Search Legislation

Directive 2005/55/EC of the European Parliament and of the Council (repealed)Show full title

Directive 2005/55/EC of the European Parliament and of the Council of 28 September 2005 on the approximation of the laws of the Member States relating to the measures to be taken against the emission of gaseous and particulate pollutants from compression-ignition engines for use in vehicles, and the emission of gaseous pollutants from positive-ignition engines fuelled with natural gas or liquefied petroleum gas for use in vehicles (Text with EEA relevance) (repealed)

 Help about what version

What Version

 Help about UK-EU Regulation

Legislation originating from the EU

When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.

Close

This item of legislation originated from the EU

Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).

Status:

This is the original version (as it was originally adopted).

2.ELR TEST

Since Bessel filtering is a completely new averaging procedure in European exhaust legislation, an explanation of the Bessel filter, an example of the design of a Bessel algorithm, and an example of the calculation of the final smoke value is given below. The constants of the Bessel algorithm only depend on the design of the opacimeter and the sampling rate of the data acquisition system. It is recommended that the opacimeter manufacturer provide the final Bessel filter constants for different sampling rates and that the customer use these constants for designing the Bessel algorithm and for calculating the smoke values.

2.1.General remarks on the Bessel filter

Due to high frequency distortions, the raw opacity signal usually shows a highly scattered trace. To remove these high frequency distortions a Bessel filter is required for the ELR-test. The Bessel filter itself is a recursive, second-order low-pass filter which guarantees the fastest signal rise without overshoot.

Assuming a real time raw exhaust plume in the exhaust tube, each opacimeter shows a delayed and differently measured opacity trace. The delay and the magnitude of the measured opacity trace is primarily dependent on the geometry of the measuring chamber of the opacimeter, including the exhaust sample lines, and on the time needed for processing the signal in the electronics of the opacimeter. The values that characterise these two effects are called the physical and the electrical response time which represent an individual filter for each type of opacimeter.

The goal of applying a Bessel filter is to guarantee a uniform overall filter characteristic of the whole opacimeter system, consisting of:

  • physical response time of the opacimeter (tp),

  • electrical response time of the opacimeter (te),

  • filter response time of the applied Bessel filter (tF).

The resulting overall response time of the system tAver is given by:

and must be equal for all kinds of opacimeters in order to give the same smoke value. Therefore, a Bessel filter has to be created in such a way, that the filter response time (tF) together with the physical (tp) and electrical response time (te) of the individual opacimeter must result in the required overall response time (tAver). Since tp and te are given values for each individual opacimeter, and tAver is defined to be 1,0 s in this Directive, tF can be calculated as follows:

By definition, the filter response time tF is the rise time of a filtered output signal between 10 % and 90 % on a step input signal. Therefore the cut-off frequency of the Bessel filter has to be iterated in such a way, that the response time of the Bessel filter fits into the required rise time.

In Figure a, the traces of a step input signal and Bessel filtered output signal as well as the response time of the Bessel filter (tF) are shown.

Designing the final Bessel filter algorithm is a multi step process which requires several iteration cycles. The scheme of the iteration procedure is presented below.

2.2.Calculation of the Bessel algorithm

In this example a Bessel algorithm is designed in several steps according to the above iteration procedure which is based upon Annex III, Appendix 1, Section 6.1.

For the opacimeter and the data acquisition system, the following characteristics are assumed:

  • physical response time tp 0,15 s

  • electrical response time te 0,05 s

  • overall response time tAver 1,00 s (by definition in this Directive)

  • sampling rate 150 Hz

Step 1Required Bessel filter response time tF:
Step 2Estimation of cut-off frequency and calculation of Bessel constants E, K for first iteration:
fc

=

Δt

=

1/150 = 0,006667 s

Ω

=

E

=

K

=

This gives the Bessel algorithm:

where Si represents the values of the step input signal (either ‘0’ or ‘1’) and Yi represents the filtered values of the output signal.

Step 3Application of Bessel filter on step input:

The Bessel filter response time tF is defined as the rise time of the filtered output signal between 10 % and 90 % on a step input signal. For determining the times of 10 % (t10) and 90 % (t90) of the output signal, a Bessel filter has to be applied to a step input using the above values of fc, E and K.

The index numbers, the time and the values of a step input signal and the resulting values of the filtered output signal for the first and the second iteration are shown in Table B. The points adjacent to t10 and t90 are marked in bold numbers.

In Table B, first iteration, the 10 % value occurs between index number 30 and 31 and the 90 % value occurs between index number 191 and 192. For the calculation of tF,iter the exact t10 and t90 values are determined by linear interpolation between the adjacent measuring points, as follows:

where outupper and outlower, respectively, are the adjacent points of the Bessel filtered output signal, and tlower is the time of the adjacent time point, as indicated in Table B.

Step 4Filter response time of first iteration cycle:
Step 5Deviation between required and obtained filter response time of first iteration cycle:
Step 6Checking the iteration criteria:

|Δ| ≤ 0,01 is required. Since 0,081641 > 0,01, the iteration criteria is not met and a further iteration cycle has to be started. For this iteration cycle, a new cut-off frequency is calculated from fc and Δ as follows:

This new cut-off frequency is used in the second iteration cycle, starting at step 2 again. The iteration has to be repeated until the iteration criteria is met. The resulting values of the first and second iteration are summarised in Table A.

Table A

Values of the first and second iteration

Parameter1. Iteration2. Iteration
fc(Hz)0,3181520,344126
E(-)7,07948 E-58,272777 E-5
K(-)0,9707830,96841
t10(s)0,2009450,185523
t90(s)1,2761471,179562
tF,iter(s)1,0752020,994039
Δ(-)0,0816410,006657
fc,new(Hz)0,3441260,346417
Step 7Final Bessel algorithm:

As soon as the iteration criteria has been met, the final Bessel filter constants and the final Bessel algorithm are calculated according to step 2. In this example, the iteration criteria has been met after the second iteration (Δ = 0,006657 ≤ 0,01). The final algorithm is then used for determining the averaged smoke values (see next Section 2.3).

Table B

Values of step input signal and Bessel filtered output signal for the first and second iteration cycle

Index i[-]Time[s]Step input signal Si[-]Filtered output signal Yi[-]
1. Iteration2. Iteration
- 2- 0,01333300,00,0
- 1- 0,00666700,00,0
00,010,0000710,000083
10,00666710,0003520,000411
20,01333310,0009080,00106
30,0210,0017310,002019
40,02666710,0028130,003278
50,03333310,0041450,004828
~~~~~
240,1610,0678770,077876
250,16666710,0728160,083476
260,17333310,0778740,089205
270,1810,0830470,095056
280,18666710,0883310,101024
290,19333310,0937190,107102
300,210,0992080,113286
310,20666710,1047940,11957
320,21333310,1104710,125949
330,2210,1162360,132418
340,22666710,1220850,138972
350,23333310,1280130,145605
360,2410,1340160,152314
370,24666710,1400910,159094
~~~~~
1751,16666710,8624160,895701
1761,17333310,8649680,897941
1771,1810,8674840,900145
1781,18666710,8699640,902312
1791,19333310,872410,904445
1801,210,8748210,906542
1811,20666710,8771970,908605
1821,21333310,879540,910633
1831,2210,8818490,912628
1841,22666710,8841250,914589
1851,23333310,8863670,916517
1861,2410,8885770,918412
1871,24666710,8907550,920276
1881,25333310,89290,922107
1891,2610,8950140,923907
1901,26666710,8970960,925676
1911,27333310,8991470,927414
1921,2810,9011680,929121
1931,28666710,9031580,930799
1941,29333310,9051170,932448
1951,310,9070470,934067
~~~~~

2.3.Calculation of the smoke values

In the scheme below the general procedure of determining the final smoke value is presented.

In Figure b, the traces of the measured raw opacity signal, and of the unfiltered and filtered light absorption coefficients (k-value) of the first load step of an ELR-Test are shown, and the maximum value Ymax1,A (peak) of the filtered k trace is indicated. Correspondingly, Table C contains the numerical values of index i, time (sampling rate of 150 Hz), raw opacity, unfiltered k and filtered k. Filtering was conducted using the constants of the Bessel algorithm designed in Section 2.2 of this Annex. Due to the large amount of data, only those sections of the smoke trace around the beginning and the peak are tabled.

The peak value (i = 272) is calculated assuming the following data of Table C. All other individual smoke values are calculated in the same way. For starting the algorithm, S-1, S-2, Y-1 and Y-2 are set to zero.

LA (m)0,43
Index i272
N ( %)16,783
S271 (m-1)0,427392
S270 (m-1)0,427532
Y271 (m-1)0,542383
Y270 (m-1)0,542337
Calculation of the k-value (Annex III, Appendix 1, Section 6.3.1):

This value corresponds to S272 in the following equation.

Calculation of Bessel averaged smoke (Annex III, Appendix 1, Section 6.3.2):

In the following equation, the Bessel constants of the previous Section 2.2 are used. The actual unfiltered k-value, as calculated above, corresponds to S272 (Si). S271 (Si-1) and S270 (Si-2) are the two preceding unfiltered k-values, Y271 (Yi-1) and Y270 (Yi-2) are the two preceding filtered k-values.

=
=

This value corresponds to Ymax1,A in the following equation.

Calculation of the final smoke value (Annex III, Appendix 1, Section 6.3.3):

From each smoke trace, the maximum filtered k-value is taken for the further calculation.

Assume the following values

SpeedYmax (m-1)
Cycle 1Cycle 2Cycle 3
A0,54240,54350,5587
B0,55960,540,5389
C0,49120,52070,5177
Cycle validation (Annex III, Appendix 1, Section 3.4)

Before calculating SV, the cycle must be validated by calculating the relative standard deviations of the smoke of the three cycles for each speed.

SpeedMean SV(m-1)Absolute standard deviation(m-1)Relative standard deviation(%)
A0,54820,00911,7
B0,54620,01162,1
C0,50990,01623,2

In this example, the validation criteria of 15 % are met for each speed.

Table C

Values of opacity N, unfiltered and filtered k-value at beginning of load step

Index i[-]Time[s]Opacity N[%]Unfiltered k-value[m-1]Filtered k-value[m-1]
- 20,00,00,00,0
- 10,00,00,00,0
00,00,00,00,0
10,0066670,020,0004650,0
20,0133330,020,0004650,0
30,020,020,0004650,0
40,0266670,020,0004650,000001
50,0333330,020,0004650,000002
60,040,020,0004650,000002
70,0466670,020,0004650,000003
80,0533330,020,0004650,000004
90,060,020,0004650,000005
100,0666670,020,0004650,000006
110,0733330,020,0004650,000008
120,080,020,0004650,000009
130,0866670,020,0004650,000011
140,0933330,020,0004650,000012
150,10,1920,0044690,000014
160,1066670,2120,0049350,000018
170,1133330,2120,0049350,000022
180,120,2120,0049350,000028
190,1266670,3430,007990,000036
200,1333330,5660,01320,000047
210,140,8890,0207670,000061
220,1466670,9290,0217060,000082
230,1533330,9290,0217060,000109
240,161,2630,0295590,000143
250,1666671,4550,0340860,000185
260,1733331,6970,0398040,000237
270,182,030,0476950,000301
280,1866672,0810,0489060,000378
290,1933332,0810,0489060,000469
300,22,4240,0570670,000573
310,2066672,4750,0582820,000693
320,2133332,4750,0582820,000827
330,222,8080,0662370,000977
340,2266673,010,0710750,001144
350,2333333,2530,0769090,001328
360,243,6060,085410,001533
370,2466673,960,0939660,001758
380,2533334,4550,1059830,002007
390,264,8180,1148360,002283
400,2666675,020,1197760,002587
Values of opacity N, unfiltered and filtered k-value around Ymax1,A (≡ peak value, indicated in bold number)
Index i[-]Time[s]Opacity N[%]Unfiltered k-value[m-1]Filtered k-value[m-1]
2591,72666717,1820,4384290,538856
2601,73333316,9490,4318960,539423
2611,7416,7880,4273920,539936
2621,74666716,7980,4276710,540396
2631,75333316,7880,4273920,540805
2641,7616,7980,4276710,541163
2651,76666716,7980,4276710,541473
2661,77333316,7880,4273920,541735
2671,7816,7880,4273920,541951
2681,78666716,7980,4276710,542123
2691,79333316,7980,4276710,542251
2701,816,7930,4275320,542337
2711,80666716,7880,4273920,542383
2721,81333316,7830,427252 0,542389
2731,8216,780,4271680,542357
2741,82666716,7980,4276710,542288
2751,83333316,7780,4271120,542183
2761,8416,8080,4279510,542043
2771,84666716,7680,4268330,54187
2781,85333316,010,405750,541662
2791,8616,010,405750,541418
2801,86666716,00,4054730,541136
2811,87333316,010,405750,540819
2821,8816,00,4054730,540466
2831,88666716,010,405750,54008
2841,89333316,3940,4164060,539663
2851,916,3940,4164060,539216
2861,90666716,4040,4166850,538744
2871,91333316,3940,4164060,538245
2881,9216,3940,4164060,537722
2891,92666716,3840,4161280,537175
2901,93333316,010,405750,536604
2911,9416,010,405750,536009
2921,94666716,00,4054730,535389
2931,95333316,010,405750,534745
2941,9616,2120,4113490,534079
2951,96666716,3940,4164060,533394
2961,97333316,3940,4164060,532691
2971,9816,1920,4107940,531971
2981,98666716,00,4054730,531233
2991,99333316,00,4054730,530477
3002,016,00,4054730,529704

Back to top

Options/Help

Print Options

You have chosen to open the Whole Directive

The Whole Directive you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.

Would you like to continue?

You have chosen to open Schedules only

The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.

Would you like to continue?

Close

Legislation is available in different versions:

Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.

Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.

Close

Opening Options

Different options to open legislation in order to view more content on screen at once

Close

More Resources

Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:

  • the original print PDF of the as adopted version that was used for the EU Official Journal
  • lists of changes made by and/or affecting this legislation item
  • all formats of all associated documents
  • correction slips
  • links to related legislation and further information resources
Close

More Resources

Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:

  • the original print PDF of the as adopted version that was used for the print copy
  • correction slips

Click 'View More' or select 'More Resources' tab for additional information including:

  • lists of changes made by and/or affecting this legislation item
  • confers power and blanket amendment details
  • all formats of all associated documents
  • links to related legislation and further information resources