Commission Implementing Decision of 28 February 2012 establishing the best available techniques (BAT) conclusions under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions for the manufacture of glass (notified under document C(2012) 865) (Text with EEA relevance) (2012/134/EU)

Article 1 The BAT conclusions for the manufacture of glass are set...

Article 2 Application and Interpretation Signature

ANNEX

BAT CONCLUSIONS FOR THE MANUFACTURE OF GLASS

SCOPE

DEFINITIONS

GENERAL CONSIDERATIONS

Averaging periods and reference conditions for air emissions Conversion to reference oxygen concentration Conversion from concentrations to specific mass emissions

DEFINITIONS FOR CERTAIN AIR POLLUTANTS

AVERAGING PERIODS FOR WASTE WATER DISCHARGES

- 1.1. General BAT conclusions for the manufacture of glass
 - 1.1.1. Environmental management systems
 - 1. BAT is to implement and adhere to an environmental management...

Applicability

1.1.2. Energy efficiency

7.

- 2. BAT is to reduce the specific energy consumption by using...
- 1.1.3. Materials storage and handling
 - 3. BAT is to prevent, or where that is not practicable,...
 - 4. BAT is to prevent, or where that is not practicable,...
- 1.1.4. General primary techniques
 - 5. BAT is to reduce energy consumption and emissions to air...
 - 6. BAT is to carry out a careful selection and control...
 - BAT is to carry out monitoring of emissions and/or other...
 - 8. BAT is to operate the waste gas treatment systems during... Applicability
 - 9. BAT is to limit carbon monoxide (CO) emissions from the...
 - 10. BAT is to limit ammonia (NH3) emissions, when applying selective...
 - 11. BAT is to reduce boron emissions from the melting furnace,... Monitoring
- 1.1.5. Emissions to water from glass manufacturing processes

- 12. BAT is to reduce water consumption by using one or...
- 13. BAT is to reduce the emission load of pollutants in...
- 1.1.6. Waste from the glass manufacturing processes
 - 14. BAT is to reduce the production of solid waste to...
- 1.1.7. Noise from the glass manufacturing processes
 - 15. BAT is to reduce noise emissions by using one or...
- 1.2. BAT conclusions for container glass manufacturing
 - 1.2.1. Dust emissions from melting furnaces
 - 16. BAT is to reduce dust emissions from the waste gases...
 - 1.2.2. Nitrogen oxides (NOX) from melting furnaces
 - 17. BAT is to reduce NOX emissions from the melting furnace...
 - 18. When nitrates are used in the batch formulation and/or special...
 - 1.2.3. Sulphur oxides (SOX) from melting furnaces
 - 19. BAT is to reduce SOX emissions from the melting furnace...
 - 1.2.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 20. BAT is to reduce HCl and HF emissions from the...
 - 1.2.5. Metals from melting furnaces
 - 21. BAT is to reduce metal emissions from the melting furnace...
 - 1.2.6. Emissions from downstream processes
 - 22. When tin, organotin or titanium compounds are used for hotend...
 - 23. When SO3 is used for surface treatment operations, BAT is...
- 1.3. BAT conclusions for flat glass manufacturing
 - 1.3.1. Dust emissions from melting furnaces
 - 24. BAT is to reduce dust emissions from the waste gases...
 - 1.3.2. Nitrogen oxides (NOX) from melting furnaces
 - 25. BAT is to reduce NOX emissions from the melting furnace...
 - 26. When nitrates are used in the batch formulation, BAT is...
 - 1.3.3. Sulphur oxides (SOX) from melting furnaces
 - 27. BAT is to reduce SOX emissions from the melting furnace...
 - 1.3.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 28. BAT is to reduce HCl and HF emissions from the...
 - 1.3.5. Metals from melting furnaces

1.4.

- 29. BAT is to reduce metal emissions from the melting furnace...
- 30. When selenium compounds are used for colouring the glass, BAT...
- 1.3.6. Emissions from downstream processes
- 31. BAT is to reduce emissions to air from the downstream...
- BAT conclusions for continuous filament glass fibre manufacturing
 - 1.4.1. Dust emissions from melting furnaces
 - 32. BAT is to reduce dust emissions from the waste gases...
 - 1.4.2. Nitrogen oxides (NOX) from melting furnaces
 - 33. BAT is to reduce NOX emissions from the melting furnace... 1.4.3. Sulphur oxides (SOX) from melting furnaces
 - 34. BAT is to reduce SOX emissions from the melting furnace...
 - 1.4.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 35. BAT is to reduce HCl and HF emissions from the...
 - 1.4.5. Metals from melting furnaces
 - 36. BAT is to reduce metal emissions from the melting furnace...

Changes to legislation: There are currently no known outstanding effects for the Commission Implementing Decision of 28 February 2012 establishing the best available techniques (BAT) conclusions under Directive 2010/75/ EU of the European Parliament and of the Council on industrial emissions for the manufacture of glass (notified under document C(2012) 865) (Text with EEA relevance) (2012/134/EU). (See end of Document for details)

- 1.4.6. Emissions from downstream processes
 - 37. BAT is to reduce emissions from downstream processes by using...
- 1.5. BAT conclusions for domestic glass manufacturing
 - 1.5.1. Dust emissions from melting furnaces
 - 38. BAT is to reduce dust emissions from the waste gases...
 - 1.5.2. Nitrogen oxides (NOX) from melting furnaces
 - 39. BAT is to reduce NOX emissions from the melting furnace...
 - 40. When nitrates are used in the batch formulation, BAT is...
 - 1.5.3. Sulphur oxides (SOX) from melting furnaces
 - 41. BAT is to reduce SOX emissions from the melting furnace...
 - 1.5.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 42. BAT is to reduce HCl and HF emissions from the...
 - 1.5.5. Metals from melting furnaces
 - 43. BAT is to reduce metal emissions from the melting furnace...
 - 44. When selenium compounds are used for decolourising the glass, BAT...
 - 45. When lead compounds are used for the manufacturing of lead...
 - 1.5.6. Emissions from downstream processes
 - 46. For downstream dusty processes, BAT is to reduce emissions of...
 - 47. For acid polishing processes, BAT is to reduce HF emissions...
- 1.6. BAT conclusions for special glass manufacturing
 - 1.6.1. Dust emissions from melting furnaces
 - 48. BAT is to reduce dust emissions from the waste gases...
 - 1.6.2. Nitrogen oxides (NOX) from melting furnaces
 - 49. BAT is to reduce NOX emissions from the melting furnace...
 - 50. When nitrates are used in the batch formulation, BAT is...
 - 1.6.3. Sulphur oxides (SOX) from melting furnaces
 - 51. BAT is to reduce SOX emissions from the melting furnace...
 - 1.6.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 52. BAT is to reduce HCl and HF emissions from the...
 - 1.6.5. Metals from melting furnaces
 - 53. BAT is to reduce metal emissions from the melting furnace...
 - 1.6.6. Emissions from downstream processes
 - 54. For downstream dusty processes, BAT is to reduce emissions of...
 - 55. For acid polishing processes, BAT is to reduce HF emissions...
- 1.7. BAT conclusions for mineral wool manufacturing
 - 1.7.1. Dust emissions from melting furnaces
 - 56. BAT is to reduce dust emissions from the waste gases...
 - 1.7.2. Nitrogen oxides (NOX) from melting furnaces
 - 57. BAT is to reduce NOX emissions from the melting furnace...
 - 58. When nitrates are used in the batch formulation for glass...
 - 1.7.3. Sulphur oxides (SOX) from melting furnaces
 - 59. BAT is to reduce SOX emissions from the melting furnace...
 - 1.7.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 60. BAT is to reduce HCl and HF emissions from the...
 - 1.7.5. Hydrogen sulphide (H2S) from stone wool melting furnaces

- 61. BAT is to reduce H2S emissions from the melting furnace...
- 1.7.6. Metals from melting furnaces
- 62. BAT is to reduce metal emissions from the melting furnace... 1.7.7. Emissions from downstream processes
 - 63. BAT is to reduce emissions from downstream processes by using...
- 1.8. BAT conclusions for high temperature insulation wools (HTIW) manufacturing
 - 1.8.1. Dust emissions from melting and downstream processes
 - 64. BAT is to reduce dust emissions from the waste gases...
 - 65. For downstream dusty processes, BAT is to reduce emissions using...
 - 1.8.2. Nitrogen oxides (NOX) from melting and downstream processes
 - 66. BAT is to reduce NOX emissions from the lubricant burn-off...
 - 1.8.3. Sulphur oxides (SOX) from melting and downstream processes67. BAT is to reduce SOX emissions from the melting furnaces...
 - 1.8.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 68. BAT is to reduce HCl and HF emissions from the...
 - 1.8.5. Metals from melting furnaces and downstream processes69. BAT is to reduce metal emissions from the melting furnace...
 - 1.8.6. Volatile organic compounds from downstream processes
 - 70. BAT is to reduce volatile organic compound (VOC) emissions from...
- 1.9. BAT conclusions for frits manufacturing
 - 1.9.1. Dust emissions from melting furnaces
 - 71. BAT is to reduce dust emissions from the waste gases...
 - 1.9.2. Nitrogen oxides (NOX) from melting furnaces
 - 72. BAT is to reduce NOX emissions from the melting furnace... 1.9.3. Sulphur oxides (SOX) from melting furnaces
 - 73. BAT is to control SOX emissions from the melting furnace...
 - 1.9.4. Hydrogen chloride (HCl) and hydrogen fluoride (HF) from melting furnaces...
 - 74. BAT is to reduce HCl and HF emissions from the...
 - 1.9.5. Metals from melting furnaces
 - 75. BAT is to reduce metal emissions from the melting furnace...
 - 1.9.6. Emissions from downstream processes
 - 76. For downstream dusty processes, BAT is to reduce emissions by...
 - Glossary
 - 1.10. Description of techniques
 - 1.10.1. Dust emissions
 - 1.10.2. NOX emissions
 - 1.10.3. SOX emissions
 - 1.10.4. HCl, HF emissions
 - 1.10.5. Metal emissions
 - 1.10.6. Combined gaseous emissions (e.g. SOX, HCl, HF, boron compounds)
 - 1.10.7. Combined emissions (solid + gaseous)
 - 1.10.8. Emissions from cutting, grinding, polishing operations
 - 1.10.9. H2S, VOC emissions

Changes to legislation: There are currently no known outstanding effects for the Commission Implementing Decision of 28 February 2012 establishing the best available techniques (BAT) conclusions under Directive 2010/75/ EU of the European Parliament and of the Council on industrial emissions for the manufacture of glass (notified under document C(2012) 865) (Text with EEA relevance) (2012/134/EU). (See end of Document for details)

- (**1**) OJ L 334, 17.12.2010, p. 17.
- (2) OJ C 146, 17.5.2011, p. 3.
- (3) http://circa.europa.eu/Public/irc/env/ied/library?l=/ied_art_13_forum/opinions_article

Changes to legislation:

There are currently no known outstanding effects for the Commission Implementing Decision of 28 February 2012 establishing the best available techniques (BAT) conclusions under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions for the manufacture of glass (notified under document C(2012) 865) (Text with EEA relevance) (2012/134/EU).