde N) × 0,026 						
declar	s, solubilities an red as specified le size			be	Data the fe	for identification for identification for tilisers — Other rements				
Ν		P ₂ O ₅	K 2 O	N P ₂ O			K 2 O			
1		2	3		4	5	6			
(1)	Total nitrogen		Water-solu	ible K ₂ O	(1)	Total nitrogen	(1)	Water- soluble		
(2)	Nitric nitrogen				(2)	If any af	(2)	potassiur oxide The		
(3)	Ammoniacal nitrogen					of the forms	(2)	words 'low		
(4)	Ureic nitrogen					of nitrogen (2),		in chloride may		
(5)	Nitrogen from urea formaldehyde					(3) and (4) amounts to not less than 1 % by weight, it		be used only where the Cl content does not exceed 2 %		
					(3)	must be declared	(3)	The chloride content may be		
					(3)	Nitrogen from		be declared		

		rea ormaldehyde
	(4) It	
		iuret
		ontent
	is le	SS
		nan
		,2 %, ne
		ords
	in	ow
		iuret'
	b	nay e
	a	dded

C.2.11	Type desig	nation:		NK-fertiliser suspension						
	Data on me	ethod of pro	duction:	Product in liquid form, in which the nutrients are derived from substances both in solution and in suspension in the water, without addition of organic nutrients of animal or vegetable origin						
		content of n e by weight its:		$\begin{array}{ccc} - & \text{Total: 18 \% (N + K_2 O)} \\ - & \text{For each of the nutrients: 3 \% N,} \\ 5 \% K_2 O \\ - & \text{Maximum biuret content: ureic N } \end{array}$						
decla	is, solubilities ar red as specified cle size	in columns	s 4, 5 and 6	5 — the fertilisers — Other requirements						
$\frac{1}{1}$		P ₂ O ₅	K ₂ O 3		N 4	P ₂ O ₅	K 2 O			
(1) (2)	Total nitrogen Nitric		-	ible K ₂ O	(1)	Total nitrogen If	(1)	Water- soluble potassiun oxide		
(3)	nitrogen Ammoniacal nitrogen					any of the forms	(2)	The words 'low		
(4)	Ureic nitrogen					of nitrogen (2), (3)		in chloride' may be		

(3)	and (4) amounts to not less than 1 % by weight, it must be declared If the biuret content is less than 0,2 %, the words 'low in biuret' may	(3)	used only where the Cl content does not exceed 2 % The chloride content may be declared
	(3)	 (4) amounts to not less than 1 % by weight, it must be declared (3) If the biuret content is less than 0,2 %, the words 'low in biuret' 	 (4) amounts to not less than 1 % by weight, it must be declared (3) If the biuret content is less than 0,2 %, the words 'low in biuret' may

C.2.12	Type designation:	NK-fertiliser suspension containing urea formaldehyde					
	Data on method of production:	Product in liquid form, in which the nutrients are derived from substances both in solution and in suspension in water, without addition of organic nutrients of animal or vegetable origin and containing urea formaldehyde					
	Minimum content of nutrients (percentage by weight) and other requirements:	 Total 18 %(N +K₂ O) For each of the nutrients: 5 % N, at least 25 % of the declared content of total nitrogen must derive from nitrogen form (5) At least 3/5 of the declared nitrogen content (5) must be soluble in hot water 5 % K₂ O Maximum biuret content: (ureic N + urea formaldehyde N) × 0,026 					

	solubilities an d as specified e size			Data for identification of the fertilisers — Other requirements			
Ν		P ₂ O ₅	K ₂ O	N	P 2 O 5	K ₂ O	
1		2	3	4	5	6	
(1)	Total nitrogen		Water-soluble K ₂ O	(1)	Total nitrogen	(1)	Wa solu pot
2)	Nitric nitrogen			(2)	If any		oxi
3)	Ammoniacal nitrogen				of the forms	(2)	The wor 'low
4)	Ureic nitrogen				of nitrogen		in chlo
5)	Nitrogen from urea formaldehyde	,			 (2), (3) and (4) amounts to not less than 1 % by weight, it must be 	(3)	may be used only who the Cl con doe not exc 2 % The chlo
				(3)	declared Nitrogen from urea formaldehyd	e	con may be dec
				(4)	If the biuret content is less than 0,2 %, the words 'low in biuret'		

						be added			
C.2.13	Type desig	Type designation:			PK-fertiliser solution				
	Data on method of production:				in water, v	mically and t without addit nimal or veg	ion of		
		content of n e by weight nts:		— T — F 5)				
	solubilities a d as specified size					[•] identificatio lisers — Oth nents			
Ν		P 2 O 5	K 2 O	-	N	P 2 O 5	K 2 O		
1		2	3		4	5	6		
		Water- soluble P 2 O 5	Water-solu	ible K ₂ O		Water- soluble P 2 O 5	(1)	Water- soluble potassium oxide	
							(2)	The words 'low in chloride' may be used only where the Cl content does not exceed 2 %	
							(3)	The chloride content may be declared	

Type designation:

	Data on method	of pro	oduction:	are derived and in susp	l from sub ension in	m, in which the stances both i water, without of animal or v	n solution t additior	1
	Minimum content of nutrients (percentage by weight) and other requirements:			— F		$(P_2 O_5 + K)$ f the nutrients O	·)
declare	Forms, solubilities and nutrient content to leclared as specified in columns 4, 5 and 6 Particle size					r identificatio ilisers — Oth ments		
Ν	P 2	0 5	K 2 O		Ν	P 2 O 5	K 2 O	
1	2		3		4	5	6	
	(1) (2) (3)	s F 2 C 5 F 2 C 5 5 S S S S S S S S S S S S S S S S S	oluble n neutral immonium itrate	ible K ₂ O		v s P 2 C 5 is 16 t1 2 2 0 0 s 2	f ne vater- oluble (3) s sss nan % nly olubility vill	Water- soluble potassium oxide The words 'low in chloride' may be used only where the Cl content does not exceed 2 % The chloride content may be declared]

(2) If the water- soluble P 2 O 5 is at least 2 % solubility 3 and the water- solubility 3 and the water- solubility 5 content shall be declared				
the water- soluble P 2 O 5 is at least 2 % solubility 3 and the water- soluble P 2 O 5 solubility 3 and the water- soluble P 2 O 5 solubility 3 and the water- soluble be			(2) I	f
soluble P 2 O 5 is at least 2 % solubility 3 and the water- soluble P 2 O 5 is at least 2 % solubility 3 and the Water- soluble P 2 O 5 is at least 2 % solubility 3 and the N Solubile P 2 O 5 is at least 2 % solubility 3 and the N Solubile P 2 O 5 content soluble P 2 O 5 content soluble P 2 O 5 content soluble P 2 O 5 content soluble P 2 O 5 content soluble P 2 O 5 content shall be			t	he
P 2 O 5 is at least 2 % solubility 3 and the water- soluble P 2 O 5 content shall be			v	vater-
2 O 5 is at least 2 % solubility 3 and the water- soluble P 2 O 5 content shall be			S	oluble
O S is at least 2 % solubility 3 and the water- soluble P 2 O 5 content shall be			F	>
s s s s s s s s s s s s s s				
at least 2 % solubility 3 and the water- soluble P 2 O 5 content shall be			()
at least 2 % solubility 3 and the water- soluble P 2 O 5 content shall be			5	
least 2 % solubility 3 and the water- soluble P 2 O 5 content shall be				
2 % solubility 3 and the water- soluble P 2 O 5 content shall be			a	it .
solubility 3 and the water- soluble P 2 O 5 content shall be				east
3 and the water- soluble P 2 O 5 content shall be			2	%
and the water- soluble P 2 O 5 content shall be			S	olubility
the water-soluble P 2 O 5 content shall be				
water- soluble P 2 O 5 content shall be			a +	.na ha
soluble P 2 O 5 content shall be				
P 2 O 5 content shall be			v	oluble
2 O 5 content shall be				
o s content shall be				
5 content shall be				
content shall be				
shall be				
be			S	hall
declared				
			d	leclared

D. Inorganic secondary nutrient fertilisers

Νο	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
1	Calcium sulphate	Product of natural or industrial origin containing calcium sulphate at various	25 % CaO 35 % SO ₃ Calcium and sulphur expressed as total CaO + SO ₃ Fineness of grind:	Usual trade names may be added	Total sulphur trioxide Optional: total CaO

		degrees of hydration	 at least 80 % to pass throu a sieve with a 2 mm mesh widtl at least 99 % to pass throu a sieve with a 10 m mesh widtl 	gh n n n n n n n n n n n n n n n n n n n	
2	Calcium chloride solution	Calcium chloride solution of industrial origin	12 % CaO Calcium expressed as water-soluble CaO		Calcium oxide Optional: for plant spraying
[^{F76} 2.1	Calcium formate	Chemically obtained product containing calcium formate as essential ingredient	33,6 % CaO Calcium expressed as water-soluble CaO 56 % formate		Calcium oxide Formate
2.2	Calcium formate fluid	Product obtained by dissolution in water of calcium formate	21 % CaO Calcium expressed as water-soluble CaO 35 % formate		Calcium oxide Formate]
[^{F77} 2.3	Calcium chelate of iminodisuccini acid	Chemically obtained cproduct containing calcium chelate of	9 % CaO Calcium expressed as CaO, chelated by iminodisuccin	ic	Calcium expressed as CaO, chelated by iminodisuccinic acid (IDHA)

			10 % MgO 17 % SO 3 Magnesium and sulphur expressed as water-soluble magnesium oxide and sulphur trioxide		
[^{F78} 5	Magnesium sulphate	Product containing heptahydrated magnesium sulphate as main ingredient	15 % MgO 28 % SO ₃ Where micro- nutrients are added, and declared in accordance with Article 6(4) and 6(6):	The usual trade names may be added	Water-soluble magnesium oxide Water-soluble sulphur trioxide]
4	Kieserite	Product of mineral origin containing monohydrated magnesium sulphate as main component	24 % MgO 45 % SO ₃ Magnesium and sulphur expressed as water-soluble magnesium oxide and sulphur trioxide	Usual trade names may be added	Water-soluble magnesium oxide Optional: water-soluble sulphur trioxide
3	Elemental sulphur	Comparatively refined natural or industrial product	98 % S (245 %: SO ₃) Sulphur expressed as total SO ₃		Total sulphur trioxide
		iminodisuccini acid as essential ingredient, without addition of organic nutrients of animal or vegetable origin	cacid (IDHA) water-soluble.		water- soluble]

		sulphate of industrial origin	water-soluble magnesium oxide and water-soluble sulphuric anhydride	sulphuric anhydride
5.2	Magnesium hydroxide	Product obtained chemically and having as its essential ingredient magnesium hydroxide	60 % MgO Particle size: at least 99 % able to pass through a sieve with a mesh of 0,063 mm	Total magnesium oxide
5.3	Suspension of magnesium hydroxide	Product obtained by suspension of type 5.2	24 % MgO	Total magnesium oxide
6	Magnesium chloride solution	Product obtained by dissolving magnesium chloride of industrial origin	13 % MgO Magnesium expressed as magnesium oxide Maximum calcium content: 3 % CaO	Magnesium oxide

Textual Amendments

- F76 Inserted by Commission Regulation (EU) No 137/2011 of 16 February 2011 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).
- F77 Inserted by Commission Regulation (EU) 2020/1666 of 10 November 2020 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purpose of including a new type of EC fertiliser in Annex I (Text with EEA relevance).
- **F78** Substituted by Commission Regulation (EC) No 1020/2009 of 28 October 2009 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I, III, IV and V thereto to technical progress (Text with EEA relevance).

E. Inorganic micro-nutrient fertilisers

Explanatory note: The following notes are applicable to the whole of Part E.

Note 1: A chelating agent may be designated by means of its initials as set out in E.3.

Note 2: If the product leaves no solid residue after being dissolved in water it may be described as 'for dissolution'.

Note 3: Where a micro-nutrient is present in a chelated form, the pH range guaranteeing acceptable stability of the chelated fraction shall be stated.

E.1. Fertilisers containing only one micro-nutrient

E.1.1. Boron

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
la	Boric acid	Product obtained by the action of an acid on a borate	14 % water- soluble B	The usual trade names may be added	Water-soluble boron (B)
1b	Sodium borate	Chemically obtained product containing as its essential component a sodium borate	10 % water- soluble B	The usual trade names may be added	Water-soluble boron (B)
1c	Calcium borate	Product obtained from colemanite or pandermite containing as its essential ingredient calcium borates	7 % total B Particle size: at least 98 % passing through a 0,063 mm sieve	The usual trade names may be added	Total boron (B)
1d	Boron ethanol amine	Product obtained by reacting a boric acid with an ethanol amine	8 % water- soluble B		Water-soluble boron (B)
1e	Borated fertiliser in solution	Product obtained by dissolving types 1a and/ or 1b and/or 1d	2 % water- soluble B	The designation must include the names of the	Water-soluble boron (B)

				constituents present	
[^{F79} 1f	Borated fertiliser in suspension	Product obtained by suspending types 1a and/ or 1b and/or 1c and/or 1d in water	2 % total B	The designation must include the names of the constituents present	Total boron (B) Water-soluble boron (B) if present]

Textual Amendments

F79 Substituted by Commission Regulation (EU) No 223/2012 of 14 March 2012 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).

E.1.2. Cobalt

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
2a	Cobalt salt	Chemically obtained product containing a mineral salt of cobalt as its essential ingredient	19 % water- soluble Co	The designation must include the name of the mineral anion	Water-soluble cobalt (Co)
[^{F80} 2b	Cobalt chelate	Water-soluble product containing cobalt chemically combined with authorised chelating agent(s)	5 % of water- soluble cobalt and at least 80 % of the water-soluble cobalt is chelated by authorised chelating agent(s)	Name of each authorised chelating agent that chelates at least 1 % water-soluble cobalt and that can be identified and quantified by a	Water-soluble cobalt (Co) Optional: Total cobalt (Co) chelated by authorised chelating agents Cobalt (Co) chelated by each authorised

				[^{F81} recognised standard]	chelating agent that chelates at least 1 % water-soluble cobalt and that can be identified and quantified by a [^{F81} recognised standard]]
[^{F79} 2c	Cobalt fertiliser solution	Aqueous solution of types 2a and/ or 2b or 2d	2 % water- soluble Co When types 2a and 2d are mixed, the complexed fraction must be at least 40 % of the water-soluble Co	of the mine anior if prese (2) the name of any autho chela agen that chela at least 1 % water solub coba if prese and that can be ident and by a	agent that can -be identified by a t [^{F81} recognised standard] Difference total cobalt (Co) chelated by authorised chelating tagent(s)] tified cognised

				agent that can be ident by a	rised lexing ified cognised ard],
[^{F82} 2d	Cobalt complex	Water-soluble product containing cobalt chemically combined with one authorised complexing agent	5 % of water- soluble Co and the complexed fraction must be at least 80 % of the water-soluble cobalt	The designation must include the name of the authorised complexing agent that can be identified by a [^{F81} recognised standard]	Water-soluble cobalt (Co) Total cobalt (Co) complexed]

Textu	al Amendments
F80	Substituted by Commission Regulation (EU) No 137/2011 of 16 February 2011 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).
F81	Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(c) ; 2020 c. 1, Sch. 5 para. 1(1)
F82	Inserted by Commission Regulation (EU) No 223/2012 of 14 March 2012 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).

E.1.3. Copper

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of	Other data on the type of designation	Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
----	---------------------	---	--	--	--

			nutrientsOth requirements		
1	2	3	4	5	6
3a	Copper salt	Chemically obtained product containing a mineral salt of copper as its essential ingredient	20 % water- soluble Cu	The designation must include the name of the mineral anion	Water-soluble copper (Cu)
3b	Copper oxide	Chemically obtained product containing copper oxide as its essential ingredient	70 % total Cu Particle size: at least 98 % passing through a 0,063 mm sieve		Total copper (Cu)
3c	Copper hydroxide	Chemically obtained product containing copper hydroxide as its essential ingredient	45 % total Cu Particle size: at least 98 % passing through a 0,063 mm sieve		Total copper (Cu)
[^{F80} 3d	Copper chelate	Water-soluble product containing copper chemically combined with authorised chelating agent(s)	5 % of water- soluble copper and at least 80 % of the water- soluble copper is chelated by authorised chelating agent(s)	Name of each authorised chelating agent that chelates at least 1 % water-soluble copper and that can be identified and quantified by a [^{F81} recognised standard]	Water-soluble copper (Cu) Optional: Total copper (Cu) chelated by authorised chelating agents Copper (Cu) chelated by each authorised chelating agent that chelates at least 1 % water-soluble copper and that can be identified and quantified by a

					[^{F81} recognised standard]]
3e	Copper-based fertiliser	Product obtained by mixing types 3a and/or 3b and/or 3c and/or a single one of type 3d and, if required, filler that is neither nutrient nor toxic	5 % total Cu	(2) of the copp comp (2) the	t
[^{F79} 3f	Copper fertiliser solution	Aqueous solution of types 3a and/ or 3d or 3i	2 % water- soluble Cu When types 3a and 3i are mixed, the complexed fraction must be at least 40 % of the water-soluble Cu	of the mine anior if prese (2) the name of any autho chela agent that chela at least 1 % water solub copp if	agent that can t-be identified by a tandard] "Optional: Total copper (Cu) chelated by authorised

				by a [^{F81} re stand or the name of the autho comp agent that can be ident by a	rised lexing ified cognised
3g	Copper oxychloride	Chemically obtained product containing copper oxychloride [Cu ₂ Cl(OH) ₃] as an essential ingredient	50 % total Cu Particle size: at least 98 % passing through a 0,063 mm sieve		Total copper (Cu)
[^{F79} 3h	Copper fertiliser in suspension	Product obtained by suspending types 3a and/ or 3b and/or 3c and/or 3d and/or 3g in water	17 % total Cu	(2) of the anion if prese of any autho chela	[^{F81} recognised

				1 % water solub coppe if prese and that can be identi and quant by a [^{F81} re stand	le er nt ified ified cognised
[^{F82} 3i	Copper complex	Water-soluble product containing copper chemically combined with one authorised complexing agent	5 % of water- soluble Cu and the complexed fraction must be at least 80 % of the water-soluble copper	The designation must include the name of the authorised complexing agent that can be identified by a [^{F81} recognised standard]	Water-soluble copper (Cu) Total copper (Cu) complexed]

[^{F83}E.1.4. Iron

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight) Data on the expression of nutrients Other requirements	Other data on the type of designation	Nutrient content to be declared Forms and solubilities of the nutrients Other criteria
1	2	3	4	5	6
4a	Iron salt	Chemically obtained product containing a mineral iron salt as its essential ingredient	12 % water- soluble Fe	The designation must include the name of the mineral anion	Water-soluble iron (Fe)

[^{F80} 4b	Iron chelate	Water- soluble product containing iron chemically combined with authorised chelating agent(s)	5 % of water-soluble iron, of which the chelated fraction is at least 80 % and at least 50 % of the water- soluble iron is chelated by authorised chelating agent(s)	Name of each authorised chelating agent that chelates at least 1 % water-soluble iron and that can be identified and quantified by a [^{F81} recognised standard]	Water-soluble iron (Fe) Optional: Total iron (Fe) chelated by authorised chelating agents Iron (Fe) chelated by each authorised chelating agent that chelates at least 1 % water-soluble iron and that can be identified and quantified by a [^{F81} recognised standard]]
[^{F79} 4c	Iron fertiliser solution	Aqueous solution of types 4a and/ or 4b or 4d	2 % water- soluble Fe When types 4a and 4d are mixed, the complexed fraction must be at least 40 % of the water-soluble Fe	of the miner anion if prese (2) the name of any autho chela agent that chela at least 1 %	the standard] Iron (Fe) Somplexed by the authorised complexing agent that can be identified by a [^{F81} recognised standard]

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

				and quant by a [^{F81} re- stand or the name of the autho comp agent that can be identi by a	cognised ard] rised lexing fied cognised
[^{F82} 4d	Iron complex	Water- soluble product containing iron chemically combined with one authorised complexing agent	5 % of water-soluble Fe and the complexed fraction must be at least 80 % of the water-soluble iron	The designation must include the name of the authorised complexing agent that can be identified by a [^{F81} recognised standard]	Water-soluble iron (Fe) Total iron (Fe) complexed]]

Textual Amendments

F83 Substituted by Commission Regulation (EC) No 162/2007 of 19 February 2007 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).

E.1.5. Manganese

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data	Other data on the type of designation	Nutrient content to be declaredForms and solubilities
----	---------------------	---	--	--	--

			on the expression of nutrientsOth requirements		of the nutrientsOther criteria
1	2	3	4	5	6
5a	Manganese salt	Chemically obtained product containing a mineral manganese salt (Mn II) as its essential ingredient	17 % water- soluble Mn	The designation must include the name of the combined anion	Water-soluble manganese (Mn)
[^{F80} 5b	Manganese chelate	Water-soluble product containing manganese chemically combined with authorised chelating agent(s)	5 % of water- soluble manganese and at least 80 % of the water-soluble manganese is chelated by authorised chelating agent(s)	Name of each authorised chelating agent that chelates at least 1 % water-soluble manganese and that can be identified and quantified by a [^{F81} recognised standard]	Water-soluble manganese (Mn) Optional: Total manganese (Mn) chelated by authorised chelating agents Manganese (Mn) chelated by each authorised chelating agent that chelates at least 1 % water-soluble manganese and that can be identified and quantified by a [^{F81} recognised standard]]
5c	Manganese oxide	Chemically obtained product containing manganese oxides as essential ingredients	40 % total Mn Particle size: at least 80 % passing through a 0,063 mm sieve		Total manganese (Mn)

5d	Manganese- based fertiliser	Product obtained by mixing types 5a and 5c	17 % total Mn	The designation must include the name of the manganese components	Total manganese (Mn) Water-soluble manganese (Mn) if this accounts for at least 1/4 of the total manganese
[^{F79} 5e	Manganese fertiliser solution	Aqueous solution of types 5a and/ or 5b or 5g	2 % water- soluble Mn When types 5a and 5g are mixed, the complexed fraction must be at least 40 % of the water-soluble Mn	of the miner anion if prese (2) the name of any autho chela agent that chela at least 1 % water solub mang if prese and that can be identi and utho chela agent that solub mang if prese and that chela agent that chela agent that solub mang if prese solub mang if prese solub mang if prese solub mang if prese solub mang if prese and that chela agent that solub mang if prese and that chela agent that solub mang if prese and that chela agent that solub mang if prese and that chela agent that solub mang if prese and that solub mang if prese and that chela agent that solub be identi solub be solub be identi and that chela agent that solub be identi solub be identi and that solub be identi and that solub be identi and that solub be identi and that solub be identi and that solub be identi solub be identi solub be identi solub be identi and that solub be identi solub be identi solub solub solub that solub solub that solub solu	[^{F81} recognised (Manganese (Mn) complexed by the authorised leomplexing angest that can be identified Thy a [^{F81} recognised standard] Optional: total finanganese (Mn) chelated Thy authorised chelating (Securit(S)] ard]

				com ager that can be iden by a [^{F81} r	tified
[^{F82} 5f	Manganese fertiliser in suspension	Product obtained by suspending types 5a and/ or 5b and/or 5c in water	17 % total Mn	of the anio if press (2) the nam of any auth chel agen that solu man f solu that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel agen that chel chel agen that agen that chel chel agen that chel agen	Water-soluble e(s)anganese (Mn) if present nsManganese (Mn) chelated enby each authorised e chelating agent that chelates at orisest 1 % atimgter-soluble and that at can be identified and t quantified by a er-[^{F81} recognised bl\$tandard] ganese ent tified
5g	Manganese complex	Water-soluble product containing	5 % of water- soluble Mn and the	The designation must include	Water-soluble manganese (Mn)

	manganese chemically combined with one authorised complexing agent	complexed fraction must be at least at least 80 % of the water-soluble manganese	the name of the authorised complexing agent that can be identified by a [^{F81} recognised standard]	(Mn) complexed]
--	--	--	--	--------------------

E.1.6. Molybdenum

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
6a	Sodium molybdate	Chemically obtained product containing sodium molybdate as its essential ingredient	35 % water- soluble Mo		Water-soluble molybdenum (Mo)
6b	Ammonium molybdate	Chemically obtained product containing ammonium molybdate as its essential ingredient	50 % water- soluble Mo		Water-soluble molybdenum (Mo)
6с	Molybdenum- based fertiliser	Product obtained by mixing types 6a and 6b	35 % water- soluble Mo	The designation must include the names of the molybdenum components	Water-soluble molybdenum (Mo)
6d	Molybdenum- based	Product obtained by dissolving	3 % water- soluble Mo	The designation must include	Water-soluble molybdenum (Mo)

fertiliser solution	types 6a and/ or one of the type 6b in water	the name(s) of the molybdenum component(s)	
------------------------	---	---	--

E.1.7. Zinc

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight)Data on the expression of nutrientsOth requirements		Nutrient content to be declaredForms and solubilities of the nutrientsOther criteria
1	2	3	4	5	6
7a	Zinc salt	Chemically obtained product and having as its essential ingredient a mineral salt of zinc	15 % water- soluble Zn	The designation must include the name of the mineral anion	Water-soluble zinc (Zn)
[^{F80} 7b	Zinc chelate	Water-soluble product containing zinc chemically combined with authorised chelating agent(s)	5 % of water- soluble zinc and at least 80 % of the water- soluble zinc is chelated by authorised chelating agent(s)	Name of each authorised chelating agent that chelates at least 1 % water-soluble zinc and that can be identified and quantified by a [^{F81} recognised standard]	Water-soluble zinc (Zn) Optional: Total zinc (Zn) chelated by authorised chelating agents Zinc (Zn) chelated by each authorised chelating agent that chelates at least 1 % water-soluble zinc and that can be identified and quantified by a

					[^{F81} recognised standard]]
7c	Zinc oxide	Chemically obtained product and having as its essential ingredient zinc oxide	70 % total Zn Particle size: at least 80 % passing through a 0,063 mm sieve		Total zinc (Zn)
7d	Zinc-based fertiliser	Product obtained by mixing types 7a and 7c	30 % total Zn	The designation must include the name of the zinc components present	Total zinc (Zn) Water-soluble zinc (Zn) if this accounts for at least 1/4 of the total zinc (Zn)
[^{F79} 7e	Zinc fertiliser solution	Aqueous solution of types 7a and/ or 7b or 7g	2 % water- soluble Zn When types 7a and 7g are mixed, the complexed fraction must be at least 40 % of the water-soluble Zn	of the mine anior if prese (2) the name of any autho chela agent that chela at least 1 % water solub zinc if prese and that can be	Water-soluble zinc (Zn) Zinc (Zn) chelated (b) each authorised chelating ralgent that (c) elates at least 1 % nvater-soluble zinc and that can be identified and quantified nbyed tip grecognised standard] Zinc (Zn) teomplexed by the authorised complexing agent that can be identified loy a [^{F81} recognised standard] Optional: total zinc (Zn) chelated by authorised chelating figent(s)]

					quantified by a [^{F81} recognised standard] or the name of the authorised complexing agent that can be identified by a [^{F81} recognised standard]
[^{F76} 7f	Zinc fertiliser suspension	Product obtained by suspending type 7(a) and/ or 7(c) and/or types 7(b) in water	20 % total zinc	(2)	

				[^{F81} re stand	cognised ard]
[^{F82} 7g	Zinc complex	Water-soluble product containing zinc chemically combined with one authorised complexing agent	5 % of water- soluble zinc and the complexed fraction must be at least 80 % of the water-soluble zinc	The designation must include the name of the authorised complexing agent that can be identified by a [^{F81} recognised standard]	Water-soluble zinc (Zn) Total zinc (Zn) complexed]

- [^{F80}E.2. *Minimum micro-nutrient content, percentage weight of fertiliser; mixed micro-nutrient fertiliser types]*
- [^{F80}E.2.1. *Minimum micro-nutrient content in solid or fluid mixtures of micro-nutrient fertilisers, percentage weight of fertiliser]*

Where the micro-nutrient is present in a form that is			
exclusively mineral	chelated or complexed		
0,2	0,2		
0,02	0,02		
0,5	0,1		
2,0	0,3		
0,5	0,1		
0,02	_		
0,5	0,1		
	exclusively mineral 0,2 0,02 0,5 2,0 0,5 0,02		

F84

Textual Amendments

F84 Deleted by Commission Regulation (EU) No 137/2011 of 16 February 2011 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).

F84

[^{F80}E.2.2. Minimum micro-nutrient content in [^{F16}UK FERTILISERS] containing primary and/ or secondary nutrient(s) with micro-nutrient(s) applied to the soil, percentage weight of fertiliser]

 For crops or grassland	For horticultural use

Boron (B)	0,01	0,01
Cobalt (Co)	0,002	—
Copper (Cu)	0,01	0,002
Iron (Fe)	0,5	0,02
Manganese (Mn)	0,1	0,01
Molybdenum (Mo)	0,001	0,001
Zinc (Zn)	0,01	0,002

[^{F80}E.2.3. Minimum micro-nutrient content in [^{F16}UK FERTILISERS] containing primary and/ or secondary nutrient(s) with micro-nutrient(s) for leaf sprays, percentage weight of fertiliser]

Boron (B)	0,01
Cobalt (Co)	0,002
Copper (Cu)	0,002
Iron (Fe)	0,02
Manganese (Mn)	0,01
Molybdenum (Mo)	0,001
Zinc (Zn)	0,002

[^{F76}E.2.4. Solid or fluid mixtures of micro-nutrient fertilisers

[^{F79} No	Type designation	Data on method of production and essential requirements	Minimum content of nutrients (percentage by weight) Data on expression of nutrients Other requirements		Other data on the type designation	Nutrient content to be declared Forms and solubilities of the micro- nutrients Other criteria
1	2	3	4		5	6
1	Mixture of micro- nutrients	Product obtained by mixing two or more E.1 types of fertiliser or obtained by dissolving and/or suspending	(2)	for a solid mixtu or 2 % total	Name of each micronutrient and its chemical seymbol present listed in alphabetical mrder of their	Total content of each micro- nutrient expressed as percentage of the fertiliser by mass, except where a micro-

two or more E.1 types of fertiliser in water	fluid	chemical symbols intellowed by the name(s) of its counter-ion(s) immediately after the type designation.	nutrient is totally water- soluble. Water-soluble content of each micro- nutrient expressed as percentage of the fertiliser by mass where the soluble content is at least half of the total content. Where a micro- nutrient is totally water- soluble, only the water-soluble content shall be declared. Where a micro- nutrient is chemically linked with an organic molecule, the micro- nutrient shall be declared immediately following the water-soluble content as a percentage of the fertiliser by mass, followed by one of the terms 'chelated by' or 'complexed by' with the name of each authorised chelating or
---	-------	--	--

		complexing
		agent(s) as
		set out in
		Section E.3.
		The name of
		the organic
		molecule may
		be replaced
		by its initials.
		The following
		statement
		below the
		compulsory
		and optional
		declarations:
		'To be used
		only where
		there is a
		recognised
		need. Do not
		exceed the
		appropriate
		dose rate'.]]

[^{F83}E.3. List of authorised organic chelating and complexing agents for micro-nutrients

The following substances are authorised provided that their corresponding nutrient chelate has complied with the [F85 provisions of Regulation (EC) No 1272/2008].

```
Textual Amendments
F85 Words in Annex 1 s. E.3 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(21)(c); 2020 c. 1, Sch. 5 para. 1(1)
```

[^{F79}E.3.1. Chelating agents ^{M1}

No	Designation	Alternative designation	Chemical formula	CAS number of the acid ^a
1	Ethylenediamine acid	tefEdaTetic	C 10 H 16 O 8 N 2	60-00-4
2	2- hydroxyethyleth acid	HEEDTA ylenediaminetriacet	C 10 H 18 O 7 ticN 2	150-39-0
3	diethylenetriamii acid	nepeñPaacetic	C ₁₄ H ₂₃ O ₁₀ N ₃	67-43-6
a For inform	nation only.]		N 3	

Acids, or sodium, potassium or ammonium salts of:

	acid		1 Z	
[^{F86} 12	[S,S]- Ethylenediamined	[S,S]-EDDS isuccinic	C 10 H 16 O 8 N 2	20846-91-7]
11	N,N'-di(2- hydroxybenzyl)etl N,N'-diacetic acid	HBED nylenediamine-	C 20 H 24 N 2 O 6	35998-29-9
10	Iminodisuccinic acid	IDHA	C 8 H 11 O 8 N	131669-35-7
9	ethylenediamine- N,N'-di[(2- hydroxy-5- sulfophenyl)acetic acid] and its condensation products	EDDHSA	C 18 H 20 O 12 N 2 S 2 + n*(C 12 H 14 O 8 N 2 S)	57368-07-7 and 642045-40-7
8	ethylenediamine- N,N'-di[(5- carboxy-2- hydroxyphenyl)ac acid]	EDDCHA etic	C ₂₀ H ₂₀ O ₁₀ N ₂	85120-53-2
7	ethylenediamine- N-[(ortho- hydroxy- methylphenyl)acet acid]- N'- [(para-hydroxy- methylphenyl)acet acid]		C 20 H 24 O 6 N 2	641633-41-2
6	ethylenediamine- N,N'-di[(ortho- hydroxy- methylphenyl)ace acid]	[0,0] EDDHMA	C ₂₀ H ₂₄ O ₆ N ₂	641632-90-8
5	ethylenediamine- N-[(ortho- hydroxyphenyl)ac acid]- N'-[(para- hydroxyphenyl)ac acid]		C ₁₈ H ₂₀ O ₆ N ₂	475475-49-1
4	ethylenediamine- N,N'-di[(ortho- hydroxyphenyl)ac acid]	[0,0] EDDHA etic	C 18 H 20 O 6 N 2	1170-02-1

Textual Amendments

F86 Inserted by Commission Regulation (EU) 2016/1618 of 8 September 2016 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV (Text with EEA relevance).

Marginal Citations

M1 The chelating agents are to be identified and quantified by the recognised standards that cover the mentioned chelating agents. [Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2) (a); 2020 c. 1, Sch. 5 para. 1(1)]

[^{F79}E.3.2. Complexing agents ^{M2}

The following complexing agents are only permitted in products for fertigation and/or foliar application, except for Zn lignosulfonate, Fe lignosulfonate, Cu lignosulfonate and Mn lignosulfonate that can be applied directly to the soil.

[^{F70} No	Designation	Alternative designation	Chemical formula	CAS number of the acid ^a
1	Lignosulfonic acid	LS	No chemical formula available	8062-15-5 ^b
[^{F86} 2	Heptagluconic acid	HGA	C 7 H 14 O 8	23351-51-1]

Acids, or sodium, potassium or ammonium salts of:

a For information only.

b For quality reasons, the relative phenolic hydroxyl content and the relative organic sulphur content as measured by EN 16109 must exceed 1,5 % and 4,5 % respectively.]]]

Marginal Citations

M2 The complexing agents are to be identified by the recognised standards that cover the mentioned complexing agents. [Words in Regulation substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(2)(a); 2020 c. 1, Sch. 5 para. 1(1)]

[^{F87}F. Nitrification and urease inhibitors

The urease and nitrification inhibitors listed in the Tables F.1. and F.2. below may be added to the nitrogenous fertilisers types listed in Sections A.1., B.1., B.2., B.3., C.1. and C.2. of Annex I subject to the following provisions:

- (1) at least 50 % of the total nitrogen content of the fertiliser consists of the nitrogen forms specified in column 3;
- (2) they do not belong to the fertiliser types mentioned in column 4.

Fertilisers to which a nitrification inhibitor listed in Table F.1. has been added shall have the words 'with nitrification inhibitor ([type designation of nitrification inhibitor])' added to their type designation.

Fertilisers to which a urease inhibitor listed in Table F.2. has been added shall have the words 'with urease inhibitor ([type designation of urease inhibitor])' added to their type designation.

Technical information, as complete as possible, must be provided with each package or bulk consignment by the person responsible for marketing. This information must enable the user in particular to determine the rates and timing of application in relation to the crop being grown.

New nitrification inhibitors or urease inhibitors may be included in the Tables F1 or F2 respectively after evaluation of the technical files submitted in accordance with guidelines to be elaborated for these compounds.

F.1.

NITRIFICATION INHIBITORS

No	Type designation and composition of the nitrification inhibitor	Minimum and maximum inhibitor content as a percentage by mass of the total nitrogen present as ammonium nitrogen and urea nitrogen.	[^{F1} UK fertiliser] types for which the inhibitor may not be used	Description of nitrification inhibitors with which mixtures are allowed Data on permitted ratio
1	2	3	4	5
1	Dicyandiamide ELINCS No 207-312-8	Minimum 2,25 Maximum 4,5		
[^{F82} 2	Product containing dicyandiamide (DCD) and 1,2,4-triazole (TZ) EC# EINECS No 207-312-8 EC# EINECS No 206-022-9	Minimum 2,0 Maximum 4,0		Mixture ratio 10:1 (DCD:TZ)
3	Product containing 1,2,4-triazole (TZ) and 3- methylpyrazole (MP) EC# EINECS No 206-022-9	Minimum 0,2 Maximum 1,0		Mixture ratio 2:1 (TZ:MP)]

	EC# EINECS No 215-925-7		
[^{F75} 4	3,4- dimethyl-1H- pyrazole phosphate (DMPP) EC No 424-640-9	Minimum: 0,8 Maximum: 1,6]	
[^{F88} 5	Isomeric mixture of 2-(3,4- dimethylpyrazole- yl)-succinic acid and 2-(4,5- dimethylpyrazole- yl)-succinic acid (DMPSA) EC No 940-877-5	Maximum: 1,6] 1-	

Textual Amendments

F88 Inserted by Commission Regulation (EU) 2019/1102 of 27 June 2019 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV (Text with EEA relevance).

F.2.

No Type Minimum and Description [^{F1}UK designation maximum fertiliser] of urease and inhibitor inhibitors types for composition content as a with which which the of the urease mixtures are percentage by inhibitor may inhibitor mass of the allowed Data not be used total nitrogen on permitted present as ratio urea nitrogen 2 4 1 3 5 N-(n-butyl) Minimum 0,09 thiophosphoric Maximum 0,20 triamide (NBPT) **ELINCS No** 435-740-7 [^{F82}2 Minimum 0.04 N-(2nitrophenyl)phosph Maiximum 0,15] a [^{F89}Tolerance on the portion of NPPT: 20 %.]]

UREASE INHIBITORS

	triamide (2- NPT) EC# EINECS No 477-690-9		
[^{F89} 3	Mixture of N- butylphosphorothi triamide (NBPT) and N- propylphosphorothi triamide (NPPT) (ratio 3:1 ^a) Reaction mixture: EC No 700-457-2 Mixture of NBPT/NPPT: ELINCS No 435-740 NPPT: CAS No 916809-	nioic -7	

a [^{F89}Tolerance on the portion of NPPT: 20 %.]]

Textual Amendments

F89 Substituted by Commission Regulation (EU) 2016/1618 of 8 September 2016 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV (Text with EEA relevance).

Textual Amendments

F87 Inserted by Commission Regulation (EC) No 1107/2008 of 7 November 2008 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV thereto to technical progress (Text with EEA relevance).

[^{F90}G. Liming materials

The words 'LIMING MATERIAL' shall be added after the term '[^{F1}UK FERTILISER]'.

All the properties mentioned in the tables of Sections G.1 to G.5 refer to the product as supplied unless otherwise specified.

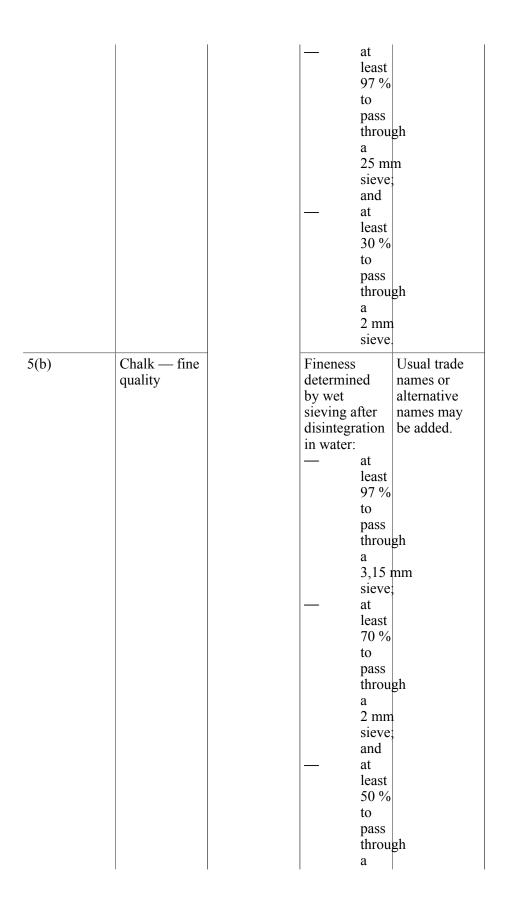
Granulated liming materials which are produced by aggregating smaller primary particles must break down when stirred in water into particles with fineness distributions as specified in the type descriptions, and as measured using Method 14.9 'Determination of the breakdown of granules'.

G.1. *Natural Limes*

Νο	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight) Data on the expression of nutrients Other requirements	Other data on the type designation	Nutrient content to be declared Forms and solubilities of the nutrients Other criteria to be declared
1	2	3	4	5	6
1(a)	Limestone — standard quality	Product containing as its essential ingredient calcium carbonate, obtained by grinding of natural deposits of limestone.	Minimum neutralising value: 42 Fineness determined by wet sieving: — at least 97 % to pass throu a 3,15 f sieve at least 80 % to pass throu a 1 mm sieve and — at least 50 % to pass throu a 1 mm sieve and 5 f sieve and 5 f sieve and 5 f sieve and 5 f sieve at sieve sieve at sieve sieve sieve at sieve at sieve at sieve at sieve sieve sieve sieve at sieve sieve at sieve si sieve si si sieve sieve sieve sieve si si sieve si si si si si si si si si si si si si	gh mm ; gh ; gh	Neutralising value Total calcium Total magnesium (optional) Reactivity and method of determination (optional) Moisture (optional) Fineness determined by wet sieving (optional) Soil incubation results (optional)
1(b)	Limestone — fine quality	-	Minimum neutralising value: 50	Usual trade names or alternative	-

			9° to pa th a 2° si - at le 80° to pa th a 1° - at le 50° to pa th a 0° , si ar - at 1° 1^{0	t asst 7% ass irroug mm eve; t ass irroug ass irroug 315 eve; asst 0% ass irroug 315 eve; ass irroug irroug i i i i i i i i i i i i i i i i i i i	gh gh mm	
2(a)	Magnesian limestone — standard quality	Product containing as its essential ingredients calcium carbonate and magnesium carbonate, obtained by grinding of natural	Minimum neutralising value: 45 Total magnesium	g 1:	Usual trade names or alternative names may be added.	Neutralising value Total calcium Total magnesium Reactivity and method of determination (optional)

		deposits of magnesian limestone.		at least 97 % to pass throu a 3,15 f sieve at least 80 % to pass throu a 1 mm sieve and at least 50 % to pass throu a 1 mm sieve at 1 sieve at 1 mm sieve at 1 mm sieve at 1 mm sieve at 1 mm sieve sieve at 1 mm sieve sieve sieve sieve sieve sieve sieve sieve sieve at 1 sieve si si si si si si si si si si si si si	gh mm ; gh ; gh	Moisture (optional) Fineness determined by wet sieving (optional) Soil incubation results (optional)
2(b)	Magnesian limestone — fine quality		Minimun neutralisi value: 52 Total magnesiu 3 % MgC Fineness determine by wet sieving:	ing um:)	gh ,	


			 throu a 1 mm sieve at least 50 % to pass throu a 0,315 sieve and at least 30 % to pass throu a 0,1 m sieve 	gh gmm gh gh	
3(a)	Dolomitic limestone — standard quality	Product containing as its essential ingredients calcium carbonate and magnesium carbonate, obtained by grinding of natural deposits of dolomite.	Minimum neutralising value: 48 Total magnesium: 12 % MgO Fineness determined by wet sieving: — at least 97 % to pass throu a 3,15 f sieve — at least 80 % to pass throu a 1 mm sieve and	gh mm ; gh	Neutralising value Total calcium Total magnesium Reactivity and method of determination (optional) Moisture (optional) Fineness determined by wet sieving (optional) Soil incubation results (optional)

			at least 50 % to pass throu a 0,5 m sieve	gh im
3(b)	Dolomitic limestone — fine quality	Minimum neutralis value: 54 Total magnesi 12 % Ma Fineness determin by wet sieving: —	ing 4 um: gO	gh gh gh gh

_			throu a 0,1 m sieve	m	
4(a)	Marine limestone — standard quality	Product containing as its essential ingredient calcium carbonate, obtained by grinding of natural deposits of limestone of marine origin.	Minimum neutralising value: 30 Fineness determined by wet sieving: — at least 97 % to pass throu a 3,15 f sieve and — at least 80 % to pass throu a 1 mm sieve	gh mm gh	Neutralising value Total calcium Total magnesium (optional) Reactivity and method of determination (optional) Moisture (optional) Fineness determined by wet sieving (optional) Soil incubation results (optional)
4(b)	Marine limestone — fine quality		Minimum neutralising value: 40 Fineness determined by wet sieving: — at least 97 % to pass throu a 2 mm sieve and — at least 80 % to pass	1	

			throu a 1 mm sieve	1	
5(a)	Chalk — standard quality	Product containing as its essential ingredient calcium carbonate, obtained by grinding of natural deposits of chalk.	Fineness determined by wet sieving after disintegration in water: — at least 90 % to pass throu a 3,15 f sieve — at least 70 % to pass throu a 2 mm sieve and — at least 40 % to pass throu a 0,315 sieve and — at least 40 % to pass throu a 0,315 sieve and - at least 40 % to pass throu a 0,315 sieve and - at least 40 % to pass throu a 0,315 sieve a d fraction 1-2 mm (obtained by dry sieving) at least 40 % in citric acid Minimum neutralising value: 42 Fineness determined by wet sieving:	gh mm ; gh ; gh	Neutralising value Total calcium Total magnesium (optional) Reactivity and method of determination (optional) Moisture (optional) Fineness determined by wet sieving (optional) Soil incubation results (optional)

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

			0,315 sieve		
			Reactivity of fraction 1-2 mm (obtained by dry sieving)		
			at least 65 % in citric acid Minimum		
			neutralising value: 48 Fineness determined		
			by wet sieving: — at		
			least 97 % to		
			pass throu a 25 m	-	
			sieve and — at	2	
			least 30 % to pass		
			throu a 2 mm sieve		
6	Carbonate suspension	Product containing as its essential ingredients calcium carbonate and/or magnesium carbonate, obtained by grinding and suspending in water of natural deposits of	Minimum neutralising value: 35 Fineness determined by wet sieving: — at least 97 % to pass throu a 2 mm	gh	Neutralising value Total calcium Total magnesium if MgO \geq 3 % Moisture (optional) Reactivity and method of determination (optional) Fineness determined
		limestone, magnesian	sieve		by wet

	limestone,	<u> </u>	at	sieving
	dolomite or		least	(optional)
	chalk.		80 %	Soil
			to	incubation
			pass	results
			through	(optional)
			a	
			1 mm	
			sieve;	
			at	
			least	
			50 %	
			to	
			pass	
			through	
			a	
			0,315 mm	
			sieve;	
			and	
			at	
			least	
			30 %	
			to	
			pass	
			through	
			a	
			0,1 mm	
			sieve.	

G.2. Oxide and Hydroxide limes of natural origin

Νο	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight) Data on the expression of nutrients Other requirements	Other data on the type designation	Nutrient content to be declared Forms and solubilities of the nutrients Other criteria to be declared
1	2	3	4	5	6
1(a)	Burnt lime — basic quality	Product containing as its essential ingredient calcium oxide obtained by burning of natural	Minimum neutralising value: 75 Fineness determined by dry sieving: Fine:	The type designation must include the fineness type 'fine' or 'screened'. Usual trade names or alternative	Neutralising value Total calcium Total magnesium (optional) Fineness determined

		deposits of limestone.	Screened	at least 97 % to pass throu a 4 mm sieve l: at least 97 % to pass throu a 8 mm sieve and no more than 5 % to pass throu a 8 mm sieve	gh gh	by dry sieving (optional) Soil incubation results (optional)
1(b)	Burnt lime — premium quality	Product containing as its essential ingredient calcium oxide obtained by burning of natural deposits of limestone.	Minimur neutralis value: 85 Fineness determin by dry sieving: Fine: 	at least 97 % to pass throu a 4 mm sieve	The type designation must include the fineness type 'fine' or 'screened'. Usual trade names or alternative names may be added. gh	Neutralising value Total calcium Total magnesium (optional) Fineness determined by dry sieving (optional) Soil incubation results (optional)

			pass throu a 8 mm sieve and no more than 5 % to pass throu a 0,4 m sieve	gh	
2(a)	Magnesian burnt lime — basic quality	Product containing as its essential ingredients calcium oxide and magnesium oxide, obtained by burning of natural deposits of magnesian limestone.	Minimum neutralising value: 80 Total Magnesium: 7 % MgO Fineness determined by dry sieving: Fine: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 5 % to to pass throu b to pass throu to pass throu a to pass throu to to pass throu to to pass throu to to pass throu to to pass throu to to pass throu to to pass throu to to to to to to to to to to to to throu to to to to to to to to throu to to to to to to to to to to to to to	gh n gh	Neutralising value Total calcium Total magnesium Fineness determined by dry sieving (optional) Soil incubation results (optional)

			pass throu a 0,4 m sieve	im	
2(b)	Magnesian burnt lime — premium quality	Product containing as its essential ingredients calcium oxide and magnesium oxide, obtained by burning of natural deposits of magnesian limestone.	Minimum neutralising value: 85 Total Magnesium: 7 % MgO Fineness determined by dry sieving: Fine: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 8 mm sieve Screened: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 4 mm sieve Screened: — at least 97 % to pass throu a 8 mm sieve Screened: — at sieve Screened: — at sieve Screened: A S mm sieve Screened: A S mm sieve Screened A S mm sieve Screened A S mm sieve and A S % S S S S S S S S S S S S S S S S S S	gh gh gh m	Neutralising value Total calcium Total magnesium Fineness determined by dry sieving (optional) Soil incubation results (optional)
3(a)	Dolomitic burnt lime — basic quality	Product containing as its essential ingredients calcium oxide and	Minimum neutralising value: 85 Total Magnesium: 17 % MgO	The type designation must include the fineness type 'fine' or 'screened'.	Neutralising value Total calcium Total magnesium

		magnesium oxide, obtained by burning of natural deposits of dolomite.	Fineness determin by dry sieving: Fine: Screened	ed at least 97 % to pass throu a 4 mm sieve	gh gh	Fineness determined by dry sieving (optional) Soil incubation results (optional)
				0,4 m sieve		
3(b)	Dolomitic burnt lime — premium quality	Product containing as its essential ingredients calcium oxide and magnesium oxide, obtained by burning of natural deposits of dolomite.	Minimur neutralisi value: 95 Total Magnesin 17 % Mg Fineness determin by dry sieving: Fine:	n ing um: gO	The type designation must include the fineness type 'fine' or 'screened'. Usual trade names or alternative names may be added.	Neutralising value Total calcium Total magnesium Fineness determined by dry sieving (optional) Soil incubation results (optional)

			a 4 mm sieve Screened: — at least 97 % to pass throu a 8 mm sieve and — no more than 5 % to pass throu a 8 mm sieve and _ no more than 5 % to pass	gh gh gh um	
4	Hydrated burnt lime (slaked lime)	Product containing as its essential ingredients calcium hydroxide, obtained by burning and slaking of natural deposits of limestone.	Minimum neutralising value: 65 Fineness determined by wet sieving: — at least 95 % to pass throu a 0,16 sieve	gh mm	Neutralising value Total calcium Total magnesium (optional) Fineness determined by wet sieving (optional) Moisture (optional) Soil incubation results (optional)
5	Hydrated magnesian burnt lime (slaked magnesian lime)	Product containing as its essential ingredients calcium hydroxide and magnesium hydroxide, obtained by burning	Minimum neutralising value: 70 Total Magnesium: 5 % MgO Fineness determined by wet sieving:	Usual trade names or alternative names may be added.	Neutralising value Total calcium Total magnesium Fineness determined by wet sieving (optional)

		and slaking of natural deposits of magnesian limestone.		gh mm	Moisture (optional) Soil incubation results (optional)
6	Hydrated dolomitic burnt lime	Product containing as its essential ingredients calcium hydroxide and magnesium hydroxide, obtained by burning and slaking, of natural deposits of dolomite.	Minimum neutralising value: 70 Total Magnesium: 12 % MgO Fineness determined by wet sieving: — at least 95 % to pass throu a 0,16 f sieve	gh mm	Neutralising value Total calcium Total magnesium Fineness determined by wet sieving (optional) Moisture (optional) Soil incubation results (optional)
7	Hydrated lime suspension	Product containing as its essential ingredients calcium hydroxide and/or magnesium hydroxide, obtained by burning, slaking and suspending in water of natural deposits of limestone, magnesian limestone or dolomite.	Minimum neutralising value: 20 Fineness determined by wet sieving: — at least 95 % to pass throu a 0,16 fine sieve	gh mm	Neutralising value Total calcium Total magnesium if $MgO \ge 3 \%$ Moisture (optional) Fineness determined by wet sieving (optional) Soil incubation results (optional)

G.3. Limes from industrial processes

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight) Data on the expression of nutrients Other requirements	Other data on the type designation	Nutrient content to be declared Forms and solubilities of the nutrients Other criteria to be declared
1	2	3	4	5	6
1(a)	Sugar factory lime	Product from sugar production obtained by carbonation using exclusively burnt lime from natural sources and containing as essential ingredient finely divided calcium carbonate.	Minimum neutralising value: 20	Usual trade names or alternative	Neutralising value Total calcium
1(b)	Sugar factory lime suspension		Minimum neutralising value: 15	names may be added.	Total magnesium (optional) Moisture (optional) Reactivity and method of determination (optional) Soil incubation results (optional)

G.4. *Mixed limes*

No	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight) Data on the expression of nutrients Other requirements	Other data on the type designation	Nutrient content to be declared Forms and solubilities of the nutrients Other criteria to be declared
1	2	3	4	5	6
1	Mixed lime	Product obtained by mixing types listed in sections G1 and G2.	Minimum carbonate content: 15 % Maximum carbonate content: 90 %	The word 'magnesian' shall be added to the type designation if $MgO \ge 5 \%$. Usual trade names or	Types as specified in sections G.1 and G.2 Neutralising value Total calcium

			alternative names may be added.	Total magnesium if $MgO \ge 3 \%$ Soil incubation results (optional) Moisture (optional)
--	--	--	---------------------------------------	--

G.5. Mixtures of liming materials with other $[^{F1}UK fertiliser]$ types

Νο	Type designation	Data on method of production and essential ingredients	Minimum content of nutrients (percentage by weight) Data on the expression of nutrients Other requirements	Other data on the type designation	Nutrient content to be declared Forms and solubilities of the nutrients Other criteria to be declared
1	2	3	4	5	6
1	Mixture of [type designation in section G.1 to G.4] with [type designation in section A, B, D].	sulph (Type A.1.4 or urea (Type A.1.9 with	Neutralising value: 15 3 % N for mixtures containing fertiliser types with a minimum N content 3 % P 2 O 5 for mixtures containing fertiliser types with a minimum content P 2 O 5 3 % K 2 O PhiPMixtures atontaining fertiliser types with a minimum content K 2 O Potassium expressed as water-soluble K 2 O	Other requirements mentioned in the individual entries.	Neutralising Value Nutrients according to the nutrient declarations of the individual fertiliser types. Total calcium Total magnesium if MgO \geq 3 % If the chloride content does not exceed 2 % Cl, the words 'low in chloride' may be added Moisture (optional) Fineness (optional)]

	or	
	hydroxide	
	limes	
	listed	
	in	
	Section	
	G.2;	
	mixing	
	and	
	then	
	compacting	
	or	
	granulating	
	super	
	phosphates	
	of	
	the	
	types	
	A.2.2(a),	
	(b)	
	or	
	(c)	
	with	
	any	
	of	
	the	
	types	
	described	
	in	
	Section	
	G.1	
	to	
	G.4.	

Textual Amendments

F90 Inserted by Commission Regulation (EU) No 463/2013 of 17 May 2013 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I, II and IV thereto to technical progress (Text with EEA relevance).

ANNEX II

TOLERANCES

The tolerances given in this Annex are negative values in percentage by mass.

The tolerance allowed in respect of the declared nutrient contents in the various types of [^{F1}UK fertiliser] are as follows:

1. Inorganic straight primary nutrient fertilisers absolute value in percentage by mass expressed as N, P₂O₅, K₂O, MgO, Cl

1.1. Nitrogenous fertilisers

calcium nitrate	0,4
calcium — magnesium nitrate	0,4
sodium nitrate	0,4
chile nitrate	0,4
calcium cyanamide	1,0
nitrogenous calcium cyanamide	1,0
ammonium sulphate	0,3
Ammonium nitrate or calcium ammonium nitrate:	
— up to and including 32 %	0,8
— more than 32 %	0,6
ammonium sulphate-nitrate	0,8
magnesium sulphonitrate	0,8
magnesium ammonium nitrate	0,8
urea	0,4
calcium nitrate suspension	0,4
nitrogen fertiliser solution with urea formaldehyde	0,4
nitrogen fertiliser suspension with urea formaldehyde	0,4
urea-ammonium sulphate	0,5
nitrogen fertiliser solution	0,6
ammonium nitrate-urea solution	0,6

1.2. Phosphatic fertilisers

Thoma	Thomas slag:				
_	declaration expressed as a range of 2 % by mass	0,0			
	declaration expressed as a single number	1,0			

Other phosphatic fertilisers

P ₂ O ₅ solubility in:	(number of fertiliser in Annex I)	
— mineral acid	(3, 6, 7)	0,8
— formic acid	(7)	0,8
— neutral ammonium citrate	(2a, 2b, 2c)	0,8
— alkaline ammonium citrate	(4, 5, 6)	0,8
— water	(2a, 2b, 3)	0,9
- water	(2c)	1,3

1.3. Potassic fertilisers

[^{F70} crude potassium salt]	1,5
[^{F70} enriched crude potassium salt]	1,0
muriate of potash:	
— up to and including 55 %	1,0
— more than 55 %	0,5
potassium chloride containing magnesium salt	1,5
sulphate of potash	0,5
sulphate of potash containing magnesium salt	1,5

1.4. Other components

chloride	0,2

2. Inorganic compound primary nutrient fertilisers

2.1. Nutrient elements

N	1,1
P ₂ O ₅	1,1
K ₂ O	1,1

2.2. Total negative deviations from the declared value

binary fertilisers	1,5
ternary fertilisers	1,9

3. Secondary nutrients in fertilisers

The tolerances allowed in respect of the declared calcium, magnesium, sodium and sulphur contents shall be a quarter of the declared contents of these nutrients up to a maximum of 0.9 % in absolute terms for CaO, MgO, Na₂O, and SO₃, i.e. 0,64 for Ca, 0,55 for Mg, 0,67 for Na and 0,36 for S.

4. Micro-nutrients in fertilisers

The tolerance allowed in respect of the declared micro-nutrient content shall be:

- 0,4 % in absolute terms for a content of more than 2 %,
- one fifth of the declared value for a content not exceeding 2 %.

The tolerance allowed in respect of the declared content for the various forms of nitrogen or the declared solubilities of phosphorus pentoxide is one-tenth of the overall content of the nutrient concerned with a maximum of 2 % by mass, provided that the overall content of that nutrient remains within the limits specified in Annex I and the tolerances specified above.

[^{F90}5. Liming materials

The tolerances allowed in respect of the declared calcium and magnesium shall be:

Magnesium oxide:		
	up to and including 8 % MgO	1
	between 8 % and 16 % MgO	2
_	more than 16 % MgO	3
Calciu	m oxide	3

The tolerance allowed in respect of the declared neutralising value shall be:

Neutralising value	3
8	

The tolerance applicable to the declared percentage of material passing a specific sieve shall be:

Fineness 10	0]
-------------	----

ANNEX III

TECHNICAL PROVISIONS FOR AMMONIUM NITRATE FERTILISERS OF HIGH NITROGEN CONTENT

1. Characteristics of and limits for straight ammonium nitrate fertilisers of high nitrogen content

1.1. Porosity (oil retention)

The oil retention of the fertiliser, which must first have undergone two thermal cycles of a temperature ranging from 25 to 50 °C and conforming with the provisions of part 2 of section 3. of this Annex, must not exceed 4 % by mass.

1.2. Combustible ingredients

The percentage by mass of combustible material measured as carbon must not exceed 0,2 % for fertilisers having a nitrogen content of at least 31,5 % by mass and must not exceed 0,4 % for fertilisers having a nitrogen content of at least 28 % but less than 31,5 % by mass.

1.3. pH

A solution of 10 g of fertiliser in 100 ml of water must have a pH of at least 4.5.

1.4. Particle size analysis

Not more than 5 % by mass of the fertiliser must pass through a 1 mm mesh sieve and not more than 3 % by mass must pass through a 0,5 mm mesh sieve.

1.5. Chlorine

The maximum chlorine content is set at 0,02 % by mass.

1.6. Heavy metals

Heavy metals should not be added deliberately, and any traces which are incidental to the production process should not exceed the limit fixed by [^{F91}this Regulation].

Textual Amendments

The copper content shall not be higher than 10 mg/kg.

No limits are specified for other heavy metals.

2. Description of the test of resistance to detonation concerning ammonium nitrate fertilisers of high nitrogen content

The test must be carried out on a representative sample of fertiliser. Before being tested for resistance to detonation, the whole mass of the sample is to be thermally cycled five times complying with the provisions of part 3 in section 3. of this Annex.

The fertiliser must be subjected to the test of resistance to detonation in a horizontal steel tube under the following conditions:

- seamless steel tube,
- Tube length: 1 000 mm at least,
- Nominal external diameter: 114 mm at least,
- Nominal wall thickness: 5 mm at least,
- Booster: the type and mass of the booster chosen should be such as to maximise the detonation pressure applied to the sample in order to determine its susceptibility to the transmission of detonation,

F91 Words in Annex 3 para. 1.6 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), **5(22)**; 2020 c. 1, **Sch. 5 para. 1(1)**

— Test temperature: 15-25 °C,

- Witness lead cylinders for detecting detonation: 50 mm diameter and 100 mm high
- placed at 150 mm intervals and supporting the tube horizontally. The test is to be carried out twice. The test is deemed conclusive if in both tests one or more of the supporting lead cylinders is crushed by less than 5 %.
- 3. Methods of checking compliance with the limits specified in Annexes III-1 and III-2

Method Methods for the application of thermal cycles

1

1. Scope and field of application

This document defines the procedures for the application of thermal cycles prior to the execution of the oil retention test for straight ammonium nitrate fertilisers of high nitrogen content and of the test on the resistance to detonation for both, straight and compound ammonium nitrate fertiliser of high nitrogen content.

The methods of the closed thermal cycles as described in this section are regarded as simulating sufficiently the conditions to be taken into account within the scope of application of title II, chapter IV, however, these methods may not necessarily simulate all conditions arising during transport and storage;

- 2. Thermal cycles referred to in Annex III-1
- 2.1. Field of application

This procedure is for thermal cycling prior to determining the oil retention of the fertiliser.

2.2. Principle and definition

In an Erlenmeyer flask, heat the sample from ambient temperature to 50 °C and maintain at this temperature for a period of two hours (phase at 50 °C). Thereupon cool the sample until a temperature of 25 °C is achieved and maintain at that temperature for two hours (phase at 25 °C). The combination of the successive phases at 50 °C and 25 °C forms one thermal cycle. After being subjected to two thermal cycles, the test sample is held at a temperature of 20 \pm 3 °C for the determination of the oil retention value.

2.3. Apparatus

Normal laboratory apparatus, in particular:

- water baths thermostated at 25 (\pm 1) and 50 (\pm 1) °C respectively,
- Erlenmeyer flasks with an individual capacity of 150 ml.
- 2.4. Procedure

Put each test sample of 70 (\pm 5) grams into an Erlenmeyer flask which is then sealed with a stopper.

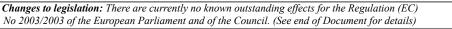
Move each flask every two hours from the 50 °C bath to the 25 °C bath and vice versa.

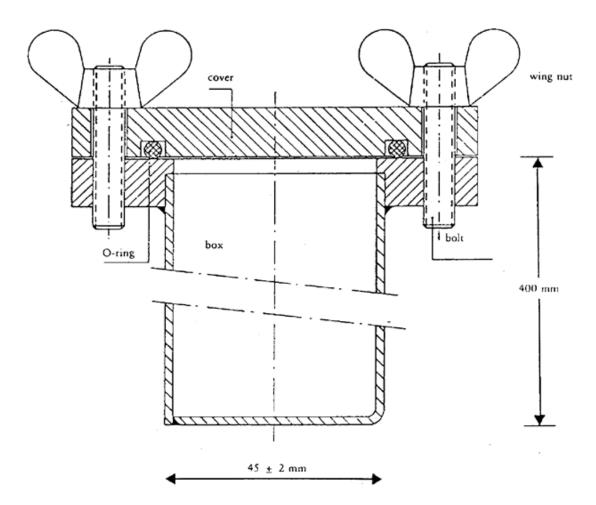
Maintain the water in each bath at constant temperature and keep in motion by rapid stirring to ensure the water level comes above the level of the sample. Protect the stopper from condensation by a foam rubber cap.

- 3. Thermal cycles to be used for Annex III-2
- 3.1. Field of application

This procedure is for thermal cycling prior to the execution of the detonability test.

3.2. Principle and definition


In a watertight box heat the sample from ambient temperature to 50 °C and maintain at this temperature for a period of one hour (phase at 50 °C). Thereupon cool the sample until a temperature of 25 °C is achieved and maintain at that temperature for one hour (phase at 25 °C). The combination of the successive phases at 50 °C and 25 °C forms one thermal cycle. After being subjected to the required number of thermal cycles, the test sample is held at a temperature of 20 ± 3 °C pending the execution of the detonability test.


- 3.3. Apparatus
- A water bath, thermostated in a temperature range of 20 to 51 °C with a minimum heating and cooling rate of 10 °C/h, or two water baths, one thermostated at a temperature of 20 °C, the other at 51 °C. The water in the bath(s) is continuously stirred; the volume of the bath should be large enough to guarantee ample circulation of the water.
- A stainless steel box, watertight all around and provided with a thermocouple in the centre. The outside width of the box is $45 (\pm 2)$ mm and the wall thickness is 1,5 mm (see Figure 1). The height and length of the box can be chosen to suit the dimensions of the water bath, e.g. length 600 mm, height 400 mm.

3.4. Procedure

Place a quantity of fertilisers sufficient for a single detonation into the box and close the cover. Place the box in the water bath. Heat the water to 51 °C and measure the temperature in the centre of the fertiliser. One hour after the temperature at the centre has reached 50 °C cool the water. One hour after the temperature at the centre has reached 25 °C heat the water to start the second cycle. In the case of two water baths, transfer the box to the other bath after each heating/cooling period.

Figure 1

Method Determination of oil retention 2

1. Scope and field of application

This document defines the procedure for the determination of oil retention of straight ammonium nitrate fertilisers of high nitrogen content.

The method is applicable to both prilled and granular fertilisers which do not contain oil-soluble materials.

2. Definition

Oil retention of a fertiliser: the quantity of oil retained by the fertiliser determined under the operating conditions specified, and expressed as a percentage by mass.

3. Principle

Total immersion of the test portion in gas oil for a specified period, followed by the draining away of surplus oil under specified conditions. Measurement of the increase in mass of the test portion.

4. Reagent

Gas oil

Viscosity max.	:	5 mPas at 40 °C
Density	:	0,8 to 0,85 g/ml at 20 °C
Sulphur content	:	\leq 1,0 % (m/m)
Ash	:	\leq 0,1 % (m/m)

5. Apparatus

Ordinary laboratory apparatus, and:

- 5.1. Balance, capable of weighing to the nearest 0,01 gram.
- 5.2. Beakers, of capacity 500 ml.
- 5.3. Funnel, of plastic materials, preferably with a cylindrical wall at the upper end, diameter approximately 200 mm.
- 5.4. Test sieve, aperture 0,5 mm, fitting into the funnel (5.3).

Note: The size of the funnel and sieve is such as to ensure that only a few granules lie one above another and the oil is able to drain easily.

- 5.5. Filter paper, rapid filtering grade, creped, soft, mass 150 g/m^2 .
- 5.6. Absorbent tissue (laboratory grade).
- 6. Procedure
- 6.1. Two individual determinations are carried out in quick succession on separate portions of the same test sample.
- [^{F78}6.2. Remove particles smaller than 0,5 mm using the test sieve (5.4). Weigh to the nearest 0,01 gram approximately 50 grams of the sample into the beaker (5.2). Add sufficient gas oil (section 4) to cover the prills or granules completely and stir carefully to ensure that the surfaces of all the prills or granules are fully wetted. Cover the beaker with a watch glass and leave to stand for one hour at $25 (\pm 2)$ °C.]
- 6.3. Filter the entire contents of the beaker through the funnel (5.3) containing the test sieve (5.4). Allow the portion retained by the sieve to remain there for one hour so that most of the excess oil can drain away.
- 6.4. Lay two sheets of filter paper (5.5) (about 500×500 mm) on top of each other on a smooth surface; fold the four edges of both filter papers upwards to a width of about 40 mm to prevent the prills from rolling away. Place two layers of absorbent tissue (5.6) in the centre of the filter papers. Pour the entire contents of the sieve (5.4) over the absorbent tissues and spread the prills evenly with a soft, flat brush. After two minutes lift one side of the tissues to transfer the prills to the filter papers beneath and spread them evenly over these with the brush. Lay another sheet of filter paper, similarly with its edges turned upward, on the sample and roll the prills between the filter papers with circular movements while exerting a little pressure. Pause after every eight circular movements to lift the opposite edges of the filter papers and return to the centre the prills that have rolled to the periphery. Keep to the following procedure: make four complete circular movements, first clockwise and then anticlockwise. Then roll the prills back to the centre as described above. This procedure to be carried out three times (24 circular movements, edges lifted twice). Carefully insert a new sheet of filter paper between the bottom sheet and the one above it and allow the prills to roll onto the new sheet by lifting the edges of the upper sheet. Cover the prills with a new sheet of filter paper and repeat the same procedure as described above. Immediately

after rolling, pour the prills into a tared dish and reweigh to the nearest 0,01 gram to determine the mass of the quantity of gas oil retained.

6.5. Repeating the rolling procedure and reweighing

If the quantity of gas oil retained in the portion is found to be greater than 2 grams, place the portion on a fresh set of filter papers and repeat the rolling procedure, lifting the corners in accordance with section 6.4 (two times eight circular movements, lifting once). Then reweigh the portion.

- 7. Expression of the results
- 7.1. Method of calculation and formula

The oil retention, from each determination (6.1) expressed as a percentage by mass of the sieved test portion, is given by the equation:

 $\text{Oilretention} = rac{m_2 - m_1}{m_1} imes 100$

where:

 m_1 is the mass, in grams, of the sieved test portion (6.2),

 m_2 is the mass, in grams, of the test portion according to section 6.4 or 6.5 respectively as the result of the last weighing.

Take as the result the arithmetic mean of the two individual determinations.

Method Determination of the combustible ingredients

- 3
- 1. Scope and field of application

This document defines the procedure for the determination of the combustible content of straight ammonium nitrate fertilisers of high nitrogen content.

2. Principle

The carbon dioxide produced by inorganic fillers is removed in advance with an acid. The organic compounds are oxidised by means of a chromic acid/sulphuric acid mixture. Carbon dioxide formed is absorbed in a barium hydroxide solution. The precipitate is dissolved in a solution of hydrochloric acid and measured by back-titration with sodium hydroxide solution.

- 3. Reagents
- 3.1. Analytical-grade chromium (VI) trioxide Cr₂O₃;
- 3.2. Sulphuric acid, 60 % by volume: pour 360 ml of water into a one-litre beaker and carefully add 640 ml of sulphuric acid (density at 20 °C = 1.83 g/ml).
- 3.3. Silver nitrate: 0,1 mol/l solution.
- 3.4. Barium hydroxide

Weigh out 15 grams of barium hydroxide [Ba(OH)₂. 8H₂O], and dissolve completely in hot water. Allow to cool and transfer to a one-litre flask. Fill up to the mark and mix. Filter through a pleated filter paper.

- 3.5. Hydrochloric acid: 0,1 mol/l standard solution.
- 3.6. Sodium hydroxide: 0,1 mol/l standard solution.

- 3.7. Bromophenol blue: solution of 0,4 grams per litre in water.
- 3.8. Phenolphthalein: solution of 2 grams per litre in 60 % by volume ethanol.
- 3.9. Soda lime: particle dimensions, about 1,0 to 1,5 mm.
- 3.10. Demineralised water, freshly boiled to remove carbon dioxide.
- 4. Apparatus
- 4.1. Standard laboratory equipment, in particular:
- filter crucible with a plate of sintered glass and a capacity of 15 ml; plate diameter: 20 mm; total height: 50 mm; porosity 4 (pore diameter from 5 to 15 μm),
 600-ml beaker.
- 4.2. Compressed nitrogen supply.
- 4.3. Apparatus made up of the following parts and assembled, if possible, by means of spherical ground joints *(see Figure 2).*
- 4.3.1. Absorption tube A about 200 mm long and 30 mm in diameter filled with soda lime (3.9) kept in place by fibreglass plugs.
- 4.3.2. 500-ml reaction flask B with side arm and a round bottom.
- 4.3.3. Vigreux fractionating column about 150 mm long (C').
- 4.3.4. Double-surface condenser C, 200 mm long.
- 4.3.5. [^{F78}Dreschel bottle D acting as a trap for any excess of acid which may distil over.]
- 4.3.6. Ice bath E to cool the Drechsel bottle.
- 4.3.7. Two absorption vessels F_1 and F_2 , 32 to 35 mm in diameter, the gas distributor of which comprises a 10 mm disc of low-porosity sintered glass.
- 4.3.8. Suction pump and suction regulating device G comprising a T-shaped glass piece inserted into the circuit, the free arm of which is connected to the fine capillary tube by a short rubber tube fitted with a screw clamp.

Caution: The use of boiling chromic acid solution in an apparatus under reduced pressure is a hazardous operation and requires appropriate precautions.

- 5. Procedure
- 5.1. Sample for analysis

Weigh approximately 10 grams of ammonium nitrate to the nearest 0,001 grams.

5.2. Removal of carbonates

[^{F78}Place the sample for analysis in the reaction flask B. Add 100 ml of $H_2 SO_4$ (3.2). The prills or granules dissolve in about 10 minutes at ambient temperature. Assemble the apparatus as indicated in the diagram: connect one end of the absorption tube (A) to the nitrogen source (4.2) via a non-return flow device containing a pressure of 667 to 800 Pa and the other end to the feed tube which enters the reaction flask. Place the Vigreux fractionating column (C') and the condenser (C) with cooling water supply in position. Adjust the nitrogen to provide a moderate flow through the solution, bring the solution to boiling point and heat for two minutes. At the end

of this time there should be no more effervescence. If effervescence is seen, continue heating for 30 minutes. Allow solution to cool for at least 20 minutes with the nitrogen flowing through it.]

Complete assembly of the apparatus as indicated in the diagram by connecting the condenser tube to the Drechsel bottle (D) and the bottle to the absorption vessels F_1 and F_2 . The nitrogen must continue to pass through the solution during the assembly operation. Rapidly introduce 50 ml of barium hydroxide solution (3.4) into each of the absorption vessels (F_1 and F_2).

Bubble a stream of nitrogen through for about 10 minutes. The solution must remain clear in the absorbers. If this does not happen, the carbonate removal process must be repeated.

5.3. Oxidation and absorption

After withdrawing the nitrogen feed tube, rapidly introduce 20 grams of chromium trioxide (3.1) and 6 ml of silver nitrate solution (3.3) via the side arm of the reaction flask (B). Connect the apparatus to the suction pump and adjust the nitrogen flow so that a steady stream of gas bubbles passes through the sintered-glass absorbers F_1 and F_2 .

Heat the reaction flask (B) until the liquid boils and keep it boiling for one and a half hours⁽⁹⁾. It may be necessary to adjust the suction-regulating valve (G) to control the nitrogen flow since it is possible that the barium carbonate precipitated during the test may block the sinteredglass discs. The operation is satisfactory when the barium hydroxide solution in the absorber F_2 remains clear. Otherwise repeat the test. Stop heating and dismantle the apparatus. Wash each of the distributors (3.10) both inside and outside to remove barium hydroxide and collect the washings in the corresponding absorber. Place the distributors one after the other in a 600-ml beaker which will subsequently be used for the determination.

Rapidly filter under vacuum firstly the contents of absorber F_2 and then of absorber F_1 using the sintered-glass crucible. Collect the precipitate by rinsing the absorbers with water (3.10) and wash the crucible with 50 ml of the same water. Place the crucible in the 600-ml beaker and add about 100 ml of boiled water (3.10). Introduce 50 ml of boiled water into each of the absorbers and pass nitrogen through the distributors for five minutes. Combine the water with that from the beaker. Repeat the operation once to ensure that the distributors are rinsed thoroughly.

5.4. Measurement of the carbonates originating from organic material

Add five drops of phenolphthalein (3.8) to the contents of the beaker. The solution becomes red in colour. Add hydrochloric acid (3.5) drop by drop until the pink colour just disappears. Stir the solution well in the crucible to check that the pink colour does not reappear. Add five drops of bromphenol blue (3.7) and titrate with hydrochloric acid (3.5) until the solution turns yellow. Add a further 10 ml of hydrochloric acid.

Heat the solution to boiling point and continue boiling for a maximum of one minute. Check carefully that no precipitate remains in the liquid.

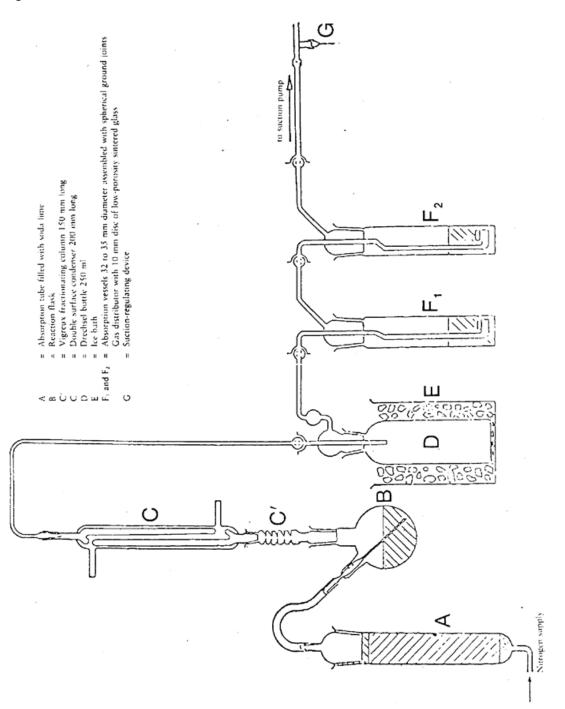
Allow to cool and back titrate with the sodium hydroxide solution (3.6).

6. Blank test

Carry out a blank test following the same procedure and using the same quantities of all reagents.

7. Expression of the results

The content of combustible ingredients (C), expressed as carbon, as a percentage by mass of the sample, is given by the formula: $C \% = 0.06 \times \frac{V_1 - V_2}{c}$


154

Changes to legislation: There are curre	ently no known outstanding effects for the Regulation (EC)
No 2003/2003 of the European Parlian	ment and of the Council. (See end of Document for details)

where:

- Е = the mass in grams of the test portion, V_1 = the total volume in ml of 0,1 mol/l hydrochloric acid added after the change in colour of the phenolphthalein, V_2
 - = the volume in ml of the 0,1 mol/l sodium hydroxide solution used for back titration.

Method Determination of the pH value 4

1. Scope and field of application

This document defines the procedure for measuring the pH value of a solution of a straight ammonium nitrate fertiliser of high nitrogen content.

2. Principle

Measurement of the pH of an ammonium nitrate solution by means of a pH meter.

3. Reagents

Distilled or demineralised water, free from carbon dioxide.

3.1. Buffer solution, pH 6,88 at 20 °C

Dissolve $3,40 \pm 0,01$ grams of potassium dihydrogen orthophosphate (KH₂PO₄) in approximately 400 ml of water. Then dissolve $3,55 \pm 0,01$ grams of disodium hydrogen orthophosphate (Na₂HPO₄) in approximately 400 ml of water. Transfer the two solutions without loss into a 1 000-ml graduated flask, make up to the mark and mix. Keep this solution in an airtight vessel.

3.2. Buffer solution, pH 4,00 at 20 °C

Dissolve $10,21 \pm 0,01$ grams of potassium hydrogen phthalate (KHC₈O₄H₄) in water, transfer without loss into a 1 000-ml graduated flask, make up to the mark and mix.

Keep this solution in an airtight vessel.

- 3.3. Commercially available pH standard solutions may be used.
- 4. Apparatus

pH meter, equipped with glass and calomel electrodes or equivalent, sensitivity 0,05 pH unit.

- 5. Procedure
- 5.1. Calibration of the pH meter

Calibrate the pH meter (4) at a temperature of 20 (\pm 1) °C, using the buffer solutions (3.1), (3.2) or (3.3). Pass a slow stream of nitrogen onto the surface of the solution and maintain this throughout the test.

5.2. Determination

Pour 100,0 ml of water onto 10 (\pm 0,01) grams of the sample in a 250 ml beaker. Remove the insolubles by filtering, decanting or centrifuging the liquid. Measure the pH value of the clear solution at a temperature of 20 (\pm 1) °C according to the same procedure as for the calibration of the meter.

6. Expression of the results

Express the result in pH units, to the nearest 0,1 unit, and state the temperature used.

Method Determination of the particle size 5

1. Scope and field of application

This document defines the procedure for the test sieving of straight ammonium nitrate fertilisers of high nitrogen content.

2. Principle

The test sample is sieved on a nest of three sieves, either by hand or by mechanical means. The mass retained on each sieve is recorded and the percentage of material passing the required sieves are calculated.

- 3. Apparatus
- 3.1. 200-mm-diameter woven-wire test sieves with apertures of 2,0 mm, 1,0 mm and 0,5 mm respectively of standard ranges. One lid and one receiver for these sieves.
- 3.2. Balance to weigh to 0,1 gram.
- 3.3. Mechanical sieve shaker (if available) capable of imparting both vertical and horizontal motion to the test sample.
- 4. Procedure
- 4.1. The sample is divided representatively into portions of approximately 100 grams.
- 4.2. Weigh one of these portions to the nearest 0,1 gram.
- 4.3. Arrange the nest of sieves in ascending order; receiver, 0,5 mm, 1 mm, 2 mm and place the weighed test portion on the top sieve. Fit the lid to the top of the nest of sieves.
- 4.4. Shake by hand or machine, imparting both a vertical and horizontal motion and if by hand, tapping occasionally. Continue this process for 10 minutes or until the quantity passing through each sieve in one minute is less than 0,1 gram.
- 4.5. Remove the sieves from the nest in turn and collect the material retained, brush gently from the reverse side with a soft brush, if necessary.
- 4.6. Weigh the material retained on each sieve and that collected in the receiver, to the nearest 0,1 gram.
- 5. Evaluation of the results
- 5.1. Convert the fraction masses to a percentage of the total of the fraction masses (not of the original charge).

Calculate the percentage in the receiver (i.e. < 0.5 mm): A %

Calculate the percentage retained on the 0,5 mm sieve: B %

Calculate the percentage passing 1,0 mm, i.e. (A + B) %

The sum of the fraction masses should be within 2 % of the initial mass taken.

- 5.2. At least two separate analyses should be carried out and the individual results for A should not differ by more than 1,0 % absolute and for B by more than 1,5 % absolute. Repeat the test if this is not the case.
- 6. Expression of the results

Report the mean of the two values obtained for A on the one hand and for A + B on the other.

Method Determination of the chlorine content (as chloride ion) 6

1. Scope and field of application

This document defines the procedure for the determination of the chlorine content (as chloride ion) of straight ammonium nitrate fertilisers with a high nitrogen content.

2. Principle

Chloride ions dissolved in water are determined by potentiometric titration with silver nitrate in an acidic medium.

3. Reagents

Distilled or demineralised water, free from chloride ions.

- 3.1. Acetone AR.
- 3.2. Concentrated nitric acid (density at $20 \text{ }^{\circ}\text{C} = 1,40 \text{ g/ml}$)
- 3.3. Silver nitrate 0,1 mol/l standard solution. Store this solution in a brown glass bottle.
- 3.4. Silver nitrate 0,004 mol/l standard solution prepare this solution at the time of use.
- 3.5. Potassium chloride 0,1 mol/l standard reference solution. Weigh, to the nearest 0,1 mg, 3,7276 grams of analytical-grade potassium chloride, previously dried for one hour in an oven at 130 °C and cooled in a desiccator to ambient temperature. Dissolve in a little water, transfer the solution without loss into a 500-ml standard flask, dilute to the mark and mix.
- 3.6. Potassium chloride, 0,004 mol/l standard reference solution prepare this solution at the time of use.
- 4. Apparatus
- 4.1. Potentiometer with silver indicating electrode and calomel reference electrode, sensitivity 2 mV, covering the range 500 to + 500 mV.
- 4.2. Bridge, containing a saturated potassium nitrate solution, connected to the calomel electrode (4.1), fitted at the ends with porous plugs.
- 4.3. Magnetic stirrer, with a Teflon-coated rod.
- 4.4. Microburette with fine-pointed tip, graduated in 0,01 ml divisions.
- 5. Procedure
- 5.1. Standardisation of the silver nitrate solution

Take 5,00 ml and 10,00 ml of the standard reference potassium chloride solution (3.6) and place in two low-form beakers of convenient capacity (for example 250 ml). Carry out the following titration of the contents of each beaker.

Add 5 ml of the nitric acid solution (3.2), 120 ml of the acetone (3.1) and sufficient water to bring the total volume to about 150 ml. Place the rod of the magnetic stirrer (4.3) in the beaker and set the stirrer in motion. Immerse the silver electrode (4.1) and the free end of the bridge (4.2) in the solution. Connect the electrodes to the potentiometer (4.1) and, after verifying the zero of the apparatus, note the value of the starting potential.

Titrate, using the microburette (4.4), adding initially 4 or 9 ml respectively of the silver nitrate solution corresponding to the standard reference potassium chloride solution used. Continue the addition in 0,1 ml portions for the 0,004 mol/l solutions and in 0,05 ml portions for the 0,1 mol/l solutions. After each addition, await the stabilisation of the potential.

Record the volumes added and the corresponding values of the potential in the first two columns of a table.

In a third column of the table, record the successive increments ($\Delta_1 E$) of the potential E. In a fourth column, record the differences ($\Delta_2 E$) positive or negative, between the potential increments ($\Delta_1 E$). The end of the titration corresponds to the addition of the 0,1 or 0,05 ml portion (V₁) of the silver nitrate solution which gives the maximum value of $\Delta_1 E$.

In order to calculate the exact volume (V_{eq}) of the silver nitrate solution corresponding to the end of the reaction, use the formula:

 $V_{eq} = V_0 + \left(V_1 \times \frac{b}{B}\right)$

where:

 V_0 is the total volume, in ml, of the silver nitrate solution immediately lower than the volume which gives the maximum increment of $\Delta_1 E$,

 V_1 is the volume, in ml, of the last portion of the silver nitrate solution added (0,1 or 0,05 ml),

b is the last positive value of $\Delta_2 E$,

B is the sum of the absolute values of the last positive values of $\Delta_2 E$ and the first negative value of $\Delta_2 E$ (see example in Table 1).

5.2. Blank test

Carry out a blank test and take account thereof when calculating the final result.

The result V₄ of the blank test on the reagents is given, in ml, by the formula: $V_4 = 2V_3 - V_2$

where:

 V_2 is the value, in ml, of the exact volume (V_{eq}) of the silver nitrate solution corresponding to the titration of 10 ml of the potassium chloride standard reference solution used,

 V_3 is the value, in ml, of the exact volume (V_{eq}) of the silver nitrate solution corresponding to the titration of 5 ml of the potassium chloride standard reference solution used.

5.3. Check test

The blank test can at the same time serve as a check that the apparatus is functioning satisfactorily and that the test procedure is being implemented correctly.

5.4. Determination

Take a portion of sample in the range 10 to 20 grams and weigh to the nearest 0,01 gram. Transfer quantitatively to a 250-ml beaker. Add 20 ml of water, 5 ml of nitric acid solution (3.2), 120 ml of acetone (3.1) and sufficient water to bring the total volume to about 150 ml.

Place the rod of the magnetic stirrer (4.3) in the beaker, place the beaker on the stirrer and set the stirrer in motion. Immerse the silver electrode (4.1) and the free end of the bridge (4.2) in

the solution, connect the electrodes to the potentiometer (4.1) and, after having verified the zero of the apparatus, note the value of the starting potential.

Titrate with the silver nitrate solution, by additions from the microburette (4.4) in increments of 0,1 ml. After each addition, await the stabilisation of the potential.

Continue the titration as specified in 5.1, starting from the fourth paragraph: 'Record the volumes added and the corresponding values of the potential in the first two columns of a table \dots '.

6. Expression of the results

Express the result of the analysis as the percentage of chlorine contained in the sample as received for analysis. Calculate the percentage of chlorine (Cl) content from the formula: $Cl \% = \frac{0.3345 \times T \times (V_2 - V_4) \times 100}{m}$

where:

T is the concentration of silver nitrate solution used, in mol/l

 V_4 is the result, in ml, of the blank test (5.2),

 V_5 is the value, in ml, of V_{eq} corresponding to the determination (5.4),

m is the mass, in grams, of the test portion.

Volume of the silver nitrate solutionV(ml)	PotentialE(mV)	Δ ₁ E	$\Delta_2 E$
4,8	176		
4,9	211	35	+ 37
5,0	283	72	- 49
5,1	306	23	- 10
5,2	319	13	
$V_{ m eq} = 4,9 + 0,1 imes rac{37}{37+49} = 0$	4,943	1	1

TABLE 1: EXAMPLE

Method Determination of copper 7

1. Scope and field of application

This document defines the procedure for the determination of copper content of straight ammonium nitrate fertilisers of high nitrogen content.

2. Principle

The sample is dissolved in dilute hydrochloric acid and the copper is determined by atomic absorption spectrophotometry.

- 3. Reagents
- 3.1. Hydrochloric acid (density at 20 $^{\circ}C = 1,18 \text{ g/ml}$).

- 3.2. Hydrochloric acid, 6 mol/l solution.
- 3.3. Hydrochloric acid 0,5 mol/l solution.
- 3.4. Ammonium nitrate.
- 3.5. Hydrogen peroxide, 30 % w/v
- 3.6. Copper solution⁽¹⁰⁾ (stock): weigh, to the nearest 0,001 gram, 1 gram of pure copper, dissolve in 25 ml 6 mol/l hydrochloric acid solution (3.2), add 5 ml of hydrogen peroxide (3.5) in portions and dilute to 1 litre with water. 1 ml of this solution contains 1 000 μ g of copper (Cu).
- 3.6.1. Copper solution (dilute): dilute 10 ml of stock solution (3.6) to 100 ml with water and then dilute 10 ml of the resulting solution, to 100 ml with water, 1 ml of the final dilution contains 10 µg of copper (Cu).

Prepare this solution at the time of use.

4. Apparatus

Atomic absorption spectrophotometer with a copper lamp (324,8 nm).

- 5. Procedure
- 5.1. Preparation of the solution for analysis

Weigh, to the nearest 0,001 gram, 25 grams of the sample, place it in a 400-ml beaker, add carefully 20 ml of hydrochloric acid (3.1) (there may be a vigorous reaction due to carbon dioxide formation). Add more hydrochloric acid, if necessary. When effervescence has stopped, evaporate to dryness on a steam bath, stirring occasionally with a glass rod. Add 15 ml 6 mol/ l hydrochloric acid solution (3.2) and 120 ml of water. Stir with the glass rod, which should be left in the beaker, and cover the beaker with a watch glass. Boil the solution gently until dissolution is complete and then cool.

Transfer the solution quantitatively into a 250-ml graduated flask, by washing the beaker with 5 ml 6 mol/l hydrochloric acid (3.2), and twice with 5 ml of boiling water, make up to the mark with 0,5 mol/l hydrochloric acid (3.3) and mix carefully.

Filter through a copper-free filter paper⁽¹¹⁾, discarding the first 50 ml.

5.2. Blank solution

Prepare a blank solution from which only the sample has been omitted and allow for this in the calculation of the final results.

- 5.3. Determination
- 5.3.1. Preparation of sample and blank test solutions

Dilute the sample solution (5.1) and the blank test solution (5.2) with 0,5 mol/l hydrochloric acid solution (3.3) to a concentration of copper within the optimal measuring range of the spectrophotometer. Normally no dilution is needed.

5.3.2. Preparation of the calibration solutions

By diluting the standard solution (3.6.1) with 0,5 mol/l hydrochloric acid solution (3.3), prepare at least five standard solutions corresponding to the optimal measuring range of the

spectrophotometer (0 to 5,0 mg/l Cu). Before making up to the mark, add to every solution ammonium nitrate (3.4) to give concentration of 100 mg per ml.

5.4. Measurement

Set up the spectrophotometer (4) at a wavelength of 324,8 nm. Use an oxidising air-acetylene flame. Spray successively, in triplicate, the calibration solution (5.3.2), the sample solution and the blank solution (5.3.1), washing the instrument through with distilled water between each spraying. Plot the calibration curve using the mean absorbances of every standard used as the ordinates and the corresponding concentrations of copper in μ g/ml as the abscissae.

Determine the concentration of copper in the final sample and blank solutions by reference to the calibration curve.

6. Expression of the results

Calculate the copper content of the sample taking into account the mass of the test sample, the dilutions carried out in the course of the analysis and the value of the blank. Express the result as mg Cu/kg.

- 4. Determination of resistance to detonation
- 4.1. Scope and field of application

This document defines the procedure for the determination or resistance to detonation of ammonium nitrate fertilisers of high nitrogen content.

4.2. Principle

The test sample is confined in a steel tube and subjected to detonation shock from an explosive booster charge. Propagation of the detonation is determined from the degree of crushing of lead cylinders on which the tube rests horizontally during the test.

4.3. Materials

4.3.1. Plastic explosive containing 83 to 86 % penthrite

:	1 500 to 1 600 kg/m ³
:	7 300 to 7 700 m/s
:	$500 (\pm 1)$ gram.
	:

4.3.2. Seven lengths of flexible detonating cord with non-metallic sleeve

Filling n	nass		:	11 to 13 g/m
Length	of	each	:	400 (± 2) mm.
cord				

4.3.3. Compressed pellet of secondary explosive, recessed to receive detonator

Explosive	:	hexogen/wax 95/5 or tetryl or similar secondary explosive, with or
		without added graphite.
Density	:	1 500 to 1 600 kg/m ³
Diameter	:	19 to 21 mm
Height	:	19 to 23 mm
Central recess to	:	diameter 7 to 7,3 mm, depth 12 mm.
receive detonator		

4.3.4. Seamless steel tube as specified in ISO 65 — 1981 — Heavy Series, with nominal dimensions DN 100 (4")

Outside diameter	:	113,1 to 115,0 mm
Wall thickness	:	5,0 to 6,5 mm
Length	:	1 005 (± 2) mm.

4.3.5. Bottom place

Material	:	steel of good weldable quality
Dimensions	:	160 × 160 mm
Thickness	:	5 to 6 mm

4.3.6. Six lead cylinders

Diameter	:	50 (± 1) mm
Height	:	100 to 101 mm
Materials	:	soft lead, at least 99,5 % purity.

4.3.7. Steel block

Length	:	at least 1 000 mm
Width	:	at least 150 mm
Height	:	at least 150 mm
Mass	:	at least 300 kg if there is no firm base for the steel block.

4.3.8. Plastic or cardboard cylinder for booster charge

Wall thickness	:	1,5 to 2,5 mm
Diameter	:	92 to 96 mm
Height	:	64 to 67 mm

4.3.9. Detonator (electric or non-electric) with initiation force 8 to 10

4.3.10. Wooden disc

Diameter : 92 to 96 mm. Diameter to be matched to the internal diameter of the plastic or cardboard cylinder (4.3.8) Thickness : 20 mm

- 4.3.11. Wooden rod of same dimensions as detonator (4.3.9)
- 4.3.12. Dressmaking pins (maximum length 20 mm)
- 4.4. Procedure

4.4.1. Preparation of booster charge for insertion into steel tube

There are two methods of initiation of the explosive in the booster charge, depending on the availability of equipment.

4.4.1.1. Seven-point simultaneous initiation

The booster charge prepared for use is shown in Figure 1.

4.4.1.1.1.Drill holes in the wooden disc (4.3.10) parallel to the axis of the disc through the centre and through six points symmetrically distributed around a concentric circle 55 mm in diameter. The diameter of the holes must be 6 to 7 mm (see Section A-B in Figure 1), depending on the diameter of the detonating cord used (4.3.2).

- 4.4.1.1.2. Cut seven lengths of flexible detonating cord (4.3.2) each 400 mm long, avoiding any loss of explosive at each end by making a clean cut and immediately sealing the end with adhesive. Push each of the seven lengths through the seven holes in the wooden disc (4.3.10) until their ends project a few centimetres on the other side of the disc. Then insert a small dressmaking pin (4.3.12) transversally into the textile sleeve of each length of cord 5 to 6 mm from the end and apply adhesive around the outside of the lengths of cord in a band 2 cm wide adjacent to the pin. Finally, pull the long piece of each cord to bring the pin into contact with the wooden disc.
- 4.4.1.1.3. Shape the plastic explosive (4.3.1) to form a cylinder 92 to 96 mm in diameter, depending on the diameter of the cylinder (4.3.8). Stand this cylinder upright on a level surface and insert the shaped explosive. Then insert the wooden disc⁽¹²⁾ carrying the seven lengths of detonating cord into the top of the cylinder and press it down onto the explosive. Adjust the height of the cylinder (64 to 67 mm) so that its top edge does not extend beyond the level of the wood. Finally, fix the cylinder to the wooden disc for instance with staples or small nails, around its entire circumference.
- 4.4.1.1.4. Group the free ends of the seven lengths of detonating cord around the circumference of the wooden rod (4.3.11) so that their ends are all level in a plane perpendicular to the rod. Secure them in a bundle around the rod by means of adhesive tape⁽¹³⁾.
- 4.4.1.2. Central initiation by a compressed pellet

The booster charge prepared for use is shown in Figure 2.

4.4.1.2.1. Preparing a compressed pellet

Taking the necessary safety precautions, place 10 grams of a secondary explosive (4.3.3) in a mould with an inside diameter of 19 to 21 mm and compress to the correct shape and density.

(The ratio of diameter: height should be roughly 1:1).

In the centre of the bottom of the mould there is a peg, 12 mm in height and 7,0 to 7,3 mm in diameter (depending on the diameter of the detonator used), which forms a cylindrical recess in the compressed cartridge for subsequent insertion of the detonator.

4.4.1.2.2. Preparing the booster charge

Place the explosive (4.3.1) into the cylinder (4.3.8) standing upright on a level surface, then press it down with a wooden die to give the explosive a cylindrical shape with a central recess. Insert the compressed pellet into this recess. Cover the cylindrically shaped explosive containing the compressed pellet with a wooden disc (4.3.10) having a central hole 7,0 to 7,3 mm in diameter for insertion of a detonator. Fix the wooden disc and the cylinder together with a cross of adhesive tape. Ensure that the hole drilled in the disc and the recess in the compressed pellet are coaxial by inserting the wooden rod (4.3.11).

4.4.2. Preparing steel tubes for the detonation tests

At one end of the steel tube (4.3.4), drill two diametrically opposed holes 4 mm in diameter perpendicularly through the side wall at a distance of 4 mm from the edge.

Butt weld the bottom plate (4.3.5) to the opposite end of the tube, completely filling the right angle between the bottom place and the wall of the tube with weld metal around the entire circumference of the tube.

4.4.3. Filling and charging the steel tube

See Figures 1 and 2.

- 4.4.3.1. The test sample, the steel tube and the booster charge must be conditioned to temperatures of 20 (\pm 5) °C. 16 to 18 kg of the test sample are needed for two detonation tests.
- 4.4.3.2. Place the tube upright with its square bottom place resting on a firm, flat surface, preferably concrete. Fill the tube to about one-third of its height with the test sample and drop it 10 cm vertically onto the floor five times to compact the prills or granules as densely as possible in the tube. To accelerate compaction, vibrate the tube by striking the side wall with a 750 to 1 000-gram hammer between drops for a total of 10 times.

Repeat this charging method with another portion of the test sample. Finally, a further addition shall be made such that, after compaction by raising and dropping the tube 10 times and a total of 20 intermittent hammer blows, the charge fills the tube to a distance of 70 mm from its orifice.

The filling height of the sample must be adjusted in the steel tube so that the booster charge (4.4.1.1 or 4.4.1.2) to be inserted later will be in close contact with the sample over its entire surface.

- 4.4.3.3. Insert the booster charge into the tube so that it is in contact with the sample; the top surface of the wooden disc must be 6 mm below the end of the tube. Ensure essential close contact between explosive and test sample by adding or removing small quantities of sample. As shown in Figures 1 and 2, split pins should be inserted through the holes near the open end of the tube and their legs opened flat against the tube.
- 4.4.4. Positioning of the steel tube and lead cylinders (see figure 3)
- 4.4.4.1. Number the bases of the lead cylinders (4.3.6) 1 to 6. Make six marks 150 mm apart on the centre line of a steel block (4.3.7) lying on a horizontal base, with the first mark at least 75 mm from the edge of the block. Place a lead cylinder upright on each of these marks, with the base of each cylinder centred on its mark.
- 4.4.4.2. Lay the steel tube prepared according to 4.4.3 horizontally on the lead cylinders so that the axis of the tube is parallel to the centre line of the steel block and the welded end of the tube extends 50 mm beyond lead cylinder No 6. To prevent the tube from rolling, insert small wooden wedges between the tops of the lead cylinders and the tube wall (one on each side) or place a cross of wood between the tube and the steel block.

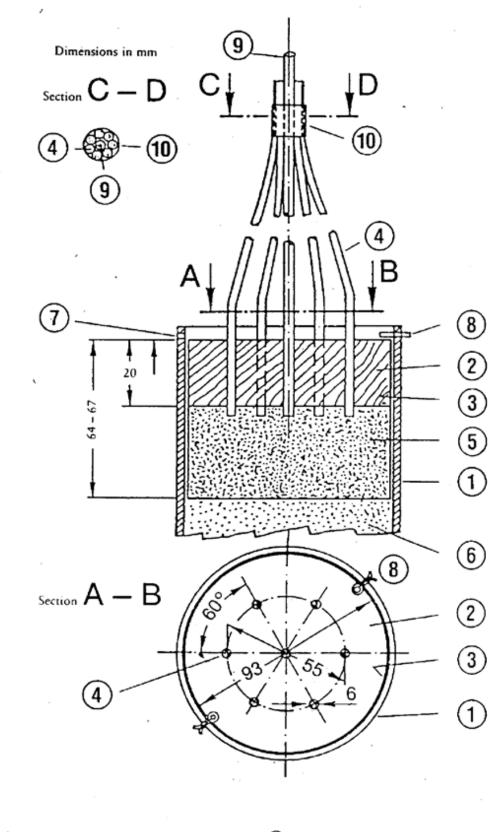
Note: Make sure that the tube is in contact with all six lead cylinders; a slight curvature of the tube surface can be compensated for by rotating the tube about its longitudinal axis; if any of the lead cylinders is too tall, tap the cylinder in question carefully with a hammer until it is the required height.

- 4.4.5. Preparation for detonation
- 4.4.5.1. Set up the apparatus according to the 4.4.4 in a bunker or suitably prepared underground site (e.g. mine or tunnel). Ensure that the temperature of the steel tube is kept at 20 (\pm 5) °C before detonation.

Note: Should such firing sites not be available, the work can, if necessary, be done in a concretelined pit covered over with wooden beams. Detonation can cause steel fragments to be projected with high kinetic energy, therefore, firing must be carried out at a suitable distance from dwellings or thoroughfares.

- 4.4.5.2. If the booster charge with seven-point initiation is used, ensure that the detonation cords are stretched out as described in the footnote to 4.4.1.1.4 and arranged as horizontally as possible.
- 4.4.5.3. Finally, remove the wooden rod and replace with the detonator. Do not carry out firing until the danger zone has been evacuated and the test personnel have taken cover.
- 4.4.5.4. Detonate the explosive.
- 4.4.6. Allow sufficient time for the fumes (gaseous and sometimes toxic decomposition products such as nitrous gases) to disperse, then collect the lead cylinders and measure their heights with a Vernier caliper

Record for each of the marked lead cylinders, the degree of crushing expressed as a percentage of the original height of 100 mm. If the cylinders are crushed obliquely, record the highest and the lowest values and calculate the average.


- 4.4.7. A probe for continuous measurement of the detonation velocity can be used; the probe should be inserted longitudinally to the axis of the tube or along its side wall
- 4.4.8. Two detonation tests per sample are to be carried out
- 4.5. Test report

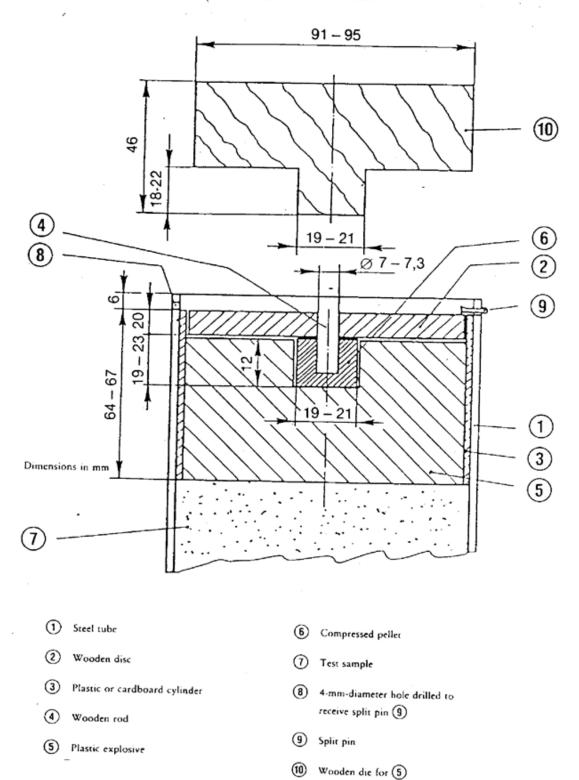
Values for the following parameters are to be given in the test report for each of the detonation tests:

- the values actually measures for the outside diameter of the steel tube and for the wall thickness,
- the Brinell hardness of the steel tube,
- the temperature of the tube and the sample shortly before firing,
- the packing density (kg/m^3) of the sample in the steel tube,
- the height of each lead cylinder after firing, specifying the corresponding cylinder number,
- method of initiation employed for the booster charge.
- 4.5.1. Evaluation of test results

If, in each firing, the crushing of at least one lead cylinder is less than 5 %, the test shall be considered conclusive and the sample in conformity with the requirements of Annex III.2.

Figure 1

Booster charge with seven-point initiation


- Steel tube
- Wooden disc with seven holes
- 3 Plastic or cardboard cylinder

- 6 Test sample
- (7) 4-mm-diameter hole drilled to receive split pin (8)

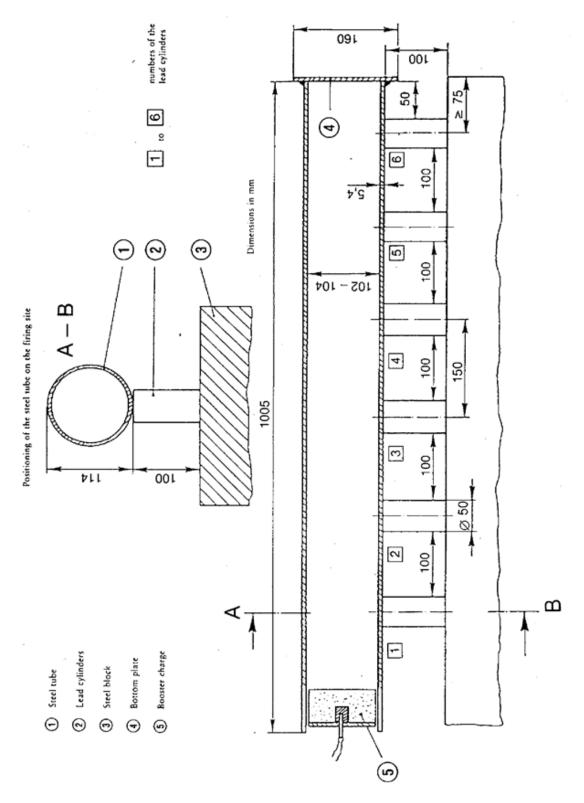

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

Figure 2

Booster charge with central initiation

ANNEX IV

METHODS OF SAMPLING AND ANALYSIS

A. METHOD OF SAMPLING FOR THE CONTROL OF FERTILISERS INTRODUCTION

Correct sampling is a difficult operation which requires the greatest of care. The need to obtain a sufficiently representative sample for the official testing of fertilisers cannot, therefore, be stressed too much.

The sampling method described below must be applied with strict accuracy by specialists with experience of the conventional sampling procedure.

1. Purpose and scope

Samples intended for the official control of fertilisers, for quality and composition, shall be taken according to the methods described below. Samples thus obtained shall be considered as representative of the sampled portions.

2. Sampling officers

The samples shall be taken by specialist officers authorised for that purpose by the $[^{F92}appropriate authority]$.

Textual Amendments
F92 Words in Annex 4 s. A para. 2 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(23)(a); 2020 c. 1, Sch. 5 para. 1(1)

3. Definitions

Sampled portion	:	A quantity of product constituting a unit, and having characteristics presumed to be uniform.
Incremental sample	:	A quantity taken from one point in the sampled portion.
Aggregate sample	:	An aggregate of incremental samples taken from the same sampled portion.
Reduced sample	:	A representative part of the aggregate sample, obtained from the latter by a process of reduction.
Final sample	:	A representative part of the reduced sample.

4. Apparatus

4.1. The sampling apparatus must be made of materials which cannot affect the characteristics of the products to be sampled. Such apparatus may be officially approved by the [^{F93}appropriate authority].

Textual Amendments

- F93 Words in Annex 4 s. A para. 4.1 substituted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(23) (b); 2020 c. 1, Sch. 5 para. 1(1)
- 4.2. Apparatus recommended for the sampling of solid fertilisers

- 4.2.1. Manual sampling
- 4.2.1.1. Flat-bottomed shovel with vertical sides.
- 4.2.1.2. Sampling spear with a long split or compartments. The dimensions of the sampling spear must be appropriate to the characteristics of the sampled portion (depth of container, dimensions of sack, etc.) and to the particle size of the fertiliser.
- 4.2.2. Mechanical sampling

Approved mechanical apparatus may be used for the sampling of moving fertilisers.

4.2.3. Divider

Apparatus designed to divide the sample into equal parts may be used for taking incremental samples and for the preparation of reduced and final samples.

- 4.3. Apparatus recommended for the sampling of fluid fertilisers
- 4.3.1. Manual sampling

Open tube, probe, bottle or another appropriate equipment able to take samples at random from the sampled portion.

4.3.2. Mechanical sampling

Approved mechanical apparatus may be used for sampling of moving fluid fertilisers.

- 5. Quantitative requirements
- 5.1. Sampled portion

The size of the sampled portion must be such that each of its constituent parts can be sampled.

- 5.2. Incremental samples
- 5.2.1. Loose solid fertilisers or fluid fertilisers in containers exceeding 100 kg
- 5.2.1.1. Sampled portions not exceeding 2,5 tonnes:

Minimum number of incremental samples: seven

5.2.1.2. Sampled portions exceeding 2,5 tonnes and up to 80 tonnes:

Minimum number of incremental samples:

 $\sqrt{20}$ times the number of tonnes making up the sampled portion (14)

5.2.1.3. Sampled portions exceeding 80 tonnes:

Minimum number of incremental samples: 40

- 5.2.2. Packaged solid fertilisers or fluid fertilisers in containers (= packages each not exceeding 100 kg)
- 5.2.2.1. Packages of more than 1 kg
- 5.2.2.1.1. Sampled portions of less than five packages:

Minimum number of packages to be sampled⁽¹⁵⁾: all packages.

5.2.2.1.2. Sampled portions of five to 16 packages:

Minimum number of packages to be sampled⁽¹⁵⁾: four.

5.2.2.1.3. Sampled portions of 17 to 400 packages:

Minimum number of packages to be sampled⁽¹⁵⁾: $\sqrt{\text{number of packages making up the sampled portion}}$

(14)

5.2.2.1.4. Sampled portions exceeding 400 packages:

Minimum number of packages to be sampled⁽¹⁵⁾: 20.

5.2.2.2. Packages not exceeding 1 kg:

Minimum number of packages to be sampled⁽¹⁵⁾: four.

5.3. Aggregate sample

A single aggregate sample per sampled portion is required. The total mass of the incremental samples making up the aggregate sample shall be not less than the following:

- 5.3.1. Loose solid fertilisers or fluid fertilisers in containers exceeding 100 kg: 4 kg.
- 5.3.2. Packaged solid fertilisers or fluid fertilisers in containers (= packages) each not exceeding 100 kg

5.3.2.1. Packages of more than 1 kg: 4 kg

5.3.2.2. Packages not exceeding 1 kg: mass of the contents of four original packages.

- 5.3.3. Ammonium nitrate fertiliser sample for tests according to Annex III.2: 75 kg
- 5.4. Final samples

The aggregate sample gives the final samples on reduction when necessary. Analysis of at least one final sample is required. The mass of the sample for analysis shall not be less than 500 g.

- 5.4.1. Solid and fluid fertilisers
- 5.4.2. Ammonium nitrate fertiliser sample for tests

The aggregate sample gives the final sample for tests on reduction when necessary.

- 5.4.2.1. Minimum final sample mass for Annex III.1 tests: 1 kg
- 5.4.2.2. Minimum final sample mass for Annex III.2 tests: 25 kg
- 6. Instructions for taking, preparing and packaging the samples
- 6.1. General

The samples must be taken and prepared as quickly as possible bearing in mind the precautions necessary to ensure that they remain representative of the fertiliser sampled. Instruments and also surfaces and containers intended to receive samples must be clean and dry.

In the case of fluid fertilisers, if possible the sampled portion should be mixed prior to sampling.

6.2. Incremental samples

Incremental samples must be taken at random throughout the whole sampled portion and they must be of approximately equal sizes.

6.2.1. Loose solid fertilisers or fluid fertilisers in containers exceeding 100 kg

An imaginary division shall be made of the sampled portion into a number of approximately equal parts. A number of parts corresponding to the number of incremental samples required in accordance with 5.2 shall be selected at random and at least one sample taken from each of these parts. Where it is not possible to comply with the requirements of 5.1 when sampling bulk fertilisers or fluid fertilisers in containers exceeding 100 kg the sampling should be carried out when the sampled portion is being moved (loading or unloading). In this case samples shall be taken from the randomly selected notional parts as defined above while these are being moved.

6.2.2. Packaged solid fertilisers or fluid fertilisers in containers (= packages) each not exceeding 100 kg

Having selected the required number of packages for sampling as indicated in 5.2, part of the contents of each package shall be removed. Where necessary, the samples shall be taken after emptying the packages separately.

6.3. Preparation of aggregate sample

The incremental samples shall be mixed to form a single aggregate sample.

6.4. Preparation of the final sample

The material in the aggregate sample shall be carefully mixed⁽¹⁶⁾.

If necessary the aggregate sample should first be reduced to at least 2 kg (reduced sample) either by using a mechanical divider or by the quartering method.

At least three final samples shall then be prepared, of approximately the same amount and conforming to the quantitative requirements of 5.4. Each sample shall be put into an appropriate air tight container. All necessary precautions shall be taken to avoid any change in the characteristics of the sample.

For the tests of Annex III, sections 1 and 2, the final samples shall be kept at a temperature between 0 $^{\circ}$ C and 25 $^{\circ}$ C.

7. Packaging of final samples

The containers or packages shall be scaled and labelled (the total label must be incorporated in the seal) in such a manner that they cannot be opened without damaging the seal.

8. Sampling record

A record must be kept of each sampling, permitting each sampled portion to be identified unambiguously.

9. Destination of samples

For each sample portion at least one final sample shall be sent as quickly as possible to an authorised analytical laboratory or to the test institution, together with the information necessary for the analysis or the test.

B. METHODS FOR THE ANALYSIS OF FERTILISERS

(See table of contents p. 2.) General observations

No 2003/2003 of the European Parliament and of the Council. (See end of Document for details)

Laboratory equipment

In the descriptions of the methods, general laboratory equipment has not been precisely defined, except that the sizes of flasks and pipettes are given. In all cases laboratory apparatus must be well cleaned, particularly when small quantities of elements are to be determined. Control tests

Before analysis it is necessary to ensure that all apparatus functions well and that the analytical technique is carried out correctly, using where appropriate chemical compounds of known composition (e.g. ammonium sulphate, mono potassium phosphate, etc.). Nevertheless, the results from analysed fertilisers can indicate wrong chemical composition if the analytical technique is not rigorously followed. On the other hand, a certain number of determinations are empirical and are relative to products of complex chemical composition. It is recommended that where available, laboratories should make use of standard reference fertilisers of well defined composition.

General provisions relating to methods of analysing fertilisers

1. Reagents

Unless otherwise specified in the method of analysis, all of the reagents must be analysis-pur (a.p.). Where micro-nutrients are to be analysed the purity of the reagents must be checked by means of a blank test. Depending upon the result obtained, it might be necessary to conduct a further purification.

2. Water

Where dissolution, dilution, rinsing or washing operations referred to in the methods of analysis do not specify the nature of solvents or diluents the use of water is implied. Normally, the water will have to be demineralised or distilled. In these specific instances, as mentioned in the method of analysis, that water will have to be subjected to specific purification processes.

3. Laboratory equipment

In view of the equipment normally used in inspection laboratories, the apparatus described in the methods of analysis is restricted to special instruments and apparatus or to such demanded by any specific requirements. This equipment must be perfectly clean, above all where small quantities are to be determined. The laboratory will have to ensure the accuracy of any graduated glassware used by referring to appropriate metrological standards.

[^{F94}Metho**as**mple preparation and sampling

Method Sampling for analysis

1.1

EN 1482-1, Fertilizers and liming materials — *Sampling and sample preparation* — *Part 1: Sampling*

Method Preparation of sample for analysis 1.2

EN 1482-2, Fertilizers and liming materials — Sampling and sample preparation — Part 2: Sample preparation

Method Sampling of static heaps for analysis 1.3

EN 1482-3, Fertilizers and liming materials — Sampling and sample preparation — Part 3: Sampling of static heaps]

Textual Amendments

F94 Substituted by Commission Regulation (EU) 2019/1102 of 27 June 2019 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilisers for the purposes of adapting Annexes I and IV (Text with EEA relevance).

Methods Nitrogen

2

[^{F78}MethoDetermination of ammoniacal nitrogen

2.1

EN 15475: Fertilisers — Determination of ammoniacal nitrogen

This method of analysis has been ring-tested.]

Methods Determination of nitric and ammoniacal nitrogen 2.2

[^{F78}MethoDetermination of nitric and ammoniacal nitrogen according to Ulsch 2.2.1

EN 15558: Fertilisers — Determination of nitric and ammoniacal nitrogen according to Ulsch

This method of analysis has not been ring-tested.]

[^{F78}MethoDetermination of nitric and ammoniacal nitrogen according to Arnd 2.2.2

EN 15559: Fertilisers – Determination of nitric and ammoniacal nitrogen according to Arnd

This method of analysis has not been ring-tested.]

[^{F78}MethoDetermination of nitric and ammoniacal nitrogen according to Devarda 2.2.3

EN 15476: Fertilisers — Determination of nitric and ammoniacal nitrogen according to Devarda

This method of analysis has been ring-tested.]

Method Determination of total nitrogen 2.3

[^{F78}MethoDetermination of the total nitrogen in calcium cyanamide nitrate free 2.3.1

EN 15560: Fertilisers — Determination of total nitrogen in calcium cyanamide nitrate free

This method of analysis has not been ring-tested.]

[^{F78}MethoDetermination of total nitrogen in calcium cyanamide containing nitrates 2.3.2

EN 15561: Fertilisers — Determination of total nitrogen in calcium cyanamide containing nitrates

This method of analysis has not been ring-tested.]

[^{F78}MethoDetermination of total nitrogen in urea 2.3.3

EN 15478: Fertilisers — Determination of total nitrogen in urea

This method of analysis has been ring-tested.]

[^{F78}MethoDetermination of cyanamide nitrogen

2.4

EN 15562: Fertilisers — Determination of cyanamide nitrogen

This method of analysis has not been ring-tested.]

[^{F78}Methoapectrophotometric determination of biuret in urea 2.5

EN 15479: Fertilisers — Spectrophotometric determination of biuret in urea

This method of analysis has been ring-tested.]

Methods Determination of different forms of nitrogen in the same sample 2.6

[^{F78}MethoDetermination of different forms of nitrogen in the same sample in fertilisers 2.6.1 containing nitrogen as nitric, ammoniacal, urea and cyanamide nitrogen

EN 15604: *Fertilisers* — *Determination of different forms of nitrogen in the same sample containing nitrogen, as nitric, ammoniacal, urea and cyanamide nitrogen*

This method of analysis has not been ring-tested.]

*I^{F80}Metho***D**etermination of total nitrogen in fertilisers containing nitrogen only as nitric, 2.6.2 ammoniacal and urea nitrogen by two different methods

EN 15750: Fertilizers. Determination of total nitrogen in fertilizers containing nitrogen only as nitric, ammoniacal and urea nitrogen by two different methods.

This method of analysis has been ring-tested.]

$I^{F76}Metho$ Determination of urea condensates using HPLC — Isobutylenediurea and 2.6.3 crotonylidenediurea (method A) and methylen-urea oligomers (method B)

EN 15705: Fertilizers. Determination of urea condensates using high-performance liquid chromatography (HPLC). Isobutylenediurea and crotonylidenediurea (method A) and methylen-urea oligomers (method B)

This method of analysis has been ring-tested.]

```
Methods Phosphorus
3
Methods Extractions
3.1
```

[^{F79}Metho**Extraction of phosphorus soluble in mineral acids** 3.1.1

EN 15956: Fertilizers – Extraction of phosphorus soluble in mineral acids

This method of analysis has been ring-tested.

Method **Extraction of phosphorus soluble in 2 % formic acid** 3.1.2

EN 15919: Fertilizers – Extraction of phosphorus soluble in 2 % formic acid

This method of analysis has not been ring-tested.

Method **Extraction of phosphorus soluble in 2 % citric acid** 3.1.3

EN 15920: Fertilizers – Extraction of phosphorus soluble in 2 % citric acid

This method of analysis has not been ring-tested.

Method **Extraction of phosphorus which is soluble in neutral ammonium citrate** 3.1.4

EN 15957: Fertilizers – Extraction of phosphorus which is soluble in neutral ammonium citrate

This method of analysis has been ring-tested.]

Methods Extraction by alkaline ammonium citrate 3.1.5

[^{F79}Metho**Extraction of soluble phosphorus according to Petermann at 65 °C** 3.1.5.1

EN 15921: Fertilizers – Extraction of phosphorus according to Petermann at 65 °C

This method of analysis has not been ring-tested.

Method Extraction of the soluble phosphorus according to Petermann at ambient 3.1.5.2 temperature

EN 15922: Fertilizers – Extraction of phosphorus according to Petermann at ambient temperature

This method of analysis has not been ring-tested.

Method **Extraction of phosphorus soluble in Joulie's alkaline ammonium citrate** 3.1.5.3

EN 15923: Fertilizers – Extraction of phosphorus in Joulie's alkaline ammonium citrate

This method of analysis has not been ring-tested.]

[^{F79}Metho**Extraction of water soluble phosphorus** 3.1.6

EN 15958: Fertilizers – Extraction of water soluble phosphorus

This method of analysis has been ring-tested.]

[^{F79}Metho**D**etermination of extracted phosphorus 3.2

EN 15959: Fertilizers – Determination of extracted phosphorus

This method of analysis has been ring-tested.]

Method Potassium 4

[^{F78}MethoDetermination of the water-soluble potassium content 4.1

EN 15477: Fertilisers — Determination of the water-soluble potassium content

This method of analysis has been ring-tested.]

Method [^{F76}Carbon dioxide] 5

*I^{F76}Metho***D**etermination of carbon dioxide — Part I: method for solid fertilisers 5.1

EN 14397-1: Fertilizers and liming materials. Determination of carbon dioxide. Part I: method for solid fertilisers

This method of analysis has been ring-tested.]

Method Chlorine 6

 $I^{F^{70}}Metho$ Determination of chlorides in the absence of organic material 6.1

EN 16195: Fertilisers — Determination of chlorides in the absence of organic material

This method of analysis has been ring-tested.]

Methods Fineness of grinding

 $[^{\rm F79}Metho$ Determination of the fineness of grinding (dry procedure ~) 7.1

EN 15928: Fertilizers – Determination of the fineness of grinding (dry procedure)

This method of analysis has not been ring-tested.

Method **Determination of the fineness of grinding of soft natural phosphates** 7.2

EN 15924: Fertilizers – Determination of the fineness of grinding of soft natural phosphates

This method of analysis has not been ring-tested.]

Methods Secondary nutrients 8

[^{F79}Metho**Extraction of total calcium, total magnesium, total sodium and total sulphur in** 8.1 the forms of sulphates

EN 15960: Fertilizers – Extraction of total calcium, total magnesium, total sodium and total sulphur in the forms of sulphates

This method of analysis has not been ring-tested.

Method **Extraction of total sulphur present in various forms** 8.2

EN 15925: Fertilizers – Extraction of total sulphur present in various forms

This method of analysis has not been ring-tested.

Method Extraction of water soluble calcium, magnesium, sodium and sulphur (in the 8.3 form of sulphates)

EN 15961: Fertilizers – Extraction of water soluble calcium, magnesium, sodium and sulphur (in the form of sulphates)

This method of analysis has not been ring-tested.

Method Extraction of water soluble sulphur where the sulphur is in various forms 8.4

EN 15926: Fertilizers – Extraction of water soluble sulphur where the sulphur is in various forms

This method of analysis has not been ring-tested.

Method **Extraction and determination of elemental sulphur** 8.5

EN 16032: Fertilizers – Extraction and determination of elemental sulphur

This method of analysis has not been ring-tested.]

$I^{F70}MethoManganimetric determination of extracted calcium following precipitation in 8.6 the form of oxalate$

EN 16196: *Fertilisers* — *Manganimetric determination of extracted calcium following precipitation in the form of oxalate*

This method of analysis has been ring-tested.

Method **Determination of magnesium by atomic absorption spectrometry** 8.7

EN 16197: Fertilisers — Determination of magnesium by atomic absorption spectrometry

This method of analysis has been ring-tested.

Method **Determination of magnesium by complexometry** *8.8*

EN 16198: Fertilisers — Determination of magnesium by complexometry

This method of analysis has been ring-tested.]

$I^{F80}Metho$ Determination of the sulfates content using three different methods 8.9

EN 15749: Fertilizers. Determination of sulfates content using three different methods

This method of analysis has been ring-tested.]

$I^{F70}Metho$ Determination of the sodium extracted by flame-emission spectrometry 8.10

EN 16199: Fertilisers — Determination of the sodium extracted by flame-emission spectrometry

This method of analysis has been ring-tested.]

[^{F82}Metho**D**etermination of calcium and formate in calcium formate 8.11

EN 15909: Fertilizers – Determination of calcium and formate in calcium foliar fertilizers

This method of analysis has been ring-tested.]

 I^{F94} Metho Msicro-nutrients at a concentration of less than or equal to 10 % 9

Method **Extraction of total micro-nutrients in fertilisers using aqua regia** 9.1

EN 16964: Fertilizers — Extraction of total micro-nutrients in fertilizers using aqua regia

This method of analysis has been ring-tested.

MethodExtraction of water soluble micro-nutrients in fertilisers and removal of organic9.2compounds from fertilizer extracts

EN 16962: Fertilizers — *Extraction of water soluble micro-nutrients in fertilizers and removal of organic compounds from fertilizer extracts*

This method of analysis has been ring-tested.

Method Determination of cobalt, copper, iron, manganese and zinc using flame atomic 9.3 absorption spectrometry (FAAS)

EN 16965: *Fertilizers* — *Determination of cobalt, copper, iron, manganese and zinc using flame atomic absorption spectrometry (FAAS)*

This method of analysis has been ring-tested

Method **Determination of boron, cobalt, copper, iron, manganese, molybdenum and zinc** 9.4 **using ICP-AES**

EN 16963: *Fertilizers* — *Determination of boron, cobalt, copper, iron, manganese, molybdenum and zinc using ICP-AES*

This method of analysis has been ring-tested.

Method **Determination of boron using spectrometry with azomethine-H** 9.5

EN 17041: Fertilizers — Determination of boron in concentrations ≤ 10 % using spectrometry with azomethine-H

This method of analysis has been ring-tested.

MethodDetermination of molybdenum using spectrometry of a complex with ammonium9.6thiocyanate

EN 17043: Fertilizers — *Determination of molybdenum in concentrations in concentrations* ≤ 10 % using spectrometry of a complex with ammonium thiocyanate

This method of analysis has been ring-tested.]

*I^{F94}Metho*Micro-nutrients at a concentration greater than 10 % 10

Method Extraction of total micro-nutrients in fertilisers using aqua regia 10.1

EN 16964: Fertilizers — Extraction of total micro-nutrients in fertilizers using aqua regia

This method of analysis has been ring-tested.

MethodExtraction of water soluble micro-nutrients in fertilisers and removal of organic10.2compounds from fertilizer extracts

EN 16962: Fertilizers — Extraction of water soluble micro-nutrients in fertilizers and removal of organic compounds from fertilizer extracts

This method of analysis has been ring-tested.

Method **Determination of cobalt, copper, iron, manganese and zinc using flame atomic** 10.3 **absorption spectrometry (FAAS)**

EN 16965: *Fertilizers* — *Determination of cobalt, copper, iron, manganese and zinc using flame atomic absorption spectrometry (FAAS)*

This method of analysis has been ring-tested.

Method **Determination of boron, cobalt, copper, iron, manganese, molybdenum and zinc** 10.4 **using ICP-AES**

EN 16963: *Fertilizers* — *Determination of boron, cobalt, copper, iron, manganese, molybdenum and zinc using ICP-AES*

This method of analysis has been ring-tested.

Method **Determination of boron using acidimetric titration** 10.5

EN 17042: Fertilizers — Determination of boron in concentrations > 10 % using acidimetric titration

This method of analysis has not been ring-tested.

Method **Determination of molybdenum using gravimetric method with 8**-10.6 hydroxyquinoline

CEN/TS 17060: Fertilizers — Determination of molybdenum in concentration > 10 % using gravimetric method with 8-hydroxyquinoline

This method of analysis has not been ring-tested.]

[^{F69}Metho#\$^{\$}^{\$}⁹Chelating and complexing agents]

Method Determination of the chelated micro-nutrient content and of the chelated fraction of 11.1 micro-nutrients

EN 13366: Fertilisers — *Treatment with a cation exchange resin for the determination of the chelated micro-nutrient content and of the chelated fraction of micro-nutrients*

This method of analysis has been ring-tested.

Method Determination of EDTA, HEDTA and DTPA 11.2

EN 13368-1: Fertilisers — Determination of chelating agents in fertilisers by ion chromatography — Part 1: EDTA, HEDTA and DTPA

This method of analysis has been ring-tested.

[^{F79}MethoDetermination of iron chelated by 0,0-EDDHA, 0,0-EDDHMA and HBED 11.3

EN 13368-2: Fertilizers – Determination of chelating agents in fertilizers by chromatography. Part 2: Determination of Fe chelated by 0,0-EDDHA, 0,0-EDDHMA and HBED by ion pairchromatography

This method of analysis has been ring-tested.]

Method Determination of iron chelated by EDDHSA 11.4

EN 15451: Fertilisers — Determination of chelating agents-Determination of iron chelated by *EDDHSA* by ion pair-chromatography

This method of analysis has been ring-tested.

Method Determination of iron chelated by 0,p EDDHA 11.5

EN 15452: Fertilisers — Determination of chelating agents-Determination of iron chelated by *o*,*p* EDDHA by reversed phase HPLC

This method of analysis has been ring-tested.

[^{F82}Metho**D**etermination of IDHA 11.6

EN 15950: *Fertilizers* – *Determination of N-(1,2-dicarboxyethyl)-D,L-aspartic acid* (*Iminodisuccinic acid, IDHA*) using high-performance liquid chromatography (HPLC)

This method of analysis has been ring-tested.

Method **Determination of lignosulfonates** 11.7

EN 16109: Fertilizers – Determination of micro-nutrient ions complexed in fertilizers – Identification of lignosulfonates

This method of analysis has been ring-tested.

MethodDetermination of the complexed micro-nutrient content and of the complexed11.8fraction of micro-nutrients

EN 15962: Fertilizers – Determination of the complexed micro-nutrient content and of the complexed fraction of micro-nutrients

This method of analysis has been ring-tested.]

[^{F86}Metho**Determination of [S,S]-EDDS** 11.9

EN 13368-3 *Part* 3: *Fertilizers* — *Determination of chelating agents in fertilizers by chromatography: Determination of* [*S*,*S*]*-EDDS by ion pair chromatography*

This method of analysis has been ring-tested.]

[^{F86}Metho**Determination of HGA** 11.10

EN 16847: Fertilizers — *Determination of complexing agents in fertilizers* — *Identification of heptagluconic acid by chromatography*

This method of analysis has been ring-tested.]

Methods Nitrification and urease inhibitors 12

Method Determination of dicyandiamide 12.1

EN 15360: Fertilisers — Determination of dicyandiamide – Method using high-performance liquid chromatography (HPLC)

This method of analysis has been ring-tested.

Method Determination of NBPT 12.2

EN 15688: Fertilisers — *Determination of urease inhibitor N-(n-butyl)thiophosphoric triamide (NBPT) using high-performance liquid chromatography (HPLC)*

This method of analysis has been ring-tested.

[^{F82}Metho**Determination of 3-methylpyrazole** 12.3

EN 15905: Fertilizers – Determination of 3-methylpyrazole (MP) using high-performance liquid chromatography (HPLC)

This method of analysis has been ring-tested.

Method **Determination of TZ** 12.4

EN 16024: Fertilizers – Determination of 1H,1,2,4-triazole in urea and in fertilizers containing urea – Method using high-performance liquid chromatography (HPLC)

This method of analysis has been ring-tested.

Method **Determination of 2-NPT** 12.5

EN 16075: Fertilizers – Determination of N-(2-nitrophenyl)phosphoric triamide (2-NPT) in urea and fertilizers containing urea – Method using high-performance liquid chromatography (HPLC)

This method of analysis has been ring-tested.] [^{F75}Method 12.6 **Determination of DMPP**

EN 16328: Fertilizers — *Determination of 3, 4-dimethyl-1H-pyrazole phosphate (DMPP)* — *Method using high-performance liquid chromatography (HPLC)*

This method of analysis has been ring-tested. Method 12.7 Determination of NBPT/NPPT

EN 16651: *Fertilizers* — *Determination of N-(n-Butyl)thiophosphoric acid triamide (NBPT)* and *N-(n-Propyl)thiophosphoric acid triamide (NPPT)* — *Method using high-performance liquid chromatography (HPLC)*

This method of analysis has been ring-tested.] [^{F88}Method 12.8 Determination of DMPSA

EN 17090: Fertilizers — Determination of nitrification inhibitor DMPSA in fertilizers — Method using high-performance liquid chromatography (HPLC)

This method of analysis has been ring-tested.]

Methods Heavy metals 13

Method Determination of cadmium content 13.1

EN 14888: Fertilisers and liming materials — Determination of cadmium content

This method of analysis has been ring-tested.]

[^{F90}Metho**Lisming materials** 14

Method **Determination of size distribution of liming materials by dry and wet sieving** 14.1

EN 12948: Liming materials — Determination of size distribution by dry and wet sieving

This method of analysis has been ring-tested.

MethodDetermination of the reactivity of carbonate and silicate liming materials with14.2hydrochloric acid

EN 13971: Carbonate and silicate liming materials — Determination of reactivity — Potentiometric titration method with hydrochloric acid

This method of analysis has been ring-tested.

Method **Determination of the reactivity by automatic titration method with citric acid** 14.3

EN 16357: Carbonate liming materials — Determination of reactivity — Automatic titration method with citric acid

This method of analysis has been ring-tested.

Method **Determination of the neutralising value of liming materials** 14.4

EN 12945: Liming materials — Determination of neutralising value — Titrimetric methods

This method of analysis has been ring-tested.

Method **Determination of calcium in liming materials by the oxalate method** 14.5

EN 13475: Liming materials — Determination of calcium content — Oxalate method

This method of analysis has been ring-tested.

Method **Determination of calcium and magnesium in liming materials by complexometry** 14.6

EN 12946: Liming materials — Determination of calcium and magnesium content — Complexometric method

This method of analysis has been ring-tested.

Method **Determination of magnesium in liming materials by atomic absorption** 14.7 **spectrometric method**

EN 12947: Liming materials — Determination of magnesium content — Atomic absorption spectrometric method

This method of analysis has been ring-tested.

Method **Determination of moisture content** 14.8

EN 12048 Solid fertilisers and liming materials — Determination of moisture content — Gravimetric method by drying at 105 °C +/– 2 °C

This method of analysis has been ring-tested.

Method **Determination of the breakdown of granules** 14.9

EN 15704: Liming materials — *Determination of the breakdown of granulated calcium and calcium/magnesium carbonates under the influence of water*

This method of analysis has been ring-tested.

Method **Determination of product effect by soil incubation** 14.10

EN 14984: Liming materials — Determination of product effect on soil *pH* — Soil incubation method

This method of analysis has been ring-tested.]

ANNEX V

A. LIST OF DOCUMENTS TO BE CONSULTED BY MANUFACTURERS OR THEIR REPRESENTATIVES IN ORDER TO COMPILE A TECHNICAL FILE FOR A NEW TYPE OF FERTILISERS TO BE ADDED TO ANNEX I OF THIS REGULATION

F95

Textual Amendments

F95 Annex 5 Section A omitted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(24)(a); 2020 c. 1, Sch. 5 para. 1(1)

- [^{F78}B. REQUIREMENTS TO AUTHORISE LABORATORIES THAT ARE COMPETENT TO PROVIDE THE NECESSARY SERVICE FOR CHECKING COMPLIANCE OF [^{F16}UK FERTILISERS] WITH THE REQUIREMENTS OF THIS REGULATION AND ITS ANNEXES
- 1. Standard applicable at the level of the laboratories.
- Laboratories accredited in accordance with EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories, for at least one of the methods of Annexes III or IV.
 - F96

Textual Amendments

F96 Words in Annex 5 Section B para. 1 omitted (31.12.2020) by The Fertilisers and Ammonium Nitrate Material (Amendment) (EU Exit) Regulations 2019 (S.I. 2019/601), regs. 1(2), 5(24)(b); 2020 c. 1, Sch. 5 para. 1(1)

2. Standard applicable at the level of accreditation bodies:

EN ISO/IEC 17011, Conformity assessment: General requirements for accreditation bodies accrediting conformity assessment bodies.]

- (1) OJ C 51 E, 26.2.2002, p. 1 and OJ C 227 E, 24.9.2002, p. 503.
- (2) OJ C 80, 3.4.2002, p. 6.
- (3) Opinion of the European Parliament of 10 April 2002 (OJ C 127 E, 29.5.2002, p. 160), Council Common Position of 14 April 2003 (OJ C 153 E, 1.7.2003, p. 56) and Decision of the European Parliament of 2 September 2003 (not yet published in the Official Journal).
- (4) OJ L 24, 30.1.1976, p. 21. Directive as last amended by Directive 98/97/EC of the European Parliament and the Council (OJ L 18, 23.1.1999, p. 60).
- (5) OJ L 250, 23.9.1980, p. 7. Directive as amended by Directive 97/63/EC of the European Parliament and the Council (OJ L 335, 6.12.1997, p. 15).
- (6) OJ L 38, 7.2.1987, p. 1. Directive as amended by Directive 88/126/EEC (OJ L 63, 9.3.1988, p. 12).
- (7) OJ L 213, 22.8.1977, p. 1. Directive as last amended by Directive 95/8/EC (OJ L 86, 20.4.1995, p. 41).
- (8) OJ L 184, 17.7.1999, p. 23.
- (9) A reaction time of one and a half hours, is sufficient in the case of most of the organic substances in the presence of silver nitrate catalyst.
- (10) Commercially available standard copper solution may be used.
- (11) Whatman 541 or equivalent.
- (12) The diameter of the disc must always correspond to the inside diameter of the cylinder.
- (13) *NB*: When the six peripheral lengths of cord are taut after assembly, the central cord must remain slightly slack.
- (14) Where the number obtained is a fraction, it should be rounded up to the next whole number.
- (15) For packages whose contents do not exceed 1 kg, an incremental sample shall be the contents of one original package.
- (16) Any lumps shall be broken up (if necessary by separating them out and returning them to the sample).

Changes to legislation:

There are currently no known outstanding effects for the Regulation (EC) No 2003/2003 of the European Parliament and of the Council.