Search Legislation

Directive 2005/55/EC of the European Parliament and of the Council (repealed)Show full title

Directive 2005/55/EC of the European Parliament and of the Council of 28 September 2005 on the approximation of the laws of the Member States relating to the measures to be taken against the emission of gaseous and particulate pollutants from compression-ignition engines for use in vehicles, and the emission of gaseous pollutants from positive-ignition engines fuelled with natural gas or liquefied petroleum gas for use in vehicles (Text with EEA relevance) (repealed)

 Help about what version

What Version

 Help about UK-EU Regulation

Legislation originating from the EU

When the UK left the EU, legislation.gov.uk published EU legislation that had been published by the EU up to IP completion day (31 December 2020 11.00 p.m.). On legislation.gov.uk, these items of legislation are kept up-to-date with any amendments made by the UK since then.

Close

This item of legislation originated from the EU

Legislation.gov.uk publishes the UK version. EUR-Lex publishes the EU version. The EU Exit Web Archive holds a snapshot of EUR-Lex’s version from IP completion day (31 December 2020 11.00 p.m.).

Status:

This is the original version (as it was originally adopted).

1.CALIBRATION OF THE ANALYTICAL INSTRUMENTS

1.1.Introduction

Each analyser shall be calibrated as often as necessary to fulfil the accuracy requirements of this Directive. The calibration method that shall be used is described in this section for the analysers indicated in Annex III, Appendix 4, Section 3 and Annex V, Section 1.

1.2.Calibration gases

The shelf life of all calibration gases must be respected.

The expiration date of the calibration gases stated by the manufacturer shall be recorded.

1.2.1.Pure gases

The required purity of the gases is defined by the contamination limits given below. The following gases must be available for operation:

  • Purified nitrogen

    (Contamination ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO)

  • Purified oxygen

    (Purity > 99,5 % vol O2)

  • Hydrogen-helium mixture

    (40 ± 2 % hydrogen, balance helium)

    (Contamination ≤ 1 ppm C1, ≤ 400 ppm CO2)

  • Purified synthetic air

    (Contamination ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO)

    (Oxygen content between 18-21 % vol.)

  • Purified propane or CO for the CVS verification

1.2.2.Calibration and span gases

Mixtures of gases having the following chemical compositions shall be available:

C3H8 and purified synthetic air (see Section 1.2.1);

CO and purified nitrogen;

NOx and purified nitrogen (the amount of NO2 contained in this calibration gas must not exceed 5 % of the NO content);

CO2 and purified nitrogen;

CH4 and purified synthetic air;

C2H6 and purified synthetic air.

Note: Other gas combinations are allowed provided the gases do not react with one another.

The true concentration of a calibration and span gas must be within ± 2 % of the nominal value. All concentrations of calibration gas shall be given on a volume basis (volume percent or volume ppm).

The gases used for calibration and span may also be obtained by means of a gas divider, diluting with purified N2 or with purified synthetic air. The accuracy of the mixing device must be such that the concentration of the diluted calibration gases may be determined to within ± 2 %.

1.3.Operating procedure for analysers and sampling system

The operating procedure for analysers shall follow the start-up and operating instructions of the instrument manufacturer. The minimum requirements given in Sections 1.4 to 1.9 shall be included.

1.4.Leakage test

A system leakage test shall be performed. The probe shall be disconnected from the exhaust system and the end plugged. The analyser pump shall be switched on. After an initial stabilisation period all flow meters should read zero. If not, the sampling lines shall be checked and the fault corrected.

The maximum allowable leakage rate on the vacuum side shall be 0,5 % of the in-use flow rate for the portion of the system being checked. The analyser flows and bypass flows may be used to estimate the in-use flow rates.

Another method is the introduction of a concentration step change at the beginning of the sampling line by switching from zero to span gas. If after an adequate period of time the reading shows a lower concentration compared to the introduced concentration, this points to calibration or leakage problems.

1.5.Calibration procedure
1.5.1.Instrument assembly

The instrument assembly shall be calibrated and calibration curves checked against standard gases. The same gas flow rates shall be used as when sampling exhaust.

1.5.2.Warming-up time

The warming-up time should be according to the recommendations of the manufacturer. If not specified, a minimum of two hours is recommended for warming up the analysers.

1.5.3.NDIR and HFID analyser

The NDIR analyser shall be tuned, as necessary, and the combustion flame of the HFID analyser shall be optimised (Section 1.8.1).

1.5.4.Calibration

Each normally used operating range shall be calibrated.

Using purified synthetic air (or nitrogen), the CO, CO2, NOx and HC analysers shall be set at zero.

The appropriate calibration gases shall be introduced to the analysers, the values recorded, and the calibration curve established according to Section 1.5.5.

The zero setting shall be rechecked and the calibration procedure repeated, if necessary.

1.5.5.Establishment of the calibration curve
1.5.5.1.General guidelines

The analyser calibration curve shall be established by at least five calibration points (excluding zero) spaced as uniformly as possible. The highest nominal concentration must be equal to or higher than 90 % of full scale.

The calibration curve shall be calculated by the method of least squares. If the resulting polynomial degree is greater than 3, the number of calibration points (zero included) must be at least equal to this polynomial degree plus 2.

The calibration curve must not differ by more than ± 2 % from the nominal value of each calibration point and by more than ± 1 % of full scale at zero.

From the calibration curve and the calibration points, it is possible to verify that the calibration has been carried out correctly. The different characteristic parameters of the analyser must be indicated, particularly:

  • the measuring range,

  • the sensitivity,

  • the date of carrying out the calibration.

1.5.5.2.Calibration below 15 % of full scale

The analyser calibration curve shall be established by at least 4 additional calibration points (excluding zero) spaced nominally equally below 15 % of full scale.

The calibration curve is calculated by the method of least squares.

The calibration curve must not differ by more than ± 4 % from the nominal value of each calibration point and by more than ± 1 % of full scale at zero.

1.5.5.3.Alternative methods

If it can be shown that alternative technology (e.g. computer, electronically controlled range switch, etc.) can give equivalent accuracy, then these alternatives may be used.

1.6.Verification of the calibration

Each normally used operating range shall be checked prior to each analysis in accordance with the following procedure.

The calibration shall be checked by using a zero gas and a span gas whose nominal value is more than 80 % of full scale of the measuring range.

If, for the two points considered, the value found does not differ by more than ± 4 % of full scale from the declared reference value, the adjustment parameters may be modified. Should this not be the case, a new calibration curve shall be established in accordance with Section 1.5.5.

1.7.Efficiency test of the NOx converter

The efficiency of the converter used for the conversion of NO2 into NO shall be tested as given in Sections 1.7.1 to 1.7.8 (Figure 6).

1.7.1.Test set-up

Using the test set-up as shown in Figure 6 (see also Annex III, Appendix 4, Section 3.3.5) and the procedure below, the efficiency of converters can be tested by means of an ozonator.

1.7.2.Calibration

The CLD and the HCLD shall be calibrated in the most common operating range following the manufacturer's specifications using zero and span gas (the NO content of which must amount to about 80 % of the operating range and the NO2 concentration of the gas mixture to less than 5 % of the NO concentration). The NOx analyser must be in the NO mode so that the span gas does not pass through the converter. The indicated concentration has to be recorded.

1.7.3.Calculation

The efficiency of the NOx converter is calculated as follows:

where,

a

=

is the NOx concentration according to Section 1.7.6

b

=

is the NOx concentration according to Section 1.7.7

c

=

is the NO concentration according to Section 1.7.4

d

=

is the NO concentration according to Section 1.7.5

1.7.4.Adding of oxygen

Via a T-fitting, oxygen or zero air is added continuously to the gas flow until the concentration indicated is about 20 % less than the indicated calibration concentration given in Section 1.7.2. (The analyser is in the NO mode). The indicated concentration c shall be recorded. The ozonator is kept deactivated throughout the process.

1.7.5.Activation of the ozonator

The ozonator is now activated to generate enough ozone to bring the NO concentration down to about 20 % (minimum 10 %) of the calibration concentration given in Section 1.7.2. The indicated concentration d shall be recorded. (The analyser is in the NO mode).

1.7.6.NOx mode

The NO analyser is then switched to the NOx mode so that the gas mixture (consisting of NO, NO2, O2 and N2) now passes through the converter. The indicated concentration a shall be recorded. (The analyser is in the NOx mode).

1.7.7.Deactivation of the ozonator

The ozonator is now deactivated. The mixture of gases described in Section 1.7.6 passes through the converter into the detector. The indicated concentration b shall be recorded. (The analyser is in the NOx mode).

1.7.8.NO mode

Switched to NO mode with the ozonator deactivated, the flow of oxygen or synthetic air is also shut off. The NOx reading of the analyser shall not deviate by more than ± 5 % from the value measured according to Section 1.7.2. (The analyser is in the NO mode).

1.7.9.Test interval

The efficiency of the converter must be tested prior to each calibration of the NOx analyser.

1.7.10.Efficiency requirement

The efficiency of the converter shall not be less than 90 %, but a higher efficiency of 95 % is strongly recommended.

Note: If, with the analyser in the most common range, the ozonator cannot give a reduction from 80 % to 20 % according to Section 1.7.5, then the highest range which will give the reduction shall be used.

1.8.Adjustment of the FID
1.8.1.Optimisation of the detector response

The FID must be adjusted as specified by the instrument manufacturer. A propane in air span gas should be used to optimise the response on the most common operating range.

With the fuel and air flow rates set at the manufacturer's recommendations, a 350 ± 75 ppm C span gas shall be introduced to the analyser. The response at a given fuel flow shall be determined from the difference between the span gas response and the zero gas response. The fuel flow shall be incrementally adjusted above and below the manufacturer's specification. The span and zero response at these fuel flows shall be recorded. The difference between the span and zero response shall be plotted and the fuel flow adjusted to the rich side of the curve.

1.8.2.Hydrocarbon response factors

The analyser shall be calibrated using propane in air and purified synthetic air, according to Section 1.5.

Response factors shall be determined when introducing an analyser into service and after major service intervals. The response factor (Rf) for a particular hydrocarbon species is the ratio of the FID C1 reading to the gas concentration in the cylinder expressed by ppm C1.

The concentration of the test gas must be at a level to give a response of approximately 80 % of full scale. The concentration must be known to an accuracy of ± 2 % in reference to a gravimetric standard expressed in volume. In addition, the gas cylinder must be preconditioned for 24 hours at a temperature of 298 K ± 5 K (25 °C ± 5 °C).

The test gases to be used and the recommended relative response factor ranges are as follows:

methane and purified synthetic air 1,00 ≤ Rf ≤ 1,15

propylene and purified synthetic air 0,90 ≤ Rf ≤ 1,10

toluene and purified synthetic air 0,90 ≤ Rf ≤ 1,10

These values are relative to the response factor (Rf) of 1,00 for propane and purified synthetic air.

1.8.3.Oxygen interference check

The oxygen interference check shall be determined when introducing an analyser into service and after major service intervals.

The response factor is defined and shall be determined as described in Section 1.8.2. The test gas to be used and the recommended relative response factor range are as follows:

This value is relative to the response factor (Rf) of 1,00 for propane and purified synthetic air.

The FID burner air oxygen concentration must be within ± 1 mole % of the oxygen concentration of the burner air used in the latest oxygen interference check. If the difference is greater, the oxygen interference must be checked and the analyser adjusted, if necessary.

1.8.4.Efficiency of the non-methane cutter (NMC, for NG fuelled gas engines only)

The NMC is used for the removal of the non-methane hydrocarbons from the sample gas by oxidising all hydrocarbons except methane. Ideally, the conversion for methane is 0 %, and for the other hydrocarbons represented by ethane is 100 %. For the accurate measurement of NMHC, the two efficiencies shall be determined and used for the calculation of the NMHC emission mass flow rate (see Annex III, Appendix 2, Section 4.3).

1.8.4.1.Methane efficiency

Methane calibration gas shall be flown through the FID with and without bypassing the NMC and the two concentrations recorded. The efficiency shall be determined as follows:

where,

concw

=

HC concentration with CH4 flowing through the NMC

concw/o

=

HC concentration with CH4 bypassing the NMC

1.8.4.2.Ethane efficiency

Ethane calibration gas shall be flown through the FID with and without bypassing the NMC and the two concentrations recorded. The efficiency shall be determined as follows

where,

concw

=

HC concentration with C2H6 flowing through the NMC

concw/o

=

HC concentration with C2H6 bypassing the NMC

1.9.Interference effects with CO, CO2, and NOx analysers

Gases present in the exhaust other than the one being analysed can interfere with the reading in several ways. Positive interference occurs in NDIR instruments where the interfering gas gives the same effect as the gas being measured, but to a lesser degree. Negative interference occurs in NDIR instruments by the interfering gas broadening the absorption band of the measured gas, and in CLD instruments by the interfering gas quenching the radiation. The interference checks in Sections 1.9.1 and 1.9.2 shall be performed prior to an analyser's initial use and after major service intervals.

1.9.1.CO analyser interference check

Water and CO2 can interfere with the CO analyser performance. Therefore, a CO2 span gas having a concentration of 80 to 100 % of full scale of the maximum operating range used during testing shall be bubbled through water at room temperature and the analyser response recorded. The analyser response must not be more than 1 % of full scale for ranges equal to or above 300 ppm or more than 3 ppm for ranges below 300 ppm.

1.9.2.NOx analyser quench checks

The two gases of concern for CLD (and HCLD) analysers are CO2 and water vapour. Quench responses to these gases are proportional to their concentrations, and therefore require test techniques to determine the quench at the highest expected concentrations experienced during testing.

1.9.2.1.CO2 quench check

A CO2 span gas having a concentration of 80 to 100 % of full scale of the maximum operating range shall be passed through the NDIR analyser and the CO2 value recorded as A. It shall then be diluted approximately 50 % with NO span gas and passed through the NDIR and (H)CLD, with the CO2 and NO values recorded as B and C, respectively. The CO2 shall then be shut off and only the NO span gas be passed through the (H)CLD and the NO value recorded as D.

The quench, which must not be greater than 3 % of full scale, shall be calculated as follows:

where,

A

=

is the undiluted CO2 concentration measured with NDIR in %

B

=

is the diluted CO2 concentration measured with NDIR in %

C

=

is the diluted NO concentration measured with (H)CLD in ppm

D

=

is the undiluted NO concentration measured with (H)CLD in ppm

Alternative methods of diluting and quantifying of CO2 and NO span gas values such as dynamic mixing/blending can be used.

1.9.2.2.Water quench check

This check applies to wet gas concentration measurements only. Calculation of water quench must consider dilution of the NO span gas with water vapour and scaling of water vapour concentration of the mixture to that expected during testing.

A NO span gas having a concentration of 80 to 100 % of full scale of the normal operating range shall be passed through the (H)CLD and the NO value recorded as D. The NO span gas shall then be bubbled through water at room temperature and passed through the (H)CLD and the NO value recorded as C. The analyser's absolute operating pressure and the water temperature shall be determined and recorded as E and F, respectively. The mixture's saturation vapour pressure that corresponds to the bubbler water temperature F shall be determined and recorded as G. The water vapour concentration (H, in %) of the mixture shall be calculated as follows:

The expected diluted NO span gas (in water vapour) concentration (De) shall be calculated as follows:

For diesel exhaust, the maximum exhaust water vapour concentration (Hm, in %) expected during testing shall be estimated, under the assumption of a fuel atom H/C ratio of 1,8:1, from the undiluted CO2 span gas concentration (A, as measured in Section 1.9.2.1) as follows:

The water quench, which must not be greater than 3 %, shall be calculated as follows:

where,

De

=

is the expected diluted NO concentration in ppm

C

=

is the diluted NO concentration in ppm

Hm

=

is the maximum water vapour concentration in %

H

=

is the actual water vapour concentration in %

Note: It is important that the NO span gas contains minimal NO2 concentration for this check, since absorption of NO2 in water has not been accounted for in the quench calculations.

1.10.Calibration intervals

The analysers shall be calibrated according to Section 1.5 at least every three months or whenever a system repair or change is made that could influence calibration.

Back to top

Options/Help

Print Options

You have chosen to open the Whole Directive

The Whole Directive you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.

Would you like to continue?

You have chosen to open Schedules only

The Schedules you have selected contains over 200 provisions and might take some time to download. You may also experience some issues with your browser, such as an alert box that a script is taking a long time to run.

Would you like to continue?

Close

Legislation is available in different versions:

Latest Available (revised):The latest available updated version of the legislation incorporating changes made by subsequent legislation and applied by our editorial team. Changes we have not yet applied to the text, can be found in the ‘Changes to Legislation’ area.

Original (As adopted by EU): The original version of the legislation as it stood when it was first adopted in the EU. No changes have been applied to the text.

Close

Opening Options

Different options to open legislation in order to view more content on screen at once

Close

More Resources

Access essential accompanying documents and information for this legislation item from this tab. Dependent on the legislation item being viewed this may include:

  • the original print PDF of the as adopted version that was used for the EU Official Journal
  • lists of changes made by and/or affecting this legislation item
  • all formats of all associated documents
  • correction slips
  • links to related legislation and further information resources
Close

More Resources

Use this menu to access essential accompanying documents and information for this legislation item. Dependent on the legislation item being viewed this may include:

  • the original print PDF of the as adopted version that was used for the print copy
  • correction slips

Click 'View More' or select 'More Resources' tab for additional information including:

  • lists of changes made by and/or affecting this legislation item
  • confers power and blanket amendment details
  • all formats of all associated documents
  • links to related legislation and further information resources