2.ELR TEST
Since Bessel filtering is a completely new averaging procedure in European exhaust legislation, an explanation of the Bessel filter, an example of the design of a Bessel algorithm, and an example of the calculation of the final smoke value is given below. The constants of the Bessel algorithm only depend on the design of the opacimeter and the sampling rate of the data acquisition system. It is recommended that the opacimeter manufacturer provide the final Bessel filter constants for different sampling rates and that the customer use these constants for designing the Bessel algorithm and for calculating the smoke values.
2.1.General remarks on the Bessel filter
Due to high frequency distortions, the raw opacity signal usually shows a highly scattered trace. To remove these high frequency distortions a Bessel filter is required for the ELR-test. The Bessel filter itself is a recursive, second-order low-pass filter which guarantees the fastest signal rise without overshoot.
Assuming a real time raw exhaust plume in the exhaust tube, each opacimeter shows a delayed and differently measured opacity trace. The delay and the magnitude of the measured opacity trace is primarily dependent on the geometry of the measuring chamber of the opacimeter, including the exhaust sample lines, and on the time needed for processing the signal in the electronics of the opacimeter. The values that characterise these two effects are called the physical and the electrical response time which represent an individual filter for each type of opacimeter.
The goal of applying a Bessel filter is to guarantee a uniform overall filter characteristic of the whole opacimeter system, consisting of:
physical response time of the opacimeter (tp),
electrical response time of the opacimeter (te),
filter response time of the applied Bessel filter (tF).
The resulting overall response time of the system tAver is given by:
and must be equal for all kinds of opacimeters in order to give the same smoke value. Therefore, a Bessel filter has to be created in such a way, that the filter response time (tF) together with the physical (tp) and electrical response time (te) of the individual opacimeter must result in the required overall response time (tAver). Since tp and te are given values for each individual opacimeter, and tAver is defined to be 1,0 s in this Directive, tF can be calculated as follows:
By definition, the filter response time tF is the rise time of a filtered output signal between 10 % and 90 % on a step input signal. Therefore the cut-off frequency of the Bessel filter has to be iterated in such a way, that the response time of the Bessel filter fits into the required rise time.
In Figure a, the traces of a step input signal and Bessel filtered output signal as well as the response time of the Bessel filter (tF) are shown.
Designing the final Bessel filter algorithm is a multi step process which requires several iteration cycles. The scheme of the iteration procedure is presented below.
2.2.Calculation of the Bessel algorithm
In this example a Bessel algorithm is designed in several steps according to the above iteration procedure which is based upon Annex III, Appendix 1, Section 6.1.
For the opacimeter and the data acquisition system, the following characteristics are assumed:
physical response time tp 0,15 s
electrical response time te 0,05 s
overall response time tAver 1,00 s (by definition in this Directive)
sampling rate 150 Hz
Step 1Required Bessel filter response time tF:
Step 2Estimation of cut-off frequency and calculation of Bessel constants E, K for first iteration:
This gives the Bessel algorithm:
where Si represents the values of the step input signal (either ‘0’ or ‘1’) and Yi represents the filtered values of the output signal.
Step 3Application of Bessel filter on step input:
The Bessel filter response time tF is defined as the rise time of the filtered output signal between 10 % and 90 % on a step input signal. For determining the times of 10 % (t10) and 90 % (t90) of the output signal, a Bessel filter has to be applied to a step input using the above values of fc, E and K.
The index numbers, the time and the values of a step input signal and the resulting values of the filtered output signal for the first and the second iteration are shown in Table B. The points adjacent to t10 and t90 are marked in bold numbers.
In Table B, first iteration, the 10 % value occurs between index number 30 and 31 and the 90 % value occurs between index number 191 and 192. For the calculation of tF,iter the exact t10 and t90 values are determined by linear interpolation between the adjacent measuring points, as follows:
where outupper and outlower, respectively, are the adjacent points of the Bessel filtered output signal, and tlower is the time of the adjacent time point, as indicated in Table B.
Step 4Filter response time of first iteration cycle:
Step 5Deviation between required and obtained filter response time of first iteration cycle:
Step 6Checking the iteration criteria:
|Δ| ≤ 0,01 is required. Since 0,081641 > 0,01, the iteration criteria is not met and a further iteration cycle has to be started. For this iteration cycle, a new cut-off frequency is calculated from fc and Δ as follows:
This new cut-off frequency is used in the second iteration cycle, starting at step 2 again. The iteration has to be repeated until the iteration criteria is met. The resulting values of the first and second iteration are summarised in Table A.
Table A
Values of the first and second iteration
Parameter | 1. Iteration | 2. Iteration |
---|
fc | (Hz) | 0,318152 | 0,344126 |
E | (-) | 7,07948 E-5 | 8,272777 E-5 |
K | (-) | 0,970783 | 0,96841 |
t10 | (s) | 0,200945 | 0,185523 |
t90 | (s) | 1,276147 | 1,179562 |
tF,iter | (s) | 1,075202 | 0,994039 |
Δ | (-) | 0,081641 | 0,006657 |
fc,new | (Hz) | 0,344126 | 0,346417 |
Step 7Final Bessel algorithm:
As soon as the iteration criteria has been met, the final Bessel filter constants and the final Bessel algorithm are calculated according to step 2. In this example, the iteration criteria has been met after the second iteration (Δ = 0,006657 ≤ 0,01). The final algorithm is then used for determining the averaged smoke values (see next Section 2.3).
Table B
Values of step input signal and Bessel filtered output signal for the first and second iteration cycle
Index i[-] | Time[s] | Step input signal Si[-] | Filtered output signal Yi[-] |
---|
1. Iteration | 2. Iteration |
---|
- 2 | - 0,013333 | 0 | 0,0 | 0,0 |
- 1 | - 0,006667 | 0 | 0,0 | 0,0 |
0 | 0,0 | 1 | 0,000071 | 0,000083 |
1 | 0,006667 | 1 | 0,000352 | 0,000411 |
2 | 0,013333 | 1 | 0,000908 | 0,00106 |
3 | 0,02 | 1 | 0,001731 | 0,002019 |
4 | 0,026667 | 1 | 0,002813 | 0,003278 |
5 | 0,033333 | 1 | 0,004145 | 0,004828 |
~ | ~ | ~ | ~ | ~ |
24 | 0,16 | 1 | 0,067877 | 0,077876 |
25 | 0,166667 | 1 | 0,072816 | 0,083476 |
26 | 0,173333 | 1 | 0,077874 | 0,089205 |
27 | 0,18 | 1 | 0,083047 | 0,095056 |
28 | 0,186667 | 1 | 0,088331 | 0,101024 |
29 | 0,193333 | 1 | 0,093719 | 0,107102 |
30 | 0,2 | 1 | 0,099208 | 0,113286 |
31 | 0,206667 | 1 | 0,104794 | 0,11957 |
32 | 0,213333 | 1 | 0,110471 | 0,125949 |
33 | 0,22 | 1 | 0,116236 | 0,132418 |
34 | 0,226667 | 1 | 0,122085 | 0,138972 |
35 | 0,233333 | 1 | 0,128013 | 0,145605 |
36 | 0,24 | 1 | 0,134016 | 0,152314 |
37 | 0,246667 | 1 | 0,140091 | 0,159094 |
~ | ~ | ~ | ~ | ~ |
175 | 1,166667 | 1 | 0,862416 | 0,895701 |
176 | 1,173333 | 1 | 0,864968 | 0,897941 |
177 | 1,18 | 1 | 0,867484 | 0,900145 |
178 | 1,186667 | 1 | 0,869964 | 0,902312 |
179 | 1,193333 | 1 | 0,87241 | 0,904445 |
180 | 1,2 | 1 | 0,874821 | 0,906542 |
181 | 1,206667 | 1 | 0,877197 | 0,908605 |
182 | 1,213333 | 1 | 0,87954 | 0,910633 |
183 | 1,22 | 1 | 0,881849 | 0,912628 |
184 | 1,226667 | 1 | 0,884125 | 0,914589 |
185 | 1,233333 | 1 | 0,886367 | 0,916517 |
186 | 1,24 | 1 | 0,888577 | 0,918412 |
187 | 1,246667 | 1 | 0,890755 | 0,920276 |
188 | 1,253333 | 1 | 0,8929 | 0,922107 |
189 | 1,26 | 1 | 0,895014 | 0,923907 |
190 | 1,266667 | 1 | 0,897096 | 0,925676 |
191 | 1,273333 | 1 | 0,899147 | 0,927414 |
192 | 1,28 | 1 | 0,901168 | 0,929121 |
193 | 1,286667 | 1 | 0,903158 | 0,930799 |
194 | 1,293333 | 1 | 0,905117 | 0,932448 |
195 | 1,3 | 1 | 0,907047 | 0,934067 |
~ | ~ | ~ | ~ | ~ |
2.3.Calculation of the smoke values
In the scheme below the general procedure of determining the final smoke value is presented.
In Figure b, the traces of the measured raw opacity signal, and of the unfiltered and filtered light absorption coefficients (k-value) of the first load step of an ELR-Test are shown, and the maximum value Ymax1,A (peak) of the filtered k trace is indicated. Correspondingly, Table C contains the numerical values of index i, time (sampling rate of 150 Hz), raw opacity, unfiltered k and filtered k. Filtering was conducted using the constants of the Bessel algorithm designed in Section 2.2 of this Annex. Due to the large amount of data, only those sections of the smoke trace around the beginning and the peak are tabled.
The peak value (i = 272) is calculated assuming the following data of Table C. All other individual smoke values are calculated in the same way. For starting the algorithm, S-1, S-2, Y-1 and Y-2 are set to zero.
LA (m) | 0,43 |
Index i | 272 |
N ( %) | 16,783 |
S271 (m-1) | 0,427392 |
S270 (m-1) | 0,427532 |
Y271 (m-1) | 0,542383 |
Y270 (m-1) | 0,542337 |
Calculation of the k-value (Annex III, Appendix 1, Section 6.3.1):
This value corresponds to S272 in the following equation.
Calculation of Bessel averaged smoke (Annex III, Appendix 1, Section 6.3.2):
In the following equation, the Bessel constants of the previous Section 2.2 are used. The actual unfiltered k-value, as calculated above, corresponds to S272 (Si). S271 (Si-1) and S270 (Si-2) are the two preceding unfiltered k-values, Y271 (Yi-1) and Y270 (Yi-2) are the two preceding filtered k-values.
This value corresponds to Ymax1,A in the following equation.
Calculation of the final smoke value (Annex III, Appendix 1, Section 6.3.3):
From each smoke trace, the maximum filtered k-value is taken for the further calculation.
Assume the following values
Speed | Ymax (m-1) |
---|
Cycle 1 | Cycle 2 | Cycle 3 |
---|
A | 0,5424 | 0,5435 | 0,5587 |
B | 0,5596 | 0,54 | 0,5389 |
C | 0,4912 | 0,5207 | 0,5177 |
Cycle validation (Annex III, Appendix 1, Section 3.4)
Before calculating SV, the cycle must be validated by calculating the relative standard deviations of the smoke of the three cycles for each speed.
Speed | Mean SV(m-1) | Absolute standard deviation(m-1) | Relative standard deviation(%) |
---|
A | 0,5482 | 0,0091 | 1,7 |
B | 0,5462 | 0,0116 | 2,1 |
C | 0,5099 | 0,0162 | 3,2 |
In this example, the validation criteria of 15 % are met for each speed.
Table C
Values of opacity N, unfiltered and filtered k-value at beginning of load step
Index i[-] | Time[s] | Opacity N[%] | Unfiltered k-value[m-1] | Filtered k-value[m-1] |
---|
- 2 | 0,0 | 0,0 | 0,0 | 0,0 |
- 1 | 0,0 | 0,0 | 0,0 | 0,0 |
0 | 0,0 | 0,0 | 0,0 | 0,0 |
1 | 0,006667 | 0,02 | 0,000465 | 0,0 |
2 | 0,013333 | 0,02 | 0,000465 | 0,0 |
3 | 0,02 | 0,02 | 0,000465 | 0,0 |
4 | 0,026667 | 0,02 | 0,000465 | 0,000001 |
5 | 0,033333 | 0,02 | 0,000465 | 0,000002 |
6 | 0,04 | 0,02 | 0,000465 | 0,000002 |
7 | 0,046667 | 0,02 | 0,000465 | 0,000003 |
8 | 0,053333 | 0,02 | 0,000465 | 0,000004 |
9 | 0,06 | 0,02 | 0,000465 | 0,000005 |
10 | 0,066667 | 0,02 | 0,000465 | 0,000006 |
11 | 0,073333 | 0,02 | 0,000465 | 0,000008 |
12 | 0,08 | 0,02 | 0,000465 | 0,000009 |
13 | 0,086667 | 0,02 | 0,000465 | 0,000011 |
14 | 0,093333 | 0,02 | 0,000465 | 0,000012 |
15 | 0,1 | 0,192 | 0,004469 | 0,000014 |
16 | 0,106667 | 0,212 | 0,004935 | 0,000018 |
17 | 0,113333 | 0,212 | 0,004935 | 0,000022 |
18 | 0,12 | 0,212 | 0,004935 | 0,000028 |
19 | 0,126667 | 0,343 | 0,00799 | 0,000036 |
20 | 0,133333 | 0,566 | 0,0132 | 0,000047 |
21 | 0,14 | 0,889 | 0,020767 | 0,000061 |
22 | 0,146667 | 0,929 | 0,021706 | 0,000082 |
23 | 0,153333 | 0,929 | 0,021706 | 0,000109 |
24 | 0,16 | 1,263 | 0,029559 | 0,000143 |
25 | 0,166667 | 1,455 | 0,034086 | 0,000185 |
26 | 0,173333 | 1,697 | 0,039804 | 0,000237 |
27 | 0,18 | 2,03 | 0,047695 | 0,000301 |
28 | 0,186667 | 2,081 | 0,048906 | 0,000378 |
29 | 0,193333 | 2,081 | 0,048906 | 0,000469 |
30 | 0,2 | 2,424 | 0,057067 | 0,000573 |
31 | 0,206667 | 2,475 | 0,058282 | 0,000693 |
32 | 0,213333 | 2,475 | 0,058282 | 0,000827 |
33 | 0,22 | 2,808 | 0,066237 | 0,000977 |
34 | 0,226667 | 3,01 | 0,071075 | 0,001144 |
35 | 0,233333 | 3,253 | 0,076909 | 0,001328 |
36 | 0,24 | 3,606 | 0,08541 | 0,001533 |
37 | 0,246667 | 3,96 | 0,093966 | 0,001758 |
38 | 0,253333 | 4,455 | 0,105983 | 0,002007 |
39 | 0,26 | 4,818 | 0,114836 | 0,002283 |
40 | 0,266667 | 5,02 | 0,119776 | 0,002587 |
Values of opacity N, unfiltered and filtered k-value around Ymax1,A (≡ peak value, indicated in bold number)
Index i[-] | Time[s] | Opacity N[%] | Unfiltered k-value[m-1] | Filtered k-value[m-1] |
---|
259 | 1,726667 | 17,182 | 0,438429 | 0,538856 |
260 | 1,733333 | 16,949 | 0,431896 | 0,539423 |
261 | 1,74 | 16,788 | 0,427392 | 0,539936 |
262 | 1,746667 | 16,798 | 0,427671 | 0,540396 |
263 | 1,753333 | 16,788 | 0,427392 | 0,540805 |
264 | 1,76 | 16,798 | 0,427671 | 0,541163 |
265 | 1,766667 | 16,798 | 0,427671 | 0,541473 |
266 | 1,773333 | 16,788 | 0,427392 | 0,541735 |
267 | 1,78 | 16,788 | 0,427392 | 0,541951 |
268 | 1,786667 | 16,798 | 0,427671 | 0,542123 |
269 | 1,793333 | 16,798 | 0,427671 | 0,542251 |
270 | 1,8 | 16,793 | 0,427532 | 0,542337 |
271 | 1,806667 | 16,788 | 0,427392 | 0,542383 |
272 | 1,813333 | 16,783 | 0,427252 | 0,542389 |
273 | 1,82 | 16,78 | 0,427168 | 0,542357 |
274 | 1,826667 | 16,798 | 0,427671 | 0,542288 |
275 | 1,833333 | 16,778 | 0,427112 | 0,542183 |
276 | 1,84 | 16,808 | 0,427951 | 0,542043 |
277 | 1,846667 | 16,768 | 0,426833 | 0,54187 |
278 | 1,853333 | 16,01 | 0,40575 | 0,541662 |
279 | 1,86 | 16,01 | 0,40575 | 0,541418 |
280 | 1,866667 | 16,0 | 0,405473 | 0,541136 |
281 | 1,873333 | 16,01 | 0,40575 | 0,540819 |
282 | 1,88 | 16,0 | 0,405473 | 0,540466 |
283 | 1,886667 | 16,01 | 0,40575 | 0,54008 |
284 | 1,893333 | 16,394 | 0,416406 | 0,539663 |
285 | 1,9 | 16,394 | 0,416406 | 0,539216 |
286 | 1,906667 | 16,404 | 0,416685 | 0,538744 |
287 | 1,913333 | 16,394 | 0,416406 | 0,538245 |
288 | 1,92 | 16,394 | 0,416406 | 0,537722 |
289 | 1,926667 | 16,384 | 0,416128 | 0,537175 |
290 | 1,933333 | 16,01 | 0,40575 | 0,536604 |
291 | 1,94 | 16,01 | 0,40575 | 0,536009 |
292 | 1,946667 | 16,0 | 0,405473 | 0,535389 |
293 | 1,953333 | 16,01 | 0,40575 | 0,534745 |
294 | 1,96 | 16,212 | 0,411349 | 0,534079 |
295 | 1,966667 | 16,394 | 0,416406 | 0,533394 |
296 | 1,973333 | 16,394 | 0,416406 | 0,532691 |
297 | 1,98 | 16,192 | 0,410794 | 0,531971 |
298 | 1,986667 | 16,0 | 0,405473 | 0,531233 |
299 | 1,993333 | 16,0 | 0,405473 | 0,530477 |
300 | 2,0 | 16,0 | 0,405473 | 0,529704 |